热工过程自动控制技术课件第二
- 格式:ppt
- 大小:699.50 KB
- 文档页数:9
第二章锅炉侧控制第一节直流锅炉简介超临界机组指的是锅炉内工质的压力超过了临界点。
水的临界点是22.115MPa/374.15℃。
在临界点时饱和水和饱和蒸汽之间不再有汽、水共存的二相区存在,理论上认为,水的状态参数达到临界点时,水的汽化会在一瞬间完成。
由于在临界参数下汽水密度相等,因此在超临界压力下无法维持汽包锅炉的自然循环,直流锅炉成为唯一型式。
随着机组向大容量高参数方向发展,直流锅炉由于热效率高在火电厂中得到了愈来愈广泛的应用。
直流锅炉属于强制循环锅炉,其工质在给水泵压头作用下,顺序地通过加热段、蒸发段和过热段,一次性的将给水全部转变为过热蒸汽,它的循环倍率等于1。
直流锅炉在工作原理、运行和控制等方面都有其自身的特点:(1)强制循环直流锅炉的汽水流程如图2-1所示,工质从水变成过热蒸汽的加热流动完全靠给水泵的压头来驱动。
因此,较汽包锅炉而言,受热面可以任意布置,适应各种压力的锅炉。
(2)各受热段之间没有固定的界限直流锅炉没有汽包,因此加热段、蒸发段及过热面段没有严格的界限。
当锅炉的给水流量或燃烧率改变时,各个受热段的分界就发生移动。
例如当燃烧率增加时,蒸发段与过热段之间的分界向汽水流程的前面移动(加热段、蒸发段缩短,过热段伸长);当给水流量增加时,蒸发段与过热段之间的分界则向后移动。
由于受热面界限的变化,锅炉的过热蒸汽温度会发生很大的变化,如图2-2所示。
当给水流量不变而燃烧率增加时,由于蒸发所需的热量不变,因而加热和蒸发的受热段缩短,过热受热段增加,所增加的燃烧热量全部用于使过热蒸汽加温,因此汽温将上升。
对于一般直流锅炉,燃烧率和给水流量的比例变化1将使过热蒸汽温度变化约8~10℃。
在实际运行中,负荷变化等原因引起燃料与给水流量的比例失调往往超过1%,从而使过热汽温发生很大的变化,所以只采用改变喷水流量作给水泵省煤器水冷壁过热器为调温手段将很难把出口汽温校正过来。
因此,对于直流锅炉来说,调节汽温的手段应是使燃烧率和给水流量保持适当比例(粗调), 再采用喷水减温作为过热汽温的细调手段,以使过热汽温精确地等于给定值。
《热工过程自动控制技术》高职(原创实用版)目录一、热工过程自动控制的基本原理二、PID 控制的分析与整定方法三、大型火电机组的主要控制系统四、现代控制理论及其在热工过程中的应用五、离散控制系统的基本内容六、先进的控制策略及其在热工过程中的发展与应用正文热工过程自动控制技术是一种在能源动力系统中广泛应用的技术,它依据自动控制的基本原理,对热工过程进行实时监测和调节,以保证热工过程的稳定性和安全性。
首先,热工过程自动控制的基本原理主要包括反馈控制和前馈控制。
反馈控制是根据系统的输出信号,通过比较和误差放大,来调节系统的输入信号,以使系统输出信号接近于期望值。
前馈控制则是根据系统的输入信号,通过预测和提前调节,来减小系统的输出误差。
其次,PID 控制是一种在热工过程中占有统治地位的控制方法,它通过对比例、积分、微分三个环节的调节,来实现对热工过程的精确控制。
PID 控制的分析和整定方法主要包括根轨迹法、频率响应法和试验法等。
再次,大型火电机组是热工过程中常见的控制系统,它主要包括锅炉、汽轮机和发电机三个部分。
通过对这三个部分的实时监测和调节,可以实现对火电机组的优化控制。
此外,现代控制理论在热工过程中的应用也得到了广泛关注。
现代控制理论主要包括状态反馈控制、观测器设计和模型参考自适应控制等,它可以提高热工过程的控制精度和稳定性。
离散控制系统是另一种在热工过程中常见的控制系统,它主要通过对离散时间的采样和调节,来实现对热工过程的实时控制。
最后,随着科技的发展,一些先进的控制策略在热工过程中的应用也得到了广泛关注,例如模糊控制、神经网络控制和自适应控制等。
这些先进的控制策略可以进一步提高热工过程的控制精度和稳定性。
声明:亲们,鉴于有些撸友的课本至今还是空白,特把容嬷嬷课的重点圈出,仅供参考,真诚帮人,高手勿喷。
热工过程控制自动控制技术第一章自动控制原理基础一、自动控制系统的组成自动控制装置(变送器、控制器、执行器)、生产设备(被控对象)二、自动控制系统的基本控制方式开环控制是指控制装置与被控对象之间只有顺向作用而没有反向联系的控制过程闭环控制是指控制装置与被控对象之间既有顺向作用,又有反向联系的控制过程复合控制就是开环控制和闭环控制相结合的一种控制方式三、自动控制系统的品质指标稳定性(衰减率=0.75~0.98,即振荡2~3次)、准确性(静态偏差y越小越好)、快速性控制系统在阶跃信号作用下过渡过程的基本形式(稳定的控制系统(非周期过渡过程、衰减振荡的过程)、不稳定的控制系统(等幅震荡过程、渐扩振荡过程))四、数学模型数学模型是描述系统输入、输出变量以及内部各物理量(或变量)之间关系的数学表达式建立控制系统数学模型的目的是为了用一定的数学方法对系统的性能进行定性分析和定量计算,乃至综合与校正系统五、环节的基本联接方式环节的串联:串联后总的传递等于各串联环节传递函数的乘积环节的并联:并联环节的总传递函数为各并联环节传递函数的代数和六、控制系统的稳定性分析稳定性是指系统受到扰动作用后偏离原来的平衡状态,在扰动作用消失后,经过一段过渡过程是将能否回复到原来的平衡状态或足够准确地回到原来平衡状态的性能。
稳定性取决于系统本身固有的特征,而与扰动信号无关。
第二章自动控制系统综述一、自平衡能力对象受到干扰作用后,平衡状态被破坏,无需外加任何控制作用,依靠对象本身自动平衡的倾向,逐渐地达到新的平衡状态的性质,称为对象的自平衡能力。
对象自平衡的实质是对象输出量变化对输入量发生影响的结果,或者说,对象内部存在着负反馈。
二、控制器的控制规律比例控制(P)是及时、快速的;比例积分控制(PI)是缓慢的、逐渐的;比例微分控制(PD);比例微分积分控制(PID)三、串级控制系统在结构上形成了两个闭环,一个闭环在里面,称为内回路或者副回路,在控制过程中起着“粗调”的作用;一个闭环在外面,称为外回路或者主回路,用来完成“细调”任务。
控制作用μ干扰作用λ被调量G 0μ(s )G 0λ(s )图1-9 对象的输入、输出量第二节 热工控制对象的动态特性一、概述自动控制系统是由控制对象和自动控制设备组成的,控制对象是自动控制系统中的一个重要组成部分。
控制对象的输出就是控制系统的被调量,控制对象的输入信号是引起被调量变化的各种因素(包括扰动作用和控制作用),如图1-9所示。
要分析研究控制系统的工作质量,设计或改造自动控制系统,首先必须分析控制对象的动态特性,并根据它来正确地选择和使用自动控制设备,确定调节器的最佳整定参数,使控制设备与控制对象相互协调配合,构成一个合理的控制系统,才能获得预期的控制效果,对于机组运行人员来说,熟悉控制对象的动态特性,也是正确使用好控制系统的必要前提:所以,研究热工控制对象的动态特性,是研究控制系统、实现生产过程自动化的基础工作。
控制对象的动态特性就是控制对象在动态变化过程中各种输入信号与输出信号之间的关系。
对象的输入量至输出量的信号联系称之为通道;控制作用到输出量(被调量)的信号联系称为控制通道;干扰作用至输出量的信号联系称为干扰通道。
一般热工对象对于不同的输入信号所引起的被调量的变化特性是不同的,或者说同一对象的不同信号通道的传递函数(或微分方程)不同。
要全面了解对象的动态特性,就要了解各通道的动态特性,这往往是比较困难的。
由于控制通道在控制系统中的闭环以内,而控制作用又是经常、自动、反复地进行,所以它的动态特性较强地影响控制系统的稳定性。
影响控制对象输出的扰动分为外部扰动和内部扰动。
凡是来自控制系统之外,引起被调量发生变化的各种原因,都称为外扰,而控制系统内部的扰动称为内扰。
例如给水控制系统,给水流量和蒸汽流量的变化都会引起水位变化,但蒸汽流量的变化是用户需求变化引起的,调节系统本身无法控制,是系统的外扰,而给水母管压力变化引起的给水流量的变化是调节系统可以控制的,是系统的内扰。
外扰通道在控制系统的闭环以外,在一般情况下,外扰是随机的、短暂的、一次发生的,所以它的动态特性只影响调节过程中的被调量的幅值。