第一章矢量分析与场论
- 格式:ppt
- 大小:639.00 KB
- 文档页数:51
矢量分析与场论矢量分析与场论第一章矢理分析1.1 矢性函数1.矢性函数的定义:数性变量t 在一范围G 内,对于任意的t 都有唯一确定的矢量A与其对应则称A 是t 的矢性函数,并称G 为A 的定义域,记作:()A A t =2.矢性函数的极限和连续性(1)矢性函数极限的定义:()A t在0t 某领域内有定义,对于0ε?>,0δ?>,常矢量0A ,只要为0<0t t δ-<就有0()A t A ε-< ,则称0A 为()A t 当0t t →的极限,记作:00lim ()t t A t A →=;极限的性质:(有界性)若00lim ()t t A t A →=,则0δ?>,M>0,0(;)t U t δ?∈ 都有()A t M <。
证明:0lim ()1,0,..(;)t t A t A s t t U t εδδ→=∴=?>?∈都有0()1A t A ε-<= ,00()()1A t A A t A ∴-<-<,0()1A t A ∴<+ ,取M=01A +极限的则运算:0lim ()()lim ()lim ()t t t t t t u t A t u t A t →→→=?000l i m (()())l i m ()l i m()t tt tt tA tB t A t B t →→→±=±lim(()())lim ()lim ()t t t t t t A t B t A t B t →→→?=?lim(()())lim ()lim ()t t t t t t A t B t A t B t →→→?=?其中()u t ,()A t ,()B t当0t t →时极限均存在。
证明:设00lim ()t t A t A →= ,00lim ()t t u t u →=,00lim ()t t B t B →=;000000()()()()()()u t A t u A u t A t u A t u A t u A -=-+-,00000000000()()()()()()()()()()()u t A t u A t u A t u A u t A t u A t u A t u A u t u A t u A t A -+-≤-+-=-?+?- 00000()()()()()u t A t u A u t u A t u A t A ∴-≤-?+?-而11010,0,..(;)M s t t U t δδ?>>?∈有1()A t M <;对于任意给定的ε>o ,101010,..(;),()2s t t U t u t u M εδδ''?>?∈-<; 同理20,s tt U t δδ?>?∈有00()2A t A u ε-<所以取{}112m i n ,,δδδδ'=,则有0(;)t U t δ?∈,00()()u t A t u A -<10122M u M u εε+?=ε其他证明方法类似,可参看数学分析中相关证明。
矢量分析与场论第一章 矢量分析一 内容概要1 矢量分析是场论的基础,本章主要包括以下几个主要概念:矢性函数及其极限、连续,有关导数、微分、积分等概念。
与高等数学研究过的数性函数的相应概念完全类似,可以看成是这些概念在矢量分析中的推广。
2 本章所讨论的,仅限于一个自变量的矢性函数()t A ,但在后边场论部分所涉及的矢性函数,则完全是两个或者三个自变量的多元矢性函数()y x ,A 或者()z y x ,,A ,对于这种多元矢性函数及其极限、连续、偏导数、全微分等概念,完全可以仿照本章将高等数学中的多元函数及其有关的相应概念加以推广而得出。
3 本章的重点是矢性函数及其微分法,特别要注意导矢()t 'A 的几何意义,即()t 'A 是位于()t A 的矢端曲线上的一个切向矢量,其起点在曲线上对应t 值的点处,且恒指向t 值增大的一方。
如果将自变量取为矢端曲线的弧长s ,即矢性函数成为()s A A =,则()dsd s A A ='不仅是一个恒指向s 增大一方的切向矢量,而且是一个单位切向矢量。
这一点在几何和力学上都很重要。
4 矢量()t A 保持定长的充分必要条件是()t A 与其导矢()t 'A 互相垂直。
因此单位矢量与其导矢互相垂直。
比如圆函数()j i e t t t sin cos +=为单位矢量,故有()()t t 'e e ⊥,此外又由于()()t t 1'e e =,故()()t t 1e e ⊥。
(圆函数还可以用来简化较冗长的公式,注意灵活运用)。
5 在矢性函数的积分法中,注意两个矢性函数的数量积和两个矢性函数的矢量积的分部积分法公式有所不同,分别为:dt dt ''⎰⎰⋅-⋅=⋅A B B A B Adt dt ''⎰⎰⨯+⨯=⨯A B B A B A前者与高等数学种数性函数的分部积分法公式一致,后者由两项相减变为了求和,这是因为矢量积服从于“负交换律”之故。