15第五章第三节早古生代_古生物学与地层学
- 格式:ppt
- 大小:10.82 MB
- 文档页数:77
所有经过研究的生物,都要给予科学的名称,即学名(scientific name)。
按国际命名法规,生物各级分类等级的学名,改用拉丁字或拉丁化文字。
属和属级以上的名称采用单名,即用一个拉丁词命名,第一字母大写。
种的名称采用双名法(binomen),即由种的本名和其从属的属名组成,属名在前,种本名在后。
种、亚种及变种本名第一个字母小写。
属和属以下名称,在印刷和书写时,需用斜体字,属以上名称用正体字。
为了便于查阅,在各级名称之后,用正体字注以命名者的姓氏(应为拉丁字母拼缀)和命名时的公历年号,两者间以逗点分隔。
若命名者不止一人,用拉丁连结词et(和)连接之。
物种既是生物分类的基本单位,也是生物进化的基本单位。
生物进化的实质,就是物种的起源和演变。
从生物学角度来认识物种,认为物种基本结构是居群,而不是个体。
生物命名法中一条重要原则是优先律(law of priority),即生物的有效学名是符合国际动物、植物命名法所规定的最早正式刊出的名称。
遇到同一生物由两个或更多名称即构成异名(synonym),或不同生物共有一个名称即同名(homomym),应以优先律选取最早正式发表的名称。
例如,横板珊瑚一个属Tetrapora(方管珊瑚)原为矢部长克(H.Yabe)和早坂一郎(I.hayasaka)于1915年所首创(Tetrapora Yabe et Hayasaka,1915)。
到了1940年,古生物研究者发现,该属名早在1857年用于苔藓动物一个属方管苔藓虫(Tetrapora Queenstedt,1857)。
横坂珊瑚Tetrapora 事后定的,依优先律应予废弃,而用另一新的属名Hayasakaia(早坂珊瑚)来代替。
生物一般分为植物界(Plantae)和动物界(Animalia)两个界。
在两界划分过程中,人们发现有些生物如具鞭毛的生物,常有植物和动物的两重性,很难归入两个界的任何一个界中,建议使用三界划分方案,即在植物、动物两界外,另立一个始先界(Protista),包括原生动物和一些低等藻类。
第一章绪论一、名词解释古生物学地史学古生物地史学二、问答题1.试述古生物地史学的发展历史及其相应的重大事件。
第二章化石的形成与古生物学一、名词解释化石实体化石模铸化石遗迹化石化学化石自然分类二名法二、问答题1.试述化石形成的过程及保存条件。
2.简要说明研究化石的方法及意义。
第三章生命的起源与生物的进化一、名词解释物种绝灭假绝灭种系代谢生态代替背景绝灭大规模绝灭生物演化的不可逆性特化趋同趋异二、问答题1.论述生物演化的过程、生物进化的特点及规律。
第四章古生物的主要门类(一)——无脊椎动物及半索动物一、名词解释蜓的隔壁和旋脊头足类缝合线四射珊瑚中柱面线胎管线管胞管笔石枝笔石体笔石簇二、问答题1.所学古生物门类中哪些类别具有两个壳瓣?如何从硬体形态构造来区别它们(列表比较)2.试述四射珊瑚的构造带型的特征及地史分布,并各举一例说明。
3.试述不同地质时期蜓的演化特征。
4.论述各地质时期笔石体的特征。
第五章古生物的主要门类(二)——脊索动物及古植物一、名词解释恐龙羊膜卵古植物学石松植物的叶座叶痕二、问答题1.简述植物界演化的主要阶段。
2.试述两栖纲、爬行纲、鸟纲、哺乳纲动物适应环境生存的进步性特点。
第六章生物与环境一、名词解释群落特征种生态系统优势种指相化石二、问答题1.举例说明应用古生物学分析环境的方法有哪些?第七章地层形成的沉积环境和沉积作用一、名词解释沉积相沉积环境瓦尔特相律相标志交错层理递变层理准同生变形构造地层叠覆律海进海退超覆退覆沉积旋回穿时二、问答题1. 沉积环境的识别标志有哪些?并举例说明之。
2. 简述几种主要沉积环境的沉积特征。
3. 详细叙述地层形成的沉积作用有哪些?第八章地层单位和地层系统一、名词解释地层对比地层划分岩石地层单位组年代地层单位生物地层单位延限带顶峰带组合带层型二、问答题1. 试述地层划分的依据和地层对比原则及方法。
2. 列表对比岩石地层单位、年代地层单位、生物地层单位,注意它们之间的相互关系。
古生物学与地层学(含:古人类学)攻读硕士学位研究生培养方案一、培养目标古生物学与地层学(含:古人类学)学科是地球科学领域中的基础学科,培养的硕士研究生应在德、智、体诸方面全面发展,具有创业精神和创新能力、从事科学研究、工程技术及管理的高级专门人才,以适应社会主义现代化建设的需要。
具体要求如下:1、努力学习马列主义、毛泽东思想和邓小平理论,拥护中国共产党,拥护社会主义,具有高度的精神文明和较高的综合素质,遵纪守法,品行端正,作风正派,服从组织分配,愿为社会主义经济建设服务。
2、在本门学科内掌握坚实的地质基础理论以及古生物学和地层学的系统理论知识和基本实验技能,了解本领域的研究动态,基本上能独立开展与本学科有关的科学研究和生产工作。
掌握一门外国语,能熟练地进行专业阅读并能撰写论文摘要;具有从事本学科领域内科学研究、大学教学或独立担负专门技术工作的能力,具有较强的综合能力,包括创新能力、分析问题与解决问题的能力、语言表达能力及写作能力,具有实事求是,严谨的科学作风。
3、坚持体育锻炼,具有健康的体魄。
二、学习年限硕士研究生的学习年限为2-3年,课程学习和学位论文的时间各占一半。
硕士生应在规定学习期限内完成培养计划要求的课程学习和学位论文工作。
若提前完成培养计划,经院校学位委员会审查,学校批准,可进行论文答辩毕业,通过者获得理学硕士学位。
三、研究方向根据新的形势和要求,结合本学科专业当前发展的方向,可设置出本学科、专业的研究方向3个。
1、油气区古生物学2、勘探地层学与油气储层预测3、油气区古生态学与沉积学四、课程设置课程设置包括学位课、选修课和实践课,课程总学分为34或以上。
学位课为必修课,含公共课、专业基础课,学分不低于20学分;选修课不低于12学分;实践课为必修课,含专业实践、社会实践和教学实践,学分为2学分。
理科硕士生选修数学课程的总学分不少于5学分,其中学位课中数学课等于或大于2学分;外语课总学分为6学分,提倡加强更多的外语课,通过考试取得相应学分,但不计入34学分内。
古生物学及其地层学地层叠覆律:未经变动的地层,年代老的必在下,年代较新的叠覆于上化石层序律:不同的岩层中生物化石各不相同,根据相同化石对比地层,证明同属于同一个时代标准化石:指那些演化快,地理分布广泛,数量丰富,特征明显,易于识别的化石(最能反映这个时代的生物特征的化石)指相化石:能够指示生物生活环境特征的标志化石。
地层:地质历史上某一时代形成的层状岩石(具有一定层位的一层或一组岩石或者土壤)岩石地层单位主要有宇、界、系、统、阶等,对应的年代地层单位有宙、代、纪、世、期等。
年代地层单位代表的是地质年代(时代),岩石地层单位是某个地质年代所形成的岩石(或地层)。
一个是地层,地个是时代,二都是相互对应的。
相对比律(瓦尔特定律):只有那些目前可以观测到是彼此毗连的相和地区(相邻沉积相在纵向上的依次变化与横向上的依次变化是一致的)层理:指岩层中物质的成分、颗粒大小、形状和颜色在垂直方向发生改变时产生的纹理。
(沉积岩层内部的成层性特征)沉积环境:沉积物(岩)形成时具有特定的物理、化学和生物条件的区域沉积相:具有一定岩性、结构、构造特征和古生物标志的沉积物组合。
表征了当时的沉积环境。
笔石:笔石是一类已灭绝的海洋群体生物,通常隶属于半索动物门,存在于中寒武世—早石炭世。
笔石的骨骼为笔石虫体分泌的几丁质经炭化后留下一层炭质薄膜,笔石常呈碳质薄膜保存,很像用笔在岩石上书写的痕迹,笔石一名因此得来。
化石主要产于灰岩或其夹层的薄页岩中,绝少见于砂岩中,代表浅海相动物。
笔石群最初由一个胎胞按顺序分出若干个胞管,胞管相连形成笔石枝。
胎胞尖端有一丝附着在海底或其他漂浮物体上。
笔石枝下垂、下斜、平伸、上斜或攀合生长。
胞管为笔石个体住室,成单列、双列或四列排列,前后相互叠覆,后一胞管被前一胞管遮盖的部分称为掩盖部分,未遮盖部分称为露出部分,这两部分之和即为胞管长度,其始部互相贯通形成共通沟,末端露出,形状变化很大,是鉴定笔石的重要特征之一。
古生物地层学讲义第一篇古生物学基础第一章古生物学的基本概念第一节古生物学的内容及其研究对象一、古生物的内容(一)古生物学及其分科::1、古生物学研究地史时期生物界的科学。
它研究的不仅是古生物本身,还包括了各地史时期地层中所保存的一切与生物活动有关的资料。
如遗体、遗迹(痕迹、遗物),甚至于旧石器时代猿人的石器。
2、分科:和古动物学和古并无脊椎动物学、和古脊椎动物学古植物学化石藻类学(低等古植物)、高等古植物学、孢子花粉学(又可列入微体古生物学)古生物学微体古生物学:介形虫,牙形刺等NVIDIA体古生物学:NVIDIA浮游动物,化石致密结构小,大在10um(微米)以下。
1um=1/1000mm古生态学、痕迹化石学、古生物矿物严格地讲,古今生物之间很难以一个时间界线截然分开,但为了研究方便,一般以最新的地质时代全新世的开始(距今约1万年),作为古今生物界的分界。
(二)学习古生物的目的与意义1目的:古生物学就是自学地球科学的基础课,它肩负B3J94PA生物学和地质学服务的双重任务。
学习古生物学的目的在于:(1)阐明各类古生物形态及构造特征,生活习性和生活方式;(2)了解古生物的地史分布、地理分布,进而总结其进化规律;(3)结合岩性及其它特性研究,推断地质时期古地理、古气候2、意义:(1)确认地层的地质时代;(2)研究和古地理、古气候;(3)为普查勘查和地质勘探服务;(4)为积极探索生命的起源提供更多实际资料和论据(5)为研究生物进化、物种绝种等自然界发展规律提供更多科学依据。
二、古生物学的研究对象:化石fossil(一)化石:留存在地层中的古生物遗体和遗迹。
即1.必须充分反映一定的生物特征:形状、大小、结构、纹饰等。
但树枝石(假化石)就是软锰矿树枝状结晶,不是化石。
姜结人黄土中的钙结核2.必须是地史时期的生物遗体、遗迹,它们都保存在地史时期的岩层地层中,并经受了石化作用而形成。
(二)化石留存的条件:1.生物本身必须具备一定的硬体2.生物死后迅速埋藏(但密封、冷冻、干燥环境下亦可)3.较长时间的石化作用,它有三种方式石化作用有三种方式:(1)矿质填充促进作用生物软空隙为地下水矿物质caco3所充填,变小的球状柔软减少重量,且留存硬体中的致密结构。
古生物学与地层学
古生物学与地层学是地质学中重要的分支,两门科学它们紧密结合,共同探索过去的地质学,揭示古地理及古气候,并也开展深入研究。
1. 什么是古生物学?
古生物学是指研究过去古生物进化演化及其相关研究。
主要研究我们需要了解哪些古生物,它们是如何形成、行为的,它们的历史发展如何。
此外,古生物学还涉及介于生物学、地质学及化学学之间的交叉材料,以便检验研究有关演化、生物环境变化等的假设,更有助于解释许多重要的生物地球现象。
2. 什么是地层学?
地层学是一门以地质层序的构造和分布及其一般原理为研究对象的地质学科目。
主要研究地层构造、地质历史、层序沉积地层、沉积相及气候变迁等。
在古生物学与地层学这两门科学联系紧密的基础上,将动物和植物化石等古生物地层资料视为地质层序的重要标志。
3. 古生物学与地层学产生了哪些重要研究内容?
(1)探索古生物行为,比如推测古生物的迁徙模式、繁殖方式,以及
分布规律;
(2)古时期的环境演变,比如古气候、海洋沉积,以及大气组成成份等;
(3)生物进化史,比如古生物发展的历史、识别物种发育树、发展出
许多不同物种,以及古生物灭绝过程;
(4)古地貌恢复,比如重建古代河流、山脉形态及地表土壤,在古生
物的分布及繁殖上的影响等;
(5)古今比较,比如今日的景观发展趋势,以及未来可能出现的变化
趋势等。
从上所述可见,古生物学与地层学的结合为探索地球古历史提供了重
要的依据,联合运用可以帮助我们更深入地认识过去、现在和未来,
使我们能够预测与改善现代及未来地球环境变化趋势,针对地球命运
我们而来的挑战及威胁制定相关策略,以确保人类文明得以繁荣发展。
前言绪论第一章古生物学的基本概念第一节古生物学及其内容第二节古生物学的研究对象——化石一、化石二、化石的形成条件三、化石化作用四、化石的保存类型第三节生物的系统与分类一、分类单位二、古生物学的命名法则三、古生物学分类系统第四节生命的起源和生物进化一、生命的起源与生物的演化二、物种的形成三、化石进化的一些特点和规律第五节生物与环境一、生物的环境分区二、生物的生活方式三、影响生物生存环境的主要因素-四、生物群落与生物埋藏第二章古无脊椎动物第一节原生动物门(Protozoa)筵亚目(FUSlllinina)一、概述二、筵壳的基本形态和构造三、蜓亚目的分类四、筵类的生态及地史分布第二节腔肠动物门(Coelenterata)珊瑚纲(Antllozoa)一、概述二、四射珊瑚亚纲三、横板珊瑚亚纲四、珊瑚的生态及地史分布第三节腕足动物门一、概述二、腕足动物的基本特征三、分类四、腕足动物生态及地史分布第四节软体动物门一、概述二、双壳纲(Bivalvia)三、头足纲((:ephgdopoda)第五节节肢动物门(Anllropoda)三叶虫纲(Trilobita)一、概论二、三叶虫的硬体构造三、三叶虫的分类四、三叶虫的生态及地史分布第六节半索动物门(Hemiclaordata)笔石纲(Gralatolithina)一、概述二、笔石纲的基本构造三、分类四、笔石的生态及地史分布第三章脊索动物及古植物第一节脊索动物门(Chordata)一、概述二、鱼形动物三、两栖纲(Amphibia)四、爬行纲(Reptilia)五、鸟纲(Aves)六、哺乳纲(Mammalia)第二节古植物学(Paleobotany)一、概述二、高等植物——维管植物的形态和结构三、苔藓植物门(Bryophyta)四、原蕨植物门(Protopteridophyta)五、石松植物门(Lycophyta)六、楔叶植物门(Spenophyta)七、真蕨植物门(Pteridophyta)……第四章沉积相和古地理第五章地层单位和地层系统第六章前寒武纪第七章早古年代第八章晚古生代第九章中生代第十章新生代参考文献古生物地史学是地质类专业重要的基础课,系统介绍生命的起源、生物界的形成和演化、主要生物类别的结构、生态、生存环境和演化特征;地质历史中古大陆的生物进化史、沉积发展史和构造演化史及全球性有机界和无机界和重大事件概况。
古生物地层学名词解释:大爆发:在生命进化史上可以发现阶段性的出现种或种以上分类单位的生物类群快速大辐射现象,即生物进化大爆发象。
大灭绝:大灭绝又称为集群灭绝,它与生物大爆发现象相对应。
即在相对较短的地质时间内,在一个地理大区凡未出现大规模的生物灭绝,往往涉及一些高级分类单元,如科,目,纲级别上的灭绝。
叠层石:微生物席,是原核生物(主要是蓝藻及其他微生物)的生命活动所引起周期性的矿物沉积和胶结作用所形成的综合产物。
澄江生物群:化石:保存在岩层中的地质历史时期的生物的遗体和遗迹。
假化石:在形态上与某些化石十分相似但与生物或生物生命活动无关的假化石。
化石保存类型:实体化石模铸化石遗迹化石化学化石实体化石:古生物的遗体全部或部分保存下来形成的化石。
模铸化石:古生物遗体在围岩中留下的痕迹和复铸物。
(印痕化石:生物遗体陷落在细粒的碎屑物或化学沉积物中,在沉积物中留下印痕(或是没有硬体的生物或植物叶片在岩层面上留下的痕迹)印模化石:生物硬体在围岩上印压的模,有外模和内模两种。
外模是生物硬体的外表印在围岩上的模,它反映原来生物硬体外表形态及结构;内模指壳体内表面特征留下的模,它反映硬体内部的构造。
内外模所表现的纹饰和构造凹凸情况与原物正好相反。
模核化石铸型化石。
)遗迹化石:保存在岩层中的生物的活动痕迹和遗物叫遗迹化石。
化学化石:又叫分子化石,地质时期埋藏的生物遗体有的虽然遭到破坏没有保存下来,遗体分解后的有机分子的化学分子结构从岩层中鉴别分离出来证明过去生物的存在。
化石保存条件:生物类别遗体堆积环境埋藏条件时间因素成岩作用的条件。
化石记录的不完备性:根据化石保存条件,不是所有的地史时期的生物都能保存为化石,事实上只有很少一部分生物遗体能被保存为化石。
古生物学的命名法则:单名法:用一个词来表示生物分类单元的学名Anthozoa(珊瑚纲)Claraia(克氏蛤)1 用于属以上分类单元的命名2 其中第一个字母用大写3 属名用斜体拉丁文或拉丁化文字双名法:用于种的命名,用二个词表示 Claraia aurita(带耳克氏蛤)1 即在种本名之前加上它所归属的属名,以构成一个完整的种名2 种名用斜体拉丁文或拉丁化文字3 种名字母全部用小写三名法等:用于亚种的命名,由三个词组成 Claraia aurita minor (带耳克氏蛤微小亚种)1 即在属名和种名之后再加上亚种名2 亚种名用斜体拉丁文或拉丁化文字3 亚种名字母全部用小写第三章:原生生物界蜓在不同地质时期的特征演化阶段C1 C2 C3 P1 P2特征小,短轴,单层或三层式旋壁等轴长轴,旋壁三层或四层式具蜂巢层,隔壁褶皱强烈具拟旋脊,末期出现副隔壁开始衰退,直至绝灭两栖类登陆的条件:1:肺呼吸,但肺不完备,用皮肤辅助呼吸2:身披骨甲或富粘液的皮层,或生活于阴湿处,防止水分的蒸发3:五趾的四肢,陆上支持身体和运动。
古生物地史学复习提纲一、名词解释1地史学:地史学也叫“历史地质学”,是地质学的重要分支学科,它主要研究岩石圈,即地壳和部分上地幔的发展历史及其规律性。
其具体研究内容包括沉积(地层)发育史、生物演化和构造运动史。
2 岩石地层单位:是由岩性、岩相或变质程度均一的岩石构成的三度空间岩层体。
其建立在岩石特征在纵、横两个方向具体延伸的基础之上,而不考虑其年龄。
其地层单位可分四级:群、组、段、层,其中组为最基本的单位。
3 地层对比:地层对比在地层学意义上是表示特征和地层位置的相当,所强调的现象不同,对比的种类也不同。
4 穿时性:岩石地层单位是根据地层的岩石学及地层结构等特征确定的,而这些特征是随沉积环境的变迁或沉积作用方式的演变而变化的。
因此,多数岩石地层单位和年代地层单位的界线不一致,或岩石地层单位的界线与年代地层单位的界线斜交。
这种现象称为岩石地层单位的穿时或时侵5 前寒武纪和前寒武系:距今5.43亿年以前的地质时代,统称前寒武纪,相应年代的地层统称为前寒武系6 地层叠覆律:地层在未经过强烈构造变动而发生倒转的情况下,地层的顺序总是上新下老。
原始水平律: 地层沉积时是近于水平的,而且所有的地层都是平行于这个水平面的(水平摆放).原始侧向连续律: 地层在大区域甚至全球范围内是连续的,或者延伸到一定的距离逐渐尖灭(侧向连续)。
地层学三定律是构造地质学和地层学的基础.7 瓦尔特相律:只有在地理(空间)上彼此有横向毗邻关系的那些相和相区才能在原生的垂向层序上依次叠覆。
8 威尔逊旋回:加拿大学者威尔逊提出的大洋盆地从生成到消亡的演化循环9 层型:指一个已经命名的地层单位或其界线的原始(或后来厘定的)典型剖面。
在一个特定的岩层层序内,它们代表一个特定的间隔,或一个特定的界线。
这个特定的间隔和界线就是这些地层单位的单位层型和地层界线的界线层型。
10 旋回沉积作用:当海退序列紧接着一个海退序列时,编形成地层中沉积物成分、粒度、化石的特征有规律的镜像对称分布现象。
古生物学1:古生物学是研究地史时期中的生物及其发展的科学。
它所研究的范围不仅包括在地史时期中曾经生活过的各类生物,也包括各地质时代所保存的与生物有关的资料。
古生物学研究地史时期的生物,其具体对象是发现于各时代地层中的化石(fossil),保存在岩石中的远古时期(—般指全新世,距今一万年以前)生物的遗体、遗迹和死亡后分解的有机物分子。
化石:保存在岩层中地质历史时期的生物遗体、生物活动痕迹及生物成因的残留有机物分子。
标准化石:具有在地质历史中演化快、延续时间短、特征显著、数量多、分布广等特点的化石2. 如何区分原地埋藏的化石与异地埋藏的化石?答:原地埋藏的化石保存相对较完整,不具分选性和定向性,生活于相同环境中的生物常伴生在一起;而异地埋藏的化石会出现不同程度破碎,且分选较好,不同生活环境、不同地质时期的生物混杂,具有一定的定向性3. 石化作用过程可以有(矿质充填作用)、(置换作用)和(碳化作用)三种形式。
概述“化石记录不完备性”的原因答:化石的形成和保存取决于生物类别、遗体堆积环境、埋藏条件、时间因素、成岩作用条件。
并非所有的生物都能形成化石。
古生物已记录13万多种,大量未知。
现今我们能够在地层中观察到的化石仅是各地史时期生存过的生物群中极小的一部分。
4.印模化石与印痕化石如何区别:。
印模化石:生物硬体在围岩表面上的印模。
(包括:外模、内模、复合模。
)外膜反映原来生物硬体外表形态及结构,内膜反映硬体内部的构造。
印痕化石:生物软体陷落在细粒的碎屑物或化学沉积物种,在沉积物中留下的印痕经过成岩作用以后,遗体消失,印痕保存下来。
反映生物主要特征。
5.适应辐射:指的是从一个祖先类群,在较短时间内迅速地产生许多新物种。
(某一类群的趋异向着各个不同方向发展,适应多种生活环境。
规模大,较短时间内完成)适应趋同:生物亲缘关系疏远的生物,由于适应相似的生活环境,而在形体上变得相似是指那些具有最适应环境条件的有利变异的个体有较大的生存和繁殖机会。
《古生物地史学》课程教学大纲课程编号: 2711510 适用专业: 地质学、资源勘查工程专业计划学时: 80学时计划学分: 4.0学分一、本课程的性质和任务本课程包括《古生物学》和《地史学》两门学科的内容。
古生物学是研究地史时期的生物及其发展的科学,地史学是研究地壳发展历史的科学。
课程的基本要求《古生物学》部分,主要讲授古生物学的基本概念、基本理论和基本方法,掌握主要门类基本构造、生态特征及地史分布。
《地史学》部分,主要讲授地史学的基本概念、理论、知识和研究方法以及我国华南、华北地区为重点范围的各地史阶段有机界和无机界的基本特征、演变简史、主要矿产的时空分布。
本课程是在学生学完《普通地质学》和《结晶学及矿物学》的基础上开设的一门专业基础课。
《古生物学》部分,主要介绍主要生物门类的形态、构造、分类、生态、地理及地史分布和演化发展规律,为《地史学》解决地层的时代划分和对比、恢复古地理、古气候等方面打下基础。
《地史学》是一门综合性的学科,其目的是探讨地壳及地表在过去地质时期的经历和变迁,阐明地壳发展历史的规律。
其研究内容包括生物发展史、沉积作用(及古地理变迁)发展史、地壳构造发展史等方面。
它为构造地质学(包括《大地构造学》、《石油地质学》、《矿床学》)以及其它地质学学科服务。
二、本课程的基本要求1.对能力培养的要求通过本课程的学习,使学生掌握《古生物地史学》的基本理论、基本知识及基本方法,并获得把这些基本理论、基本知识及基本方法应用于地质研究工作和资源勘查等生产实践,进行地层的划分对比研究工作的初步能力。
对《古生物地史学》及相关学科的研究现状及发展方向也应有概括的了解。
2.本课程的重点和难点《古生物学》和《地史学》的绪论部分是最重要的内容。
《古生物学》部分的重点是:珊瑚、腕足类、头足类、三叶虫、笔石、古植物等门类的主要构造、生态和地史分布。
《地史学》部分介绍我国前寒武纪、早古生代、晚古生代、中生代、新生代的标准剖面及其分析,掌握华南、华北及其它地区的地史演化特征。
1.古生物:泛指生活在距今一万年前的生物。
2.古生物学:研究全新世以前的生物界及其发展的科学。
3.化石:保存在沉积地层中各地质时期的生物遗体、遗迹以及古生物残留的有机组分。
4.石化作用:使古生物遗体改造成为化石的过程。
包括重结晶作用、充填作用、交代作用、升馏作用等。
重结晶作用:重结晶作用是指组成生物硬体的矿物,在地热和地层压力影响下,发生脱水、晶体变粗、晶格转化或离于析出而造成的一种石化作用。
充填作用:是指生物硬体内部的各种孔隙被地下水中的矿物质所充填的一种石化作用。
交代作用:是指生物的硬体或分被地下水溶失,随后又被外来矿物质所充填的一种石化作用,结果,原来硬体的成分发生了改变,但仍能保持硬体原来的结构和形态。
升馏作用:是指生物的有机质硬体,在地热作用下,使原来组分中的氢、氧、氮等元素发生转移消失,残留下炭质的一种石化作用。
5.化石保存类型:(1)实体化石:由古生物遗体本身所形成的化石。
(2)模铸化石:是生物遗体在岩层中留下的各种印痕和复铸物. 虽然并非实体本身,•但却能反映生物体的主要特征.按其与围岩的关系可分出下列几种:(1) 印痕化石:生物软体留下的痕迹。
(2) 印模化石:生物遗体坚硬部分的表面留在围岩上的印痕,分为外模和内模。
(3) 核化石:生物遗体内外模形成后,化石本身溶解,其他物质的再充填,分为内核和外核。
(4) 铸型化石:外模和内核形成后,化石本身溶解,其他物质的再充填。
(3)遗迹化石:指保留在岩层中的古生物生活活动的痕迹和遗物。
(4)化学化石:古代生物的遗体有的虽被破坏,未保存下来,但组成生物的有机成分经分解后形成的各种有机物如氨基酸、脂肪酸等仍可保留在岩层中,这种视之无形,但它具有一定的化学分子结构足以证明过去生物的存在的化石称为化学化石。
6.生物重演律:生物的发展史可分为两个相互密切联系的部分,即个体发育史和系统发生史,个体发育史是系统发生史简单而迅速的重演。
7.物种形成的因素:遗传变异、自然选择、隔离。
古生物学与生物地层学古生物学与生物地层学是研究地球历史上生物演化与地层沉积关系的重要学科。
通过对古生物化石和地层记录的研究,我们可以了解地球上生命的起源、进化和灭绝过程。
本文将介绍古生物学与生物地层学的定义、研究方法、学科交叉以及对科学发展的重要意义。
一、古生物学与生物地层学的定义古生物学是研究地球上早期生命形式、生物演化过程和生命起源的学科,主要利用古生物化石作为重要研究对象。
古生物学家通过分析化石的形态、结构和组成,可以推断出古地理环境、气候变化、物种演化以及生态系统演化的情况。
生物地层学是研究地壳中化石分布与地层沉积关系的学科。
通过对地层内含化石的研究,可以确定地层的时代、序列和相对年代顺序,从而揭示地球演化的历程和生物演化的规律。
二、古生物学与生物地层学的研究方法1. 野外调查和采集:古生物学家和地层学家常常进行野外调查,寻找含有化石的地层,并进行采集。
这些采集到的化石样本将成为后续研究的重要数据。
2. 化石鉴定和描述:研究人员需要对采集到的化石进行鉴定和描述。
通过比较和分类,确定化石的物种、属、科的归属,为后续研究提供基础。
3. 化石研究与分析技术:古生物学家利用显微镜、扫描电镜等工具对化石进行研究与分析,揭示化石的结构特征、化学成分以及与环境的关系。
4. 地层剖面分析:地层学家通过勘探钻探和地质剖面观测,研究地层的沉积特点、成因及变化规律,并与含有化石的地层进行对比,确定地层的时代和相对年代顺序。
三、古生物学与生物地层学的学科交叉古生物学与生物地层学紧密相关,两个学科之间相互支持、相互补充。
古生物化石是生物地层学中重要的年代标志和化石组合的代表,地层沉积环境的变化也为古生物演化提供了重要背景。
另外,古生物学与地球科学、地质学、气候学等学科也存在交叉与融合。
例如,通过古生物学研究,可以了解地球上古代的气候演变,探究全球变暖或降温的原因。
四、古生物学与生物地层学的重要意义1. 了解生命的起源和演化:通过古生物学与生物地层学的研究,可以推断地球生命起源的环境和生命形式的多样性,了解生命的演化与分布规律。