八年级数学下册12.3二次根式的加减合并同类二次根式的方法是什么素材
- 格式:doc
- 大小:39.00 KB
- 文档页数:2
初二数学下册:二次根式10个常考类型题精选考点二次根式1.二次根式的有关概念(1)二次根式:该式子称作二次根式。
注意被开方数a只能是非负数。
并且根式也是非负数。
(2)最简二次根式:被开方数不含分母,不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式。
(3)同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式。
2.二次根式的性质3.二次根式的运算(1)二次根式的加减:先把二次根式化为最简二次根式,再合并同类二次根式。
(2)二次根式的乘除:和(3)二次根式的运算仍满足运算律,也可以用多项式的乘法公式来简化运算。
二次根式的运算结果一定要化成最简二次根式。
常考的10个类型题点评:关于二次根式的根号内外的“移进”和“移出”,关键是要抓住二次根式的被开方数是非负数这个特点,先确定字母的隐含的取值范围,再结合进行“移进”和“移出”的变形化简;这类题在考试中常出现在考题的填空和选择题中,是正确率比较低的热点考题高频考点,这个知识点容易与其它知识点联姻构成有一定含金量的综合题,而双重非负数性在其中扮演的往往是关键角色,上面的几道例题就是要抓住算术平方根及其被开方数都是非负数的破题;比如很多同学对于例3这类题不知从何入手,但只要抓住本题是二次根式构建的,从被开方数是非负数这点入手,就可以隐藏在其中的a的值挖出来,从而使问题得以解故④正确;根据垂直平分线的判定并结合图象可知EF是线段BC的垂直平分线,⑤正确故选①④⑤点评:几何的相关计算中往往要通过二次根式的计算或化简来解决不在少数,是中考和各类考试的热点考题;这类题型把二次根式的计算或化简和勾股定理即其它几何知识很好结合在一起考察,是数形结合等思想方法较好体现。
这类题型还很容易与函数及其图象结合在一起。
end。
二次根式知识点归纳和题型归类一、知识框图二。
知识要点梳理ﻫ知识点一、二次根式的主要性质:ﻫ1。
;2.;3.;ﻫ4。
积的算术平方根的性质:;5. 商的算术平方根的性质:。
ﻫ6.若,则.知识点二、二次根式的运算1.二次根式的乘除运算ﻫ(1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2) 注意每一步运算的算理;(3)乘法公式的推广:(4)注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.2.二次根式的加减运算需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。
3.二次根式的混合运算(1)ﻬ明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;(2)整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。
(3)二次根式运算结果应化简.另外,根式的分数必须写成假分数或真分数,不能写成带分数或小数.4。
简化二次根式的被开方数,主要有两个途径:错误!因式的内移:因式内移时,若,则将负号留在根号外.即:.错误!因式外移时,若被开数中字母取值范围未指明时,则要进行讨论.即:三。
典型题训练一。
利用二次根式的双重非负性(a≥0),a1。
下列各式中一定是二次根式的是( )。
A 、; B 、;C 、; D 、 2。
x取何值时,下列各式在实数范围内有意义。
(1) (2) (3) (4)(5)(6). (7)若,则x 的取值范围是(8)若,则x 的取值范围是。
3。
若有意义,则m 能取的最小整数值是;是一个正整数,则正整数m的最小值是________.4。
当x 为何整数时,有最小整数值,这个最小整数值5,则=_____________; ,则 6.设m、n 满足,则= 。
7,求的值.8。
若三角形的三边a 、b、c 满足=0,则第三边c的取值范围是9。
八年级下册数学二次根式笔记
一、二次根式的定义
1. 二次根式:形如√a(a≥0)的式子叫做二次根式。
2. 二次根式的性质:非负性,即被开方数是非负数。
二、二次根式的性质和运算法则
1. 二次根式的乘法运算法则:√a × √b = √(a×b)(a≥0,b≥0)。
2. 二次根式的除法运算法则:√a ÷ √b = √(a÷b)(a≥0,b>0)。
3. 二次根式的乘方运算法则:√a^n = a^(n/2)(a≥0,n是正整数)。
4. 二次根式的加减运算法则:同类二次根式可以进行加减运算。
三、二次根式的化简
1. 完全平方公式:a^2+2ab+b^2=(a+b)^2;a^2-2ab+b^2=(a-b)^2。
2. 平方差公式:a^2-b^2=(a+b)(a-b)。
3. 完全立方公式:a^3+3a^2b+3ab^2+b^3=(a+b)^3。
4. 立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)。
5. 二次根式化简的一般步骤:去括号、合并同类项、化简。
四、二次根式的应用
1. 在实际问题中,经常需要求解一些与二次根式有关的数学问题,如长度、面积、体积等。
2. 在数学证明中,二次根式也经常被用来证明一些重要的数学定理,如勾股定理、毕达哥拉斯定理等。
五、练习与巩固
为了更好地掌握二次根式的知识,需要多做一些练习题,通过练习巩固所学知识。
可以参考教材上的练习题或找一些相关的练习册进行练习。
在练习过程中,要注意解题的思路和方法,掌握各种运算法则和公式的应用,提高解题的速度和准确性。
八年级下册知识点归纳第十六章 二次根式1、二次根式: 形如)0(≥a a 的式子。
①二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。
②非负性考点:几个非负数相加为0,那么这几个数都为0.如:-+++=2310a b c 则:30,10,0a b c -=+==2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式。
3、化最简二次根式的方法和步骤:(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数是小数就化成分数,带分数化成假分数,是多项式就先分解因式。
4.同类二次根式:二次根式化成最简二次根式后,被开方数相同的几个二次根式就是同类二次根式。
5、二次根式有关公式 (1))0()(2≥=a a a (2)⎩⎨⎧<-≥==)0a (a )0a (aa a 2(3)乘法公式)0,0(≥≥∙=b a b a ab (4)除法公式(0,0)a aa b b b=≥> (5)完全平方公式222()2a b a ab b ±=++ 平方差公式:22()()a b a b a b -=+- (6)01(0)a a =≠ 1-=nn aa6、二次根式的加减法则:先将二次根式化为最简,再将被开方数相同的二次根式进行合并。
7、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。
二次根式计算的最后结果必须化为最简二次根式.第十七章 勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。
①已知a ,b ,求c ,则c=22a b + ②已知a ,c ,求b,则b=22c a -③已知b ,c 求a ,则a=22c b - 没有指明直角边和斜边时要分类讨论2.勾股定理逆定理:如果一个三角形三边长a,b,c 满足a 2+b 2=c 2。
二次根式的加减说课稿二次根式的加减说课稿作为一位杰出的老师,常常要根据教学需要编写说课稿,借助说课稿可以有效提升自己的教学能力。
那么应当如何写说课稿呢?以下是小编为大家收集的二次根式的加减说课稿,仅供参考,大家一起来看看吧。
一、说教材的地位和作用1、内容:二次根式的加减,利用二次根式化简的数学思想解应用题,含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用。
2。
本节在教材中的地位与作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础二、说教学目标、重点、难点:1、教学目标:(1)知识与技能:1.含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用。
2.复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算。
理解和掌握二次根式加减的方法。
3.运用二次根式、化简解应用题。
4.通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题。
(2)数学思考:先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解。
再总结经验,用它来指导根式的计算和化简(3)解决问题:先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念。
•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简。
(3)情感态度与价值观:通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力。
2、教学重点、难点:二次根式化简为最简根式。
二次根式的乘除、乘方等运算规律;三、说如何突出重点、突破难点:难点关键:会判定是否是最简二次根式,讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点。
由整式运算知识迁移到含二次根式的运算为了突破难点,教学中我注意:1潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点。
八年级数学下册《二次根式》知识点总结二次根式【知识回顾】.二次根式:式子(≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)()2=(≥0);(2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=•(a≥0,b≥0);(b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】、概念与性质例1下列各式1),其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1);(2)例3、在根式1),最简二次根式是()A.1)2)B.3)4)c.1)3)D.1)4)例4、已知:例5、(XX龙岩)已知数a,b,若=b-a,则A.a>bB.a<bc.a≥bD.a≤b2、二次根式的化简与计算例1.将根号外的a移到根号内,得A.;B.-;c.-;D.例2.把(a-b)-1a-b化成最简二次根式例3、计算:例4、先化简,再求值:,其中a=,b=.例5、如图,实数、在数轴上的位置,化简:4、比较数值(1)、根式变形法当时,①如果,则;②如果,则。
12.3二次根式的加减(1)学习目标:1.了解并掌握同类二次根式的概念;2.掌握二次根式的加减运算方法.学习重点:同类二次根式的概念及掌握合并同类二次根式的方法.学习难点:同类二次根式的概念理解及其应用.一、教学过程情境创设1.(1)两列火车分别运煤2x 吨和3x 吨,问这两列火车共运煤 吨.(2)两列火车分别运煤2x 吨和3y 吨,问这两列火车共运煤 吨.2.以下问题你能用同样的方法计算吗?(1)32+4 2 (2)5+2 (3)8+18+42二、探究学习过程活动一:观察:下列三组根式有什么共同的特征?①2,32,-22,152,-32 2 ②3,-53,63,173,3132 特征: . ③5,-320,125,51 思考:请类比同类项的定义,说说什么是同类二次根式。
归纳:经过化简后....., 的二次根式,称为 二次根式. 变式训练:1.下列二次根式:①3;②12;③9;④61;⑤18.其中,属于同类二次根式的是(填写正确答案的序号).2.下列各组根式中,属于同类二次根式的是 ( )A .3和18B .3和31 C .b a 2和2ab D . 1+a 和1-a3.下列二次根式中,与a 属于同类二次根式的是 ( )A .3 aB .23aC .3aD .4a请归纳判断同类二次根式,① ;② ;③ . 活动二:试一试计算,并与同学们交流你的做法 ①32+2 2 ②5x -3x 自主合作归纳:一般地,只有 二次根式才能合并,只要 不变,将 . 典型例题例1. 计算:⑴32+23-22+ 3 ⑵12+18-8-32 ⑶40-5110+10练习:书163页第1题例2. 如图,两个圆的圆心相同,面积分别为8cm 2、18cm 2.求圆环的宽度(两圆半径之差).练习:书164页第2题三、当堂检测1. 在二次根式:①12;②2;③32;④27.是同类二次根式的是 ( )A .①和③B .②和③C .①和④D .③和④2. 下列各式①33+3=63;②717=1;③2+6=8=22;④324=22,其中错误的有( )A .3个B .2个C .1个D .0个3. 计算:⑴35-2+5-42 ⑵53-375-27 ⑶72+18-223 四、中考链接1. 计算:8-21= .2.下列运算错误的是 ( ) A. 2+3=5 B. 2·3=6 C. 6÷2=3 D. (-2)2=23.下列各式计算正确的是 ( )A .2+3=5B .2+2=22C .33-2=22D .210-12=6-5()()1___;2___==()()3____;4______==五、课堂小结:1.判断同类二次根式的方法;2.二次根式加减法德步骤:一化;二找;三合并。
二次根式的加减乘除法则
两个二次根式之和的形式是√a±√b。
如果两个二次根式的被开方数
相同,即a=b,则可以直接将它们的系数相加或相减,而保持根号下的数
不变。
具体来说,√a±√a=2√a,√b±√b=2√b。
例如,√2+√2=2√2,√3-√3=-2√3
如果两个二次根式的被开方数不同,即a≠b,则无法直接相加或相减。
在这种情况下,我们需要使用特殊的二次根式加法形式,即将二次根
式相加或相减后的结果进行化简。
具体步骤如下:
1.将二次根式分解成最简形式,即将每个二次根式的被开方数分解成
质因数的乘积。
2.将两个二次根式按照被开方数分别进行分组。
3.在每组中找出被开方数相同的二次根式,并将它们的系数相加或相减,而保持根号下的数不变。
4.将每组中的结果相加或相减,得到最终的结果。
两个二次根式的乘积可以按照分配律展开,然后进行合并同类项。
具
体步骤如下:
1.将每个二次根式的被开方数分解成质因数的乘积。
2.将两个二次根式的系数相乘。
3.将每个二次根式的根号下的数相乘,并合并同类项,即将被开方数
相乘后的结果进行化简。
4.将步骤2和步骤3的结果相乘。
除法可以转化为乘法,即将被除数乘以除数的倒数。
具体步骤如下:
1.将被除数和除数分别进行质因数分解。
2.将被除数和除数的系数相乘。
3.将被除数的根号下的数除以除数的根号下的数,并将结果进行化简。
以上就是二次根式的加减乘除法则的详细解释,希望能对您有所帮助。
专题16.7 二次根式的加减(知识讲解)【学习目标】1、理解并掌握同类二次根式的概念和二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;2、会利用运算律和运算法则进行二次根式的混合运算.【要点梳理】要点一、同类二次根式1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.特别说明:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关.2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似)特别说明:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式.要点二、二次根式的加减1.二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.特别说明:(1)在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.(2)二次根式加减运算的步骤:1)将每个二次根式都化简成为最简二次根式;2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;3)合并同类二次根式.要点三、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用.特别说明:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用;(3)二次根式混合运算的结果要写成最简形式.【典型例题】类型一、二次根式➽➼概念➽➼同类二次根式✭✭分母有理化1.判断下列二次根式中哪些是同类二次根式:举一反三:【变式1a的值.【点拨】本题考查同类二次根式,掌握同类二次根式的定义,即“被开方数相同的几个最简二次根式是同类二次根式”正确解答的前提.【变式2】分别求出满足下列条件的字母a的取值:(1)(2)2.【阅读材料】把分母中的根号化去,使分母转化为有理数的过程,叫做分母有理化.通常把分子、分母乘以同一个不等于0的式子,以达到化去分母中根号的目的..=【理解应用】(1) 化简: ∵∵ (2)2020++ 2020++【点拨】本题考查了分母有理化,正确的计算是解题的关键.举一反三:【变式1)3x x ≤【变式2【点拨】本题考查根式的运算,解题的关键是熟练掌握根式的运算及根式分母有理化.类型二、二次根式➽➼二次根式的加减运算-+-+.3.计算:38|32|12举一反三:【变式1】计算:6-【变式2】计算:(1)(2) )011+类型三、二次根式➽➼二次根式的混合运算4.计算下列各式.(1)1)举一反三:.【变式1|1【分析】先运用二次根式乘法法则计算,并化简二次根式,去绝对值符号,最后合并同类二次根式即可.【点拨】本题考查二次根式的混合运算,化简绝对值,熟练掌握二次根式的运算法则是解题的关键. 【变式2】计算:(1)1 (2))21+.类型四、二次根式➽➼二次根式的化简求值5.解答下列各题(1) 已知2x =,2y =.求22x xy y ++的值.(2) 若2y =,求y x 的平方根.【答案】(1) 19; (2) 3±.【分析】(1)分别求出22,,x y xy ,再代入到代数式求值即可;举一反三:【变式1】已知x =y 22205520x xy y ++的值.【点拨】本题主要考查了分母有理化,正确化简各数是解题关键.【变式2】已知3x =+3y =-(1) x y +=______;x y -=______;xy =______.(2) 根据以上的计算结果,利用整体代入的数学方法,计算式子223x xy y x y -+--的值.【点拨】本题考查了二次根式的化简求值问题,正确对所求式子变形是解本题的关键.类型五、二次根式➽➼应用6.阅读材料并回答问题肖博睿同学发现如下正确结论:材料一:若0A B ->,则A B >;若0A B -=,则A B =;若0A B -<,则A B <;材料二:完全平方公式:(1)()2222a ab b a b ++=+;(2)()2222a ab b a b -+=-.(1)(2) 2912x x ++___________()2______2=+;(3) 试比较142x x y ⎛⎫- ⎪⎝⎭与()2y x y -的大小(写出相应的解答过程). )解:又32>(322-)解:根据题意,)解:4又()22x y -142x x y ⎛- ⎝【点拨】本题考查利用作差法解代数式比较大小,整式混合运算、合并同类项、完全平方公式因式分解、平方式的非负性等知识,读懂材料,掌握作差法比较代数式大小的方法是解决问题的关键.举一反三:【变式1】设一个三角形的三边分别为a ,b ,c ,p =12(a +b +c ),则有下列面积公式:S S (1) 一个三角形的三边长依次为3,5,6,任选以上一个公式求这个三角形的面积;(2)任选以上一个公式求这个三角形的面积.解题的关键.【变式2】某居民小区有一块形状为长方形ABCD的绿地,长方形绿地的长BC为,宽AB,现要在长方形绿地中修建一个长方形花坛(即图中阴影部分),长方形花坛的长为m,宽为1)m.(1)长方形ABCD的周长是多少?(2)除去修建花坛的地方,其他地方全修建成通道,通通上要铺上造价为2元的地砖,5/m要铺完整个通道,则购买地砖需要花费多少元?答:购买地砖需要花费660元.【点拨】本题考查二次根式的应用,长方形的周长和面积,平方差公式.解题的关键是掌握二次根式的混合运算顺序和运算法则及其性质.。
怀文中学2013—2014学年度第二学期教学设计初 二 数 学 12.1 二次根式的加减(1)主备:姬文林 审校:汤明祥 日期:2014年4月16日教学目标:1.通过自主探究概括同类二次根式的概念及二次根式加减法法则;2.了解同类二次根式的概念,会识别同类二次根式,用法则进行二次根式的加减运算;教学重点:同类二次根式的概念及二次根式加减运算法则.教学难点:探讨二次根式加减法运算的方法,快速准确进行二次根式加减法的运算.一、自主探究1. 学校要修两块长方形草坪,第一块草坪的长是10米,宽是22米,第二块草坪的长是20米,宽也是22米.你能告诉运动场的负责人要准备多少面积的草皮吗?问题:202+402是什么运算?二、自主合作1. 下列3组二次根式各有什么特征?(1)2,23,22-,215,232;(2)3,35-,36,317,3132; (3)5,203-,125,51. 经过化简以后,被开方数相同的二次根式,叫做同类二次根式.三、自主展示1.计算.(1)202+402; (2)5-203+125+51. 2.例1 计算:(1)32+43-22+3; (2)12+18-8-32; (3)40-5101+10练习:1.课本练习1.2. 计算下列各式.(1)2 (2)2(3) (4)四、自主拓展1.如图,两个圆的圆心相同,半径分别为R 、r ,面积分别是18cm 2、8 cm 2.求圆环的宽度(两圆半径之差).2.计算(1)483316122+-(2)()()532012-++3. 下列各式:①17其中错误的有( ). A .3个 B .2个 C .1个 D .0个4. (1、是同类二次根式的有________.(2)计算二次根式________.5. 2.236-(结果精确到0.01)五、自主评价这节课你学到了什么知识?你有什么收获?布置作业:1.《同步练习》12.3 二次根式的加减(1).教学反思:怀文中学2013—2014学年度第二学期教学设计初 二 数 学 12.1 二次根式的加减(2)主备:姬文林 审校:汤明祥 日期:2014年4月16日教学目标: 1.回顾同类二次根式的概念及二次根式加减法法则;2.类比整式运算的法则、公式和运算律进行二次根式的混合运算;3.学生通过复习整式运算知识培养学生的知识迁移能力;通过在二次根式运算中运用乘法公式以激发学生用类比的数学思想解题的兴趣.教学重点:二次根式的乘除、乘方等运算规律.教学难点:由整式运算知识迁移到含二次根式的运算.一、自主探究1. 二次根式有哪些性质?(1)2a =(a≥0) (2||a(3(4(5(a≥0,b >0) (6b >0) 2.整式运算的法则、公式和运算律有哪些?(7)()()22a b a b a b +-=- (8)()2222a b a ab b =+±± (9)()()a b n m an am bn bm ++=+++二、自主合作 例1 计算:(1))32125(+×15 (2))52)(103(-+练习:课本165页练习1.例2 计算:(1))23)(23(-+ (2)2)523(+练习:课本165页练习2.三、自主展示例3.若,求2x 2+2 y 2+4xy 的值。