古生物学与地层学的研究内容
- 格式:pdf
- 大小:667.58 KB
- 文档页数:4
古生物学与地层学一、专业介绍1、概述:古生物学与地层学是地质学研究领域的一门重要的基础学科,通过对保存于地层中的各类化石的形态、结构、生态、分类、演化及地史分布等特征的分析,结合多学科综合研究手段,查明地层成因、时空分布,进行地层的划分和对比,建立区域地层系统格架,恢复古地理、古环境。
古生物学与地层学的研究,对揭示地球的发展历史,认识地球生命的起源、演化以及古地理、古气候、古环境的变化等都具有十分重要的意义。
2、研究方向:古生物学与地层学专业的研究方向主要有:(01)演化生物学(古脊椎动物学、古无脊椎动物学)(02)微体古生物学(03)古生态环境学(04)古生物地理学(05)综合地层学(06)沉积地层学(注:各大院校的研究方向有所不同,以北京大学为例)3、培养目标:本专业培养研究生具有良好的地质学基础,及一定的数理化及生物学基础,掌握古生物学、地层学、沉积学等基础理论及专门知识和技能,了解本学科发展动态和研究前沿。
能在研究中应用计算机,能熟练地运用一门外语,基本上具有从事科学研究或独立担负专门技术工作的能力,有严谨求实的学风,并具备较强的创新能力、分析问题与解决问题的能力。
学位论文应具有一定的创新性和学术价值。
且经过严格的野外工作和室内综合研究的训练,成为能在古生物学及地层学领域和其相关领域,如石油、煤炭、区域地质测量、综合考察等方面从事科研、教学、生产及业务管理的专门人才。
4、研究生入学考试科目:(101)思想政治理论(201)英语一或(202)俄语或(203)日语或(240)法语或(241)德语(611)高等数学与地质学基础(827)岩石学或(830)地史学或(831)古生物学或(827)岩石学(注:各大院校的考试科目有所不同,以北京大学为例)5、与之相近的一级学科下的其他专业:矿物学、岩石学、矿床学;地球化学;构造地质学;第四纪地质学。
6、课程设置:(以中国地质大学(北京)为例)该学科的必修课主要有:第一外语;自然辩证法/科学社会主义;数值分析;C++程序设计;综合地层学;沉积地质学;现代古生物学。
古生物学技术在古生物地层对比中的应用古生物地层对比是地质学中重要的研究方法,它通过对不同地层中的化石进行比较,揭示地球历史上生物的演化过程和地层的时代分布。
在过去的几十年里,古生物学技术的发展对古生物地层对比起到了至关重要的作用。
本文将着重介绍古生物学技术在古生物地层对比中的应用。
一、生物标志物在古生物地层对比中的应用生物标志物是指古生物化石中具有特殊地理或地质意义的生物化合物。
它们可以通过分析化石中保存的有机物质来判断古环境条件、古气候、古地理等信息。
例如,藻类和古菌的化石中保存了许多有机化合物,通过分析这些标志物,可以获得古气候变化的信息。
此外,一些古生物特征的存在与否,如古植物的花粉和古动物的骨骼结构等,也可以作为地层对比的依据。
二、同位素地层学在古生物地层对比中的应用同位素地层学是一种基于同位素组成变化的地层对比方法。
同位素是同一种元素的不同质量的原子,在地质过程中会发生不同的地球化学反应。
通过分析古生物化石中的同位素组成,可以获得关于地层古气候、地球化学和生态系统演化等信息。
例如,碳同位素组成可用于判断古植物的光合作用类型和古环境的水分条件;氧同位素组成则可以用于推测古水体的温度和氧气含量。
同位素地层学的应用,为地层对比提供了更加精确和客观的依据。
三、生物地层学在古生物地层对比中的应用生物地层学是通过对古生物化石的时代分布和演化特征进行研究,建立起地层的时间序列。
根据生物化石的演化特征,可以将地层划分为不同的生物地层带。
通过对生物地层的对比,可以确定地层的对应关系和时代早晚,进而建立地质时间尺度。
例如,在早前寒武纪地层中,三叶虫化石的分布是一种重要的生物地层标志。
不同地区的三叶虫化石可以通过对比其演化特征和分布情况,确定地层的对应关系。
四、地层学与分子生物学在古生物地层对比中的应用近年来,随着分子生物学的发展,它与地层学的结合为古生物地层对比带来了新的方法和数据。
分子生物学通过研究DNA、RNA等生物大分子的序列变化,揭示了生物演化的分子遗传机制。
了解化石和地质年代的研究方法1. 概述化石和地质年代的研究方法是地质学和古生物学领域的重要内容,通过对化石和地质年代的研究,科学家能够了解地球历史、生物进化以及地质过程等方面的信息。
本文将介绍一些常用的研究方法,包括相对年代、绝对年代和古生物学研究方法。
2. 相对年代研究方法2.1 地层学地层学是一种基于地层的堆积顺序和岩石性质来确定地质年代的方法。
科学家通过观察不同地层中的岩石、矿物和化石来推断地质年代。
例如,地球表面的岩层可按照堆积顺序划分为不同的地层,从而得知地质的相对年代。
2.2 生物地层学生物地层学是一种基于生物化石分布来确定地质年代的方法。
科学家通过观察化石序列在不同地层中的出现和分布,推断地质年代。
例如,特定类型的化石在不同地层中的连续出现可以帮助确定地质时代。
3. 绝对年代研究方法3.1 同位素年代学同位素年代学利用放射性同位素在自然界中的衰变过程来测定地质物质的年代。
通过测量岩石或化石中不同同位素的衰减比例,科学家可以计算出其年龄。
例如,利用铀-铅同位素的衰变过程来测定岩石的年代。
3.2 磁性年代学磁性年代学是一种利用地球磁场的变化来确定地质年代的方法。
地球磁场会随着时间而改变,形成了一系列的不同地磁极。
科学家通过对岩石中保存的古地磁信息进行研究,可以得出其形成的年代。
4. 古生物学研究方法4.1 体化石体化石是指保留了生物真实形态的化石,如骨骼化石、贝壳化石等。
通过研究这些化石的形态特征和结构,科学家可以了解古生物的分类、进化以及生态习性等信息。
4.2 花粉和孢子花粉和孢子是植物的繁殖体,能够在地质过程中被保存下来。
通过对花粉和孢子进行观察和鉴定,科学家可以了解过去地质时期的植被组成和环境变化。
4.3 微化石微化石是指极小的化石,如浮游生物、有孔虫等。
通过研究这些微小化石的形态特征和数量分布,科学家能够确定地层的年代,并了解古生物的演化和地质环境。
5. 结论化石和地质年代的研究方法为科学家提供了重要的工具,帮助他们了解地球和生物的演化历史。
古生物与地层学
古生物学和地层学是研究地球历史和生物演化的两个学科。
地层
学是研究地球各层岩石的性质、年代和构成,通过对岩层的分析和比较,可以了解地球发展的历程,从而推断古生物的演化和分布。
而古
生物学主要从化石角度研究生物的特征、种类和分布,以此为基础重
建生物演化史和生态环境。
两者紧密结合,是研究地球演化和生命演
化的重要手段。
地层学家通过对不同层次的岩石进行研究,发现地球历史上有过
多个时期的生物大灭绝和进化分化。
古生物学家通过对化石的研究,
可以分辨不同期的生物类型和进化程度,重建生物演化史和地球环境
的变迁。
例如,寒武纪是地球历史上的一个重要时期,它标志着生命
从单细胞到多细胞、从海洋到陆地的过渡,同时也是生物多样性迅速
扩张的时期。
地层学家在不同地方发现的寒武纪岩层中,存在大量的
化石,这些化石包括了多种原始的多细胞动物,以及一些已经灭绝的
群体。
通过对这些化石的详细研究,古生物学家可以确定它们的分类、特征、分布和演化,进而了解古生态环境和生物进化的历史。
总之,地层学和古生物学是密不可分的两个领域,它们的研究成
果对我们了解地球演化和生命演化的历程具有重要意义。
古生物学中的地层学和古环境研究古生物学是对生命发展与演化的研究,研究领域涉及古生物形态、生物地理,以及生物和环境的相互作用。
而地层学和古环境研究是古生物学领域中非常重要的分支,它们能够为古生物学研究提供重要的依据和支持。
地层学可以为古生物学提供一个时间框架,即通过对不同地层的研究,可以确定地层之间的时代顺序和相对年代。
因为地球的地壳是在不停地运动和变化,各个地质时期的地层构成也不同,这为古生物学家提供了一个用于序列生命进化历程时间轴的手段。
通过地层对生物化石的掌握,可以大约确定具有代表特定生物阶段的地质时期名称,并预测出某一地点未被发掘出来的生物化石种类和形态等。
同时,地层学也是对地球历史的一种重要解析方式,地层中不同的岩石层和岩石中出现的不同化石都可以反映出当时的气候、地质结构和自然环境等多个因素的变化。
比如,当一个地层中发现沉积岩、泥岩、砂岩和煤等岩石时,可以推测出这个地层在不断的地理变化过程中经历了不同的气候和环境,例如湖泊、海洋、沼泽、潮间带、沙漠等自然环境。
而在古生物学中,古环境的研究也是非常重要的。
通过研究古生物群落的组成和化石的地层分布,可以初步推断出该地区古代生物的种类和数量,进而揭示古代生态系统的结构和演变规律。
比如,在研究化石记录中,如果发现某个地质历史时期的多样性下降,就可以大致判断出当时的环境受到了某些不良的程度的影响,例如冰川距离、海平面变化、气候变暖或干旱等。
这些因素对古代生物体系的影响,也可以拓展出对现代生态环境的研究价值,可以更好地了解人类活动对生态系统的影响和保护措施。
另外,通过古环境的研究,还可以了解古代人类的生活方式、经济活动和文化特征,这对人类社会和历史的研究也有着相当重要的意义。
例如,通过分析石器的形态、颜色、大小和自然纹理等特征,可以推断出当时人类的手艺水平和生产方式,研究不同地区人类的文化差异,以及贸易和交流等方面的变化。
总之,地层学和古环境研究是古生物学中非常重要的分支,能够为研究古代生态系统和生物多样性等提供重要支持和证据,其研究成果也对生态环境保护等现代课题研究具有重要参考价值。
古生物学(Palaeontology)是研究地质历史时期的生物及其发展的科学。
研究地质历史时期地层中保存的生物遗体、遗迹及一切与生物活动有关的地质记录。
研究对象化石。
化石形成条件:生物本身条件;生物死后的环境条件;埋藏条件;时间条件;成岩石化条件(压实作用小,未经严重的重结晶作用)。
石化作用过程:指埋藏在沉积物种的生物遗体在成岩作用中经过物理化学作用的改造而成为。
矿质充填作用:空隙被地下水中的矿物质重填,变得致密和坚实。
置换作用:原有物质逐渐被溶解,由矿物质逐渐补充的过程。
碳化作用:不稳定成分经分解和升溜作用而挥发消失,仅留下碳质薄膜而保存为化石。
化石记录的不完备性:只有很少一部分生物遗体被保存为化石。
化石保存类型:实体化石:全部或部分古生物遗体;模铸化石:古生物遗体的印模和铸型(印痕、印模、核、铸型);遗迹化石:古生物活动痕迹和遗物;化学化石:古生物软体分解后的有机质。
古生物的分类和命名:分类等级:界,门(亚超),纲(亚超),目(亚超),科(亚超),属(亚),种(亚)。
古生物种的特点:共同形态特征;构成一定居群;具有一定生态特征;分布于一定区域。
古生物的命名法则:拉丁(2)属和属以上采用单名法,第一字母大写;(3)种名采用双名法,即属名+种名;(4)属以上的单位要用正体,姓名用正体;(5)种和亚种都用斜体,姓名都用正体。
cf.(相似、比较) ;aff.(亲近);sp. (种);sp.indet.(不能鉴定的种) sp.nov.gen.nov.(新种)(新属),加在新命名的种名或属名之后,以示新建立的。
(6)优先律:生物的有效学名是符合国际动物或植物命名法则所规定的最早正式刊出的名称;生物与环境的关系:由一系列彼此相关的环境因素所构成的生物生存条件的总和,形成了生物的生活环境。
影响生物的环境因素:物理化学生物因素。
有孔虫纲:分类:网足虫目;串珠虫目;内卷虫目;蜓目;小粟虫目;轮虫目。
特征:(1)具伪足(分枝多)的微小单细胞动物,多具矿物质硬壳,少数外壳具有房室。
古生物地层学讲义第一篇古生物学基础第一章古生物学的基本概念第一节古生物学的内容及其研究对象一、古生物的内容(一)古生物学及其分科::1、古生物学研究地史时期生物界的科学。
它研究的不仅是古生物本身,还包括了各地史时期地层中所保存的一切与生物活动有关的资料。
如遗体、遗迹(痕迹、遗物),甚至于旧石器时代猿人的石器。
2、分科:和古动物学和古并无脊椎动物学、和古脊椎动物学古植物学化石藻类学(低等古植物)、高等古植物学、孢子花粉学(又可列入微体古生物学)古生物学微体古生物学:介形虫,牙形刺等NVIDIA体古生物学:NVIDIA浮游动物,化石致密结构小,大在10um(微米)以下。
1um=1/1000mm古生态学、痕迹化石学、古生物矿物严格地讲,古今生物之间很难以一个时间界线截然分开,但为了研究方便,一般以最新的地质时代全新世的开始(距今约1万年),作为古今生物界的分界。
(二)学习古生物的目的与意义1目的:古生物学就是自学地球科学的基础课,它肩负B3J94PA生物学和地质学服务的双重任务。
学习古生物学的目的在于:(1)阐明各类古生物形态及构造特征,生活习性和生活方式;(2)了解古生物的地史分布、地理分布,进而总结其进化规律;(3)结合岩性及其它特性研究,推断地质时期古地理、古气候2、意义:(1)确认地层的地质时代;(2)研究和古地理、古气候;(3)为普查勘查和地质勘探服务;(4)为积极探索生命的起源提供更多实际资料和论据(5)为研究生物进化、物种绝种等自然界发展规律提供更多科学依据。
二、古生物学的研究对象:化石fossil(一)化石:留存在地层中的古生物遗体和遗迹。
即1.必须充分反映一定的生物特征:形状、大小、结构、纹饰等。
但树枝石(假化石)就是软锰矿树枝状结晶,不是化石。
姜结人黄土中的钙结核2.必须是地史时期的生物遗体、遗迹,它们都保存在地史时期的岩层地层中,并经受了石化作用而形成。
(二)化石留存的条件:1.生物本身必须具备一定的硬体2.生物死后迅速埋藏(但密封、冷冻、干燥环境下亦可)3.较长时间的石化作用,它有三种方式石化作用有三种方式:(1)矿质填充促进作用生物软空隙为地下水矿物质caco3所充填,变小的球状柔软减少重量,且留存硬体中的致密结构。
地球科学中的层序地层学和古生物学地球科学是一门研究地球的各个层面的综合学科,其中层序地层学和古生物学则是两个十分重要的分支学科。
层序地层学主要研究地层的堆积顺序和层序特征,而古生物学则主要研究生物在地质时间尺度上的演化和分布。
两个学科有着密不可分的联系,通过对地层和古生物的研究,可以更好地了解地球的演化历史和生命的发展历程。
一、层序地层学层序地层学是一门研究地层孔隙和渗透性、古地理、相似性、流体分布、沉积构造、封闭性等问题的学科。
地质学家通过对地层的研究,可以了解地球的演化历史、各地区的地质构造以及资源的分布情况。
地层可以用不同的分类方法进行划分,其中最为常用的是年代地层。
年代地层基于不同岩层的形成时间来进行划分,可以分为不同的时代、世、期、纪等。
每个年代地层内部还可以细分为不同的层位,这些层位在不同地区的厚度和性质都会有所不同。
层序比年代地层更为精细,可以把不同年代地层内部根据堆积顺序进一步分为若干层序。
层序是由一定的岩相组成,具有相似的地质历史、沉积环境和堆积模式。
根据层序可以推测出古地理、沉积构造、相似性等地质特征,有利于地质勘探和资源开发。
二、古生物学地球上的生命经历了漫长的演化史,在不同的地质时期发生了各式各样的变化和适应。
古生物学正是研究生物在地质时间尺度上的演化和分布的学科。
通过对古化石、化石记录和生物地理学的研究,人们可以了解生命在地球上的演化历程、生态系统的变迁以及地球环境的演化。
化石是古生物学的主要研究对象。
化石是地球上曾经生活的生物体遗留下来的物质,它们经过埋藏和化石化后,保存了生物的形态、荧光、组织成分等信息。
通过对化石的分析,可以了解各种生物的形态、组成、行为习性和生态环境等信息,为了解古生态和地球演化历史提供了有力的证据。
化石记录是古生物学的重要组成部分。
它是指所有化石遗存的总和,包括生物组成和数量、生存环境和地理位置等信息。
通过对化石记录的研究,可以了解不同的生物组合和环境特点,推断出古地理、气候变化、生态系统演化等信息。
古生物学与地层学
古生物学与地层学是地质学中重要的分支,两门科学它们紧密结合,共同探索过去的地质学,揭示古地理及古气候,并也开展深入研究。
1. 什么是古生物学?
古生物学是指研究过去古生物进化演化及其相关研究。
主要研究我们需要了解哪些古生物,它们是如何形成、行为的,它们的历史发展如何。
此外,古生物学还涉及介于生物学、地质学及化学学之间的交叉材料,以便检验研究有关演化、生物环境变化等的假设,更有助于解释许多重要的生物地球现象。
2. 什么是地层学?
地层学是一门以地质层序的构造和分布及其一般原理为研究对象的地质学科目。
主要研究地层构造、地质历史、层序沉积地层、沉积相及气候变迁等。
在古生物学与地层学这两门科学联系紧密的基础上,将动物和植物化石等古生物地层资料视为地质层序的重要标志。
3. 古生物学与地层学产生了哪些重要研究内容?
(1)探索古生物行为,比如推测古生物的迁徙模式、繁殖方式,以及
分布规律;
(2)古时期的环境演变,比如古气候、海洋沉积,以及大气组成成份等;
(3)生物进化史,比如古生物发展的历史、识别物种发育树、发展出
许多不同物种,以及古生物灭绝过程;
(4)古地貌恢复,比如重建古代河流、山脉形态及地表土壤,在古生
物的分布及繁殖上的影响等;
(5)古今比较,比如今日的景观发展趋势,以及未来可能出现的变化
趋势等。
从上所述可见,古生物学与地层学的结合为探索地球古历史提供了重
要的依据,联合运用可以帮助我们更深入地认识过去、现在和未来,
使我们能够预测与改善现代及未来地球环境变化趋势,针对地球命运
我们而来的挑战及威胁制定相关策略,以确保人类文明得以繁荣发展。
古生物地史学复习提纲一、名词解释1地史学:地史学也叫“历史地质学”,是地质学的重要分支学科,它主要研究岩石圈,即地壳和部分上地幔的发展历史及其规律性。
其具体研究内容包括沉积(地层)发育史、生物演化和构造运动史。
2 岩石地层单位:是由岩性、岩相或变质程度均一的岩石构成的三度空间岩层体。
其建立在岩石特征在纵、横两个方向具体延伸的基础之上,而不考虑其年龄。
其地层单位可分四级:群、组、段、层,其中组为最基本的单位。
3 地层对比:地层对比在地层学意义上是表示特征和地层位置的相当,所强调的现象不同,对比的种类也不同。
4 穿时性:岩石地层单位是根据地层的岩石学及地层结构等特征确定的,而这些特征是随沉积环境的变迁或沉积作用方式的演变而变化的。
因此,多数岩石地层单位和年代地层单位的界线不一致,或岩石地层单位的界线与年代地层单位的界线斜交。
这种现象称为岩石地层单位的穿时或时侵5 前寒武纪和前寒武系:距今5.43亿年以前的地质时代,统称前寒武纪,相应年代的地层统称为前寒武系6 地层叠覆律:地层在未经过强烈构造变动而发生倒转的情况下,地层的顺序总是上新下老。
原始水平律: 地层沉积时是近于水平的,而且所有的地层都是平行于这个水平面的(水平摆放).原始侧向连续律: 地层在大区域甚至全球范围内是连续的,或者延伸到一定的距离逐渐尖灭(侧向连续)。
地层学三定律是构造地质学和地层学的基础.7 瓦尔特相律:只有在地理(空间)上彼此有横向毗邻关系的那些相和相区才能在原生的垂向层序上依次叠覆。
8 威尔逊旋回:加拿大学者威尔逊提出的大洋盆地从生成到消亡的演化循环9 层型:指一个已经命名的地层单位或其界线的原始(或后来厘定的)典型剖面。
在一个特定的岩层层序内,它们代表一个特定的间隔,或一个特定的界线。
这个特定的间隔和界线就是这些地层单位的单位层型和地层界线的界线层型。
10 旋回沉积作用:当海退序列紧接着一个海退序列时,编形成地层中沉积物成分、粒度、化石的特征有规律的镜像对称分布现象。
古生物学与地层学二级专业在探索地球漫长历史的进程中,古生物学与地层学这一二级专业犹如一把神奇的钥匙,为我们打开了通往远古世界的大门。
它不仅帮助我们了解地球上生命的演化历程,还为地质研究和资源勘探提供了重要的依据。
古生物学,顾名思义,是研究古代生物的学科。
它通过对化石的研究,揭示了地球上生物从简单到复杂、从低级到高级的演化规律。
这些化石,就像是历史的“纪录片”,记录着生物在漫长岁月中的变化。
古生物学家们通过对化石的形态、结构、分类等方面的研究,试图还原古代生物的生活环境、生态习性以及它们与环境的相互关系。
地层学则是研究地层的形成、分布和演化的学科。
地层就像是地球历史的“书页”,每一层都蕴含着特定时期的地质信息。
地层学家通过对地层的划分、对比和年代测定,构建起地球历史的时间框架。
这对于了解地球的演化过程、地质事件的发生顺序以及矿产资源的分布规律都具有重要意义。
古生物学与地层学之间存在着密切的联系。
化石通常都保存在地层之中,地层的顺序和特征为化石的年代确定提供了重要线索。
反过来,化石的分布和特征也有助于地层的对比和划分。
例如,某些特定的化石组合只出现在特定的地层中,通过识别这些化石,就可以确定地层的年代和归属。
在实际应用方面,古生物学与地层学具有重要的价值。
在地质勘探中,了解地层的分布和特征可以帮助寻找石油、天然气、煤炭等矿产资源。
通过研究地层中的化石,还可以推断出矿产形成的环境和条件,为资源的开采提供指导。
在环境保护领域,古生物学与地层学也能发挥作用。
通过研究古代生物的灭绝事件和环境变化,我们可以更好地理解当前面临的环境问题,为生态保护和可持续发展提供借鉴。
此外,这一专业对于普及科学知识、提高公众的科学素养也具有重要意义。
古生物化石的展览和科普活动能够激发人们对自然历史的兴趣,增强人们对地球和生命的尊重与保护意识。
然而,古生物学与地层学的研究并非一帆风顺。
化石的发现往往具有偶然性,而且化石的保存状况也参差不齐,这给研究工作带来了很大的困难。
古生物学1:古生物学是研究地史时期中的生物及其开展的科学。
它所研究的范围不仅包括在地史时期中曾经生活过的各类生物,也包括各地质时代所保存的及生物有关的资料。
古生物学研究地史时期的生物,其具体对象是发现于各时代地层中的化石(fossil),保存在岩石中的远古时期〔—般指全新世,距今一万年以前〕生物的遗体、遗迹与死亡后分解的有机物分子。
化石:保存在岩层中地质历史时期的生物遗体、生物活动痕迹及生物成因的残留有机物分子。
标准化石:具有在地质历史中演化快、延续时间短、特征显著、数量多、分布广等特点的化石2. 如何区分原地埋藏的化石及异地埋藏的化石?答:原地埋藏的化石保存相对较完整,不具分选性与定向性,生活于一样环境中的生物常伴生在一起;而异地埋藏的化石会出现不同程度破碎,且分选较好,不同生活环境、不同地质时期的生物混杂,具有一定的定向性3. 石化作用过程可以有〔矿质充填作用〕、〔置换作用〕与〔碳化作用〕三种形式。
概述“化石记录不完备性〞的原因答:化石的形成与保存取决于生物类别、遗体堆积环境、埋藏条件、时间因素、成岩作用条件。
并非所有的生物都能形成化石。
古生物已记录13万多种,大量未知。
现今我们能够在地层中观察到的化石仅是各地史时期生存过的生物群中极小的一局部。
4.印模化石及印痕化石如何区别:。
印模化石:生物硬体在围岩外表上的印模。
〔包括:外模、内模、复合模。
〕外膜反映原来生物硬体外表形态及构造,内膜反映硬体内部的构造。
印痕化石:生物软体陷落在细粒的碎屑物或化学沉积物种,在沉积物中留下的印痕经过成岩作用以后,遗体消失,印痕保存下来。
反映生物主要特征。
5.适应辐射:指的是从一个祖先类群,在较短时间内迅速地产生许多新物种。
〔某一类群的趋异向着各个不同方向开展,适应多种生活环境。
规模大,较短时间内完成〕适应趋同:生物亲缘关系疏远的生物,由于适应相似的生活环境,而在形体上变得相似是指那些具有最适应环境条件的有利变异的个体有较大的生存与繁殖时机。
古生物地层学1、古生物学:是研究地质时期的生物界及其发展的科学,其研究范围包括各地史时期地层中保存的生物遗体和遗迹,以及一切与生命活动有关的地质记录。
2、古生物研究的内容:1、找出各类生物的发展和演化规律2、指导地层的划分和相对地质年代的确定。
3、为生物进化理论提供最基本的事实依据。
3、古生物学的研究对象:是从沉积地层中发掘出来的化石4、化石形成条件:1)生物本身的条件2)生物死后的环境条件3)埋藏条件4)时间条件5)成岩石化条件5、全新世以前的生物是古生物,全新世以后的称为现生生物6、化石的分类(按规模):假化石、大化石、微化石、超微化石7、显生宙的生物演化:1、小壳动物群的出现和分异2、澄江动物群3、寒武纪生物大爆发4、动物体分化重大事件5、动植物从水生到陆生发展6、生物的绝灭与复苏8、灭绝:生物种系的终止、不留下后代9、生物复苏:大灭绝后的生物群,通过生物的自组织作用及对新环境的不断适应,逐步回到正常发展水平10、同源器官:起源相同、构造和部位相似而形态、机能不同的器官(如手、肢、鳍卜11、同功器官:生物的形态、功能相似而起源不同的器官(如鸟和昆虫的翅膀卜12、进化的不可逆性:已演变的生物类型不可能回复祖型;已灭亡的类型不可能重新出现。
意义:地层划分对比的理论依据。
13、器官相关律:意义:阐明生物进化,变异过程;推断化石生物的身体结构,生态习性14、适应:在长期的演化过程中,由于自然选择的结果生物在形态结构及生理机能上,与其生存环境取得良好协调一致15、生物进化的三个层次:小进化:生物在居群内部的演变,是生物进化的起始阶段;成种作用:是物种分化、增加的过程;大进化:涉及种以上的分类群的进化问题16、生物进化的基本动力是:生物变异和生物遗传17、成种作用:从单一始祖居群分化成两个或多个同时物种的过程18、物种形成的素:遗传变异、自然选择、隔离19、隔离是指在自然界中生物间彼此不能自由交配或交配后不能产生正常可育后代的现象。
古生物化石在地层学中的应用研究地层学是研究地球表层岩石堆积及其演化的学科,而古生物化石则是地层学中重要的研究对象之一。
古生物化石是指化石记录中保存下来的古代生物遗骸或痕迹,它们通过地质历史的长河,给我们提供了许多关于地球早期生命和地质变化的信息。
正因为如此,古生物化石在地层学中有着广泛的应用研究。
首先,古生物化石可以用来进行岩层年代的确定。
地层中的化石遵循一定的演化规律,不同地层中的化石种类和组合会随时间发生变化。
通过对不同地层的化石进行比较和分析,可以将岩层按照不同的时代进行划分和排序。
这为我们了解地球历史的发展提供了极为重要的线索。
例如,在某个地层中我们发现了特定的三叶虫化石,而在其他地层中这种化石却没有出现,那么我们就可以确定这两个地层的年代先后关系。
其次,古生物化石还可以用来研究古气候和环境变化。
地球上的气候和环境与生物之间存在着密切的关系,生物对环境的变化具有敏感性。
通过研究不同地层中的古生物化石,我们可以了解到古时期的气候条件和环境演变。
例如,某地区地层中发现了一种只能在温暖海洋环境中生存的古代贝类化石,那么我们就可以推断该地区在古时期可能属于温暖海洋环境。
这些信息对于研究全球气候变化和环境演化具有重要意义。
另外,古生物化石还可以用来确定地层的沉积环境。
地球的地质历史中,不同的地层通常形成于不同的沉积环境中,如湖泊、河流、海洋等。
而不同的沉积环境往往会有特定的生物群集和沉积特征。
通过研究地层中的古生物化石和沉积结构,我们可以推断出当时的沉积环境是什么样的。
例如,某地区地层中发现了一种只生活在淡水环境中的水生植物化石,结合该地层的沉积结构特征,我们可以判断出当时该地区可能是一个湖泊沉积环境。
除了上述应用,古生物化石在地层学中还可以用来研究地质灾害。
地质灾害是地球表层发生的各类自然灾害,如地震、火山喷发和滑坡等。
通过研究地震断层面附近的古生物化石,可以得出地震活动的历史活动周期,进而预测未来地震的可能性;通过研究火山口附近的化石,可以估计火山爆发前的时间周期;通过研究滑坡地区的古生物化石,可以确定滑坡发生的时间和频率。