第一章矢量分析与场论-
- 格式:ppt
- 大小:555.56 KB
- 文档页数:51
矢量分析与场论矢量分析是矢量代数和微机分运算的结合和推广,主要研究矢性函数的极限、连续、导数、微分、积分等。
而场论则是借助于矢量分析这个工具,研究数量场和矢量场的有关概念和性质。
通过这一部分的学习,可使读者掌握矢量分析和场论这两个数学工具,并初步接触到算子的概念及其简单用法,为以后学习有关专业课程和解决实际问题,打下了必要的数学基础。
第1章 矢量分析在矢量代数中,曾经讨论过模和方向都保持不变的矢量,这种矢量称为常矢。
然而,在科学和技术的许多问题中,也常遇到模和方向改变或其中之一会改变的矢量,这种矢量称为变矢。
如非等速及非直线运动物体的速度就是变矢量的典型例子。
变矢量是矢量分析研究的重要对象。
本章主要讨论变矢与数性变量之间的对应关系——矢函数及微分、积分和它们的一些主要性质。
§1.1 矢函数与普通数量函数的定义类似,我们引进矢性函数(简称矢函数)的概念,进而结出矢函数的极限与连续性等概念。
1、矢函数的概念定义1.1.1 设有数性变量t 和变矢A ,如果对于t 在某个范围D 内的每一个数值,A 都以一个确定的矢量和它对应,则称A 为数性变量t 的矢量函数,记作A =A )(t (1.1.1)并称D 为矢函数A 的定义域。
在Oxyz 直角坐标系中,用矢量的坐标表示法,矢函数可写成A {})(),(),()(t A t A t A t z y x = (1.1.2) 其中)(),(),(t A t A t A z y x 都是变量t 的数性函数,可见一个矢函数和三个有序的数性函数构成一一对应关系。
即在空间直角坐标系下,一个矢函数相当于三个数性函数。
本章所讲的矢量均指自由矢量,所以,以后总可以把A )(t 的起点取在坐标原点。
这样当t 变化时,A )(t 的终点M 就描绘出一条曲线l (图1.1),这样的曲线称为矢函数A )(t 的矢端曲线,也称为矢函数A )(t 的图形。
同时称(1.1.1)式或(1.1.2)式为此曲线的矢量方程。
矢量分析与场论第一章 矢量分析一 内容概要1 矢量分析是场论的基础,本章主要包括以下几个主要概念:矢性函数及其极限、连续,有关导数、微分、积分等概念。
与高等数学研究过的数性函数的相应概念完全类似,可以看成是这些概念在矢量分析中的推广。
2 本章所讨论的,仅限于一个自变量的矢性函数()t A ,但在后边场论部分所涉及的矢性函数,则完全是两个或者三个自变量的多元矢性函数()y x ,A 或者()z y x ,,A ,对于这种多元矢性函数及其极限、连续、偏导数、全微分等概念,完全可以仿照本章将高等数学中的多元函数及其有关的相应概念加以推广而得出。
3 本章的重点是矢性函数及其微分法,特别要注意导矢()t 'A 的几何意义,即()t 'A 是位于()t A 的矢端曲线上的一个切向矢量,其起点在曲线上对应t 值的点处,且恒指向t 值增大的一方。
如果将自变量取为矢端曲线的弧长s ,即矢性函数成为()s A A =,则()dsd s A A ='不仅是一个恒指向s 增大一方的切向矢量,而且是一个单位切向矢量。
这一点在几何和力学上都很重要。
4 矢量()t A 保持定长的充分必要条件是()t A 与其导矢()t 'A 互相垂直。
因此单位矢量与其导矢互相垂直。
比如圆函数()j i e t t t sin cos +=为单位矢量,故有()()t t 'e e ⊥,此外又由于()()t t 1'e e =,故()()t t 1e e ⊥。
(圆函数还可以用来简化较冗长的公式,注意灵活运用)。
5 在矢性函数的积分法中,注意两个矢性函数的数量积和两个矢性函数的矢量积的分部积分法公式有所不同,分别为:dt dt ''⎰⎰⋅-⋅=⋅A B B A B Adt dt ''⎰⎰⨯+⨯=⨯A B B A B A前者与高等数学种数性函数的分部积分法公式一致,后者由两项相减变为了求和,这是因为矢量积服从于“负交换律”之故。
第一章 矢量分析与场论实数域内任一代数即一个只有大小的量称之为标量,而一个既有大小又有方向特性的量称之为矢量。
无论是标量还是矢量,一旦被赋予物理单位,则成为一个具有物理意义的量即所谓的物理量。
物理量数值的无穷集合称为场。
如果这个物理量是标量,就称其为标量场;如果物理量是矢量就称这个场为矢量场。
场的一个重要属性是它占有一个空间,而且在该空间域内,除有限个点或表面外它是处处连续的。
如果场中各处物理量不随时间变化,则称该场为静态场,不然,则称为动态场或时变场。
本章从定义标量和矢量出发,讨论矢量在直角坐标系、圆柱坐标系和球坐标系三种坐标系中的表示法及其代数运算和相互关系;然后介绍了矢量及标量的微分和积分几及其性质;最后引入亥姆霍兹定理,它是矢量场共同性质的总结。
1.1 矢量及其代数运算一、标量和矢量电磁场中遇到的绝大多数物理量,能够容易地区分为标量(scalar )和矢量(vector)。
一个仅用大小就能够完整地描述的物理量称为标量,例如,电压、温度、时间、质量、电荷等。
实际上,所有实数都是标量。
一个有大小和方向的物理量称为矢量,电场、磁场、力、速度、力矩等都是矢量。
例如,矢量A 可以写成A a A = A Aa =(1-1-1)其中A 是矢量A 的大小,a 的大小等于1,代表矢量A 的方向。
一个大小为零的矢量称为空矢(null vector )或零矢(zero vector ),一个大小为1的矢量称为单位矢量(unit vector )。
在直角坐标系中,用单位矢量x a 、y a 和z a 表征矢量分别沿x 、y 和z 轴分量的方向。
空间的一点()Z Y X P ,,能够用它在三个相互垂直的轴线上的投影唯一地被确定如图1-1所示。
从原点指向点P 的矢量r 称为位置矢量(position vector),它在直角坐标系中表示为Z Y X z y x a a a r ++= (1-1-2)式中,Y X ,和Z 是r 在x 、y 和z 轴上的标投影。
第一章矢量分析与场论(1)1.什么是场?重力场、温度场、电磁场、……在许多科学问题中,常常需要研究某种物理量(如温度、密度、电位、力等等)在某一空间区域的分布和变化规律。
为此,在数学上引入了场的概念。
如果在某一空间里的每一点,都对应着某个物理量的一个确定的值,则称在此空间里确定了该物理量的一个场。
如教室中每一点都对应一个确定的温度,教室中确立一个温度场。
地球周围空间任一点对应一个重力加速度值,在此空间就存在一个重力场。
•从数学角度:场是给定区域内各点数值的集合,这些数值规定了该区域内一个特定量的特性。
比如:T是温度场中的物理量,T 就是温度场•从物理角度:场是遍及一个被界定的或无限扩展的空间内的,能够产生某种物理效应的特殊的物质,场是具有能量的。
场的分类:●按物理量的性质分:标量场:描述场的物理量是标量。
温度场、密度场等是数量场矢量场:描述场的物理量是矢量。
力场、速度场等为矢量场。
●按场量与时间的关系分:静态场:场量不随时间发生变化的场。
动态场:场量随时间的变化而变化的场。
动态场也称为时变场。
数量场的等值面一般地,数量场中各点处的数量u是位置的函数,在直角坐标系中,是点的坐标x,y,z的函数,即:),,(z y xuu就是说,一个数量场可以用一个数性函数来表示。
场存在的空间即为其定义域。
此后,我们总假定这个函数单值、连续且一阶可导。
在数量场中,使函数u 取相同数值的所有点所组成的曲面称为该数量场的等值面。
如温度场的等温面,电场的等位面等。
显然,数量场的等值面方程为:c z y x u =),,((常数)给定不同的常数c ,就得到不同的等值面。
如图,c 取遍所有可能的值时,这族等值面就充满数量场所在的空间,而且这族等值面两两互不相2c =1c u =3c =交。
因为数量场中的每一点),,(0000z y x M 都有一个等值面),,(),,(000z y x u z y x u =通过,而且由于函数u 为单值,故一个点只能在一个等值面上。