chapter1-矢量分析(zhang)-part 3
- 格式:ppt
- 大小:854.00 KB
- 文档页数:2
矢量分析与张量初步第一章矢量分析U STU STU ST标量(数量):有大小,没方向的物理量。
矢量:既具有大小又具有方向的物理量,矢量又称为向量。
矢量与标量的根本区别是:有没有方向性。
如:温度、质量、角度、长度等。
如:力、速度、电场强度、力矩等。
矢量的模:矢量的大小。
矢量的模记为:或。
A K A ||A KU STU STU ST自由矢量:矢量平移后,其作用效果不变。
即自由矢量就是具有平移不变性的矢量。
FK 只考虑刚体的质心运动,作用力可以平移。
能不能平移?下面只讨论自由矢量。
如果要考虑刚体的转动,则作用力不能平移。
U STU STU ST始端在坐标原点的矢量常称为矢径,显然矢径的末端与直角坐标系中的三个坐标分量之间具有一一对应的关系,则矢径可用其末端的空间坐标来表示:①在直角坐标中的表示对矢量,始端平移到坐标原点,表示为:A Kr xi yj zk=++KK K K、、:单位矢量,分别指向三个坐标轴的正向。
i K j K k K x y z A A i A j A k=++K K K KU STU STU ST其中:为矢量的模,为指向矢量方向上的单位矢量。
R A A e A 三个:、和。
R βαcos cos cos A e i j kαβγ=++K K K KAKRxy zO因为222cos cos cos 1αβγ++=的直角坐标表示为A e K有几个独立坐标量?A Kr e =KU STU STU STOxe ρρK zA kK A K cos sin e i j ρϕϕ=+K K K三个:、和。
ρϕz 的直角坐标表示为e ρK在矢量的球坐标及柱坐标表示中,只要分别把单位矢量和的直角坐标表示代入,即得到矢量的直角坐标表示。
e ρKr e K 有几个独立坐标量?A K第一章矢量分析U STU ST U ST U STU STcos xA Aα=cos yA Aβ=cos zA A γ=(cos cos cos )A A i j k αβγ=++K K K K④方向余弦表示:设矢量与直角坐标三个坐标轴正向的夹角分别为、和,则:αγβA K用方向余弦()表示矢量:A Kcos ,cos ,cos αβγcos x A A α=这实际上就是直角坐标表示,因为:cos y A A β=cos z A A γ=U STU STU ST不能按大小排列)。
第1章 矢量分析§1.1 标量场与矢量场一、场的概念如果某物理量在空间每一时刻和每一位置都有一个确定的值,则称在此空间中确定了该物理量的场。
二、标量场与矢量场标量场:若所研究的物理量是一个标量,则称该物理量的场为标量场,例如:温度场、密度场、电位场。
),(t r u u =矢量场:若所研究的物理量是一个矢量,则称该物理量的场为矢量场,例如:力场、速度场、电场。
),(t r A A =三、静态场和时变场静态场:若物理量不随时间变化,则称该物理量所确定的场为静态场。
)(r u u =)(r A A =时变场:若物理量随时间变化,则称该物理量所确定的场称为动态场或时变场。
),(t r u u=),(t r A A =标量场在空间的变化规律由其梯度来描述,矢量场在空间的变化规律由矢量场的散度和旋度来描述。
§1.2 矢量场的通量 散度一、矢量线 矢量场的通量 1、矢量线(1)矢量场的表示在矢量场中,各点的场量是随空间位置变化的矢量。
矢量场可以用一个矢量函数)(r A来表示。
在直角坐标系中表示为:),,()(z y x A r A=(2)矢量线在矢量场中,为了形象直观地描述矢量在空间的分布状况,引入了矢量线的概念。
矢量线:是一条空间曲线,在它上面每一点的场矢量都与其相切,并且用箭头来表示矢量线的正方向。
例如,静电场中的电力线、磁场中的磁力线等。
(3)矢量线方程0)(=⨯r A r d在直角坐标系下为:)()()(r A dzr A dy r A dx z y x == 2、矢量场的通量 通过面积元的通量:S d r A d⋅=Φ)(通过有限面积的通量:⎰⋅=ΦSS d r A)(通过闭合曲面的通量:⎰⋅=ΦS S d r A)(二、矢量场的散度 1、散度的定义在矢量场)(r A中的任意一点M 处作一个包围该点的任意闭合曲面S ,所限定的体积为τ∆。
矢量场)(r A 在点M 处的散度记作A div,其定义为:ττ∆⋅=⎰→∆SS d r A A div)(lim 0 2、散度在坐标系下的表示A A div ⋅∇=定义哈密顿算符:ze y e x e z y x ∂∂+∂∂+∂∂=∇(1)在直角坐标系中的表示zu y u x u A ∂∂+∂∂+∂∂=⋅∇(2)在圆柱坐标系中的表示()zA A A A z ∂∂+∂∂+∂∂=⋅∇φρρρρφρ11 (3)在球坐标系中的表示()()φθθθθφθ∂∂+∂∂+∂∂=⋅∇A r A r A r r r A r sin 1sin sin 11223、散度的性质(1)散度是通量源的密度;0>⋅∇A表示该点有发出通量线的正通量源; 0<⋅∇A表示该点有接收通量线的负通量源;0=⋅∇A表示该点无通量源。
第一章:矢量分析1.1矢量代数矢量和标量标量矢量矢量的加法、减法、矢量混合积、点乘、叉乘的运算加法定义计算式几何意义平行四边形法则减法定义:计算式几何意义三角形法则矢量混合积计算方法:先算叉乘,再算点乘结果:标量重要矢量恒等式:A×B·C=B×A·C=C×A·B几何意义:斜立方体的体积,叉乘大小表示底面积,点乘朝叉乘方向投影是高度点乘定义计算式几何意义叉乘定义计算式几何意义1.2三种常用的坐标系直角坐标系一、圆柱坐标系二、球坐标系三、点,线、面、体、算符、应用1.3标量场的梯度标量场的等值面一、定义:标量场仅有大小,具有相同函数数值的点的集合,这些点组成一个曲面,该曲面称为等值面。
方程:T=T(X,Y,Z,T)=C方向导数二、定义式计算式直角坐标系梯度三、计算式直角坐标系圆柱坐标系球坐标系计算法则:按求导记忆概要1.4矢量场的通量与散度矢量场的矢量线一、定义:矢量场不仅有大小也具有方向,一般用一些有向线来形象地表示他的空间分布,这些有向称为矢量线。
方程:A=A(X,Y,Z,T)=Ax+A y+A z通量二、定义:开曲面闭曲面散度三、定义计算方法直角坐标系圆柱坐标系球坐标系散度(高斯定理)概要1.5矢量场的环量(流)与旋度环量(流)一、旋度二、计算式直角坐标系圆柱坐标系球坐标系斯托克斯定理(旋度定理)三、概要1.6无旋场与无散场无旋场一、无散场二、1.7拉普拉斯运算与格林公式拉普拉斯运算一、格林定理二、1.8亥姆霍兹定理力的解矢量场分析方程的建立。