用光杠杆法测钢丝的杨氏模量报告(共8篇)
- 格式:docx
- 大小:11.32 KB
- 文档页数:2
钢丝杨氏模量的测定实验报告篇一:用拉伸法测钢丝杨氏模量——实验报告用拉伸法测钢丝杨氏模量——实验报告杨氏弹性模量测定仪;光杠杆;望远镜及直尺;千分尺;游标卡尺;米尺;待测钢丝;砝码等。
【实验原理】1.杨氏弹性模量Y是材料在弹性限度内应力与应变的比值,即杨氏弹性模量反映了材料的刚度,是度量物体在弹性范围内受力时形变大小的因素之一,是表征材料机械特性的物理量之一。
2.光杠杆原理伸长量Δl比较小,不易测准,本实验利用了光杠杆的放大原理对Δl进行测量。
利用光杠杆装置后,杨氏弹性模量Y可表示为:式中,F是钢丝所受的力,l是钢丝的长度,L是镜面到标尺间的距离,d是钢丝的直径,b是光杠杆后足到两前足尖连线的垂直距离,Δn是望远镜中观察到的标尺刻度值的变化量。
3. 隔项逐差法隔项逐差法为了保持多次测量优越性而采用的数据处理方法。
使每个测量数据在平均值内都起到作用。
本实验将测量数据分为两组,每组4个,将两组对应的数据相减获得4个Δn,再将它们平均,由此求得的Δn 是F 增加4千克力时望远镜读数的平均差值。
【实验步骤】1.调整好杨氏模量测量仪,将光杠杆后足尖放在夹紧钢丝的夹具的小圆平台上,以确保钢丝因受力伸长时,光杠杆平面镜倾斜。
2.调整望远镜。
调节目镜,使叉丝位于目镜的焦平面上,此时能看到清晰的叉丝像;调整望远镜上下、左右、前后及物镜焦距,直到在望远镜中能看到清晰的直尺像。
3.在钢丝下加两个砝码,以使钢丝拉直。
记下此时望远镜中观察到的直尺刻度值,此即为n0 值。
逐个加砝码,每加1个,记下相应的直尺刻度值,直到n7,此时钢丝下已悬挂9个砝码,再加1个砝码,但不记数据,然后去掉这个砝码,记下望远镜中直尺刻度值,此为n7’,逐个减砝码,每减1个,记下相应的直尺刻度值,直到n0’。
4. 用米尺测量平面镜到直尺的距离L;将光杠杆三足印在纸上,用游标卡尺测出b;用米尺测量钢丝长度l;用千分尺在钢丝的上、中、下三部位测量钢丝的直径d,每部位纵、横各测一次。
金属丝杨氏模量的测定实验报告一、实验目的:1、学会测量杨氏模量的一种方法,掌握“光杠杆镜”测量微小长度变化的原理。
2、学会用“对称测量”消除系统误差。
3、学会如何依实际情况对各个测量量进行误差估算。
4、练习用逐差法、作图法处理数据。
二、实验原理:一根均匀的金属丝或棒(设长为L,截面积为S),在受到沿长度方向的外力F作用下伸长ΔL。
根据胡克定律:在弹性限度内,弹性体的相对伸长(胁变)ΔL/L与外施胁强F/S成正比。
即:ΔL/L=(F/S)/E (1)式中E称为该金属的杨氏弹性模量,它是描述金属材料抗形变能力的重要物理量,其单位为N·m-2。
设金属丝(本实验为钢丝)的直径为d,则S=πd2/4,将此式代入式(1),可得: E=4FL/πd2ΔL (2)根据式(2)测杨氏模量时,F,d和L都比较容易测量,但ΔL是一个微小的长度变化,很难用普通测长器具测准,本实验用光杠杆测量ΔL。
三、实验仪器:杨氏模量仪测量仪、螺旋测微仪、游标卡尺、钢卷尺、望远镜(附标尺)。
四、实验内容和步骤:1、将重物托盘挂在螺栓夹B的下端,调螺栓W使钢丝铅直,并注意使螺栓夹B位于平台C的圆孔中间,且能使B在上下移动时与圆孔无摩擦。
2. 放好光杠杆,将望远镜及标尺置于光杠杆前约1.5~2m处。
目测调节,使标尺铅直,光杠杆平面镜平行于标尺,望远镜与平面镜处于同一高度,并重直对向平面镜。
3. 微调平面镜或望远镜倾仰和望远镜左右位置,并调节望远镜的光学部分,使在望远镜中看到的标尺像清晰,并使与望远镜处于同一高度的标尺刻度线a0和望远镜的叉丝像的横线重合,且无视差。
记录标尺刻度a0值。
4. 逐次增加相同质量的砝码,在望远镜中观察标尺的像,依次读记相应的与叉丝横线重合的标尺刻度读数1n,2n,…然后,再逐次减去相同质量的砝码,读数'1n,'2n…并作记录。
5. 用米尺测量平面镜面至标尺的距离R和钢丝原长L。
6. 将光杠杆取下,并在纸上压出三个足尖痕,用游标卡尺测出后足尖至两前足尖联机的垂直距离D。
竭诚为您提供优质文档/双击可除杨氏模量实验报告数据篇一:杨氏模量实验报告杨氏模量的测量【实验目的】1.1.掌握螺旋测微器的使用方法。
2.学会用光杠杆测量微小伸长量。
3.学会用拉伸法金属丝的杨氏模量的方法。
【实验仪器】杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺),水准器,钢卷尺,螺旋测微器,钢直尺。
1、金属丝与支架(装置见图1):金属丝长约0.5米,上端被加紧在支架的上梁上,被夹于一个圆形夹头。
这圆形夹头可以在支架的下梁的圆孔内自由移动。
支架下方有三个可调支脚。
这圆形的气泡水准。
使用时应调节支脚。
由气泡水准判断支架是否处于垂直状态。
这样才能使圆柱形夹头在下梁平台的圆孔转移动时不受摩擦。
2、光杠杆(结构见图2):使用时两前支脚放在支架的下梁平台三角形凹槽内,后支脚放在圆柱形夹头上端平面上。
当钢丝受到拉伸时,随着圆柱夹头下降,光杠杆的后支脚也下降,时平面镜以两前支脚为轴旋转。
图1图2图33、望远镜与标尺(装置见图3):望远镜由物镜、目镜、十字分划板组成。
使用实现调节目镜,使看清十字分划板,在调节物镜使看清标尺。
这是表明标尺通过物镜成像在分划板平面上。
由于标尺像与分划板处于同一平面,所以可以消除读书时的视差(即消除眼睛上下移动时标尺像与十字线之间的相对位移)。
标尺是一般的米尺,但中间刻度为0。
【实验原理】1、胡克定律和杨氏弹性模量固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。
如果外力后仍有残余形变,这种形变称为塑性形变。
应力:单位面积上所受到的力(F/s)。
应变:是指在外力作用下的相对形变(相对伸长?L/L)它反映了物体形变的大小。
FL4FL?用公式表达为:Y??(1)s?L?d2?L2、光杠杆镜尺法测量微小长度的变化在(1)式中,在外力的F的拉伸下,钢丝的伸长量?L是很小的量。
用一般的长度测量仪器无法测量。
在本实验中采用光杠杆镜尺法。
初始时,平面镜处于垂直状态。
一、实验目的1. 学习使用拉伸法测定钢丝的杨氏模量;2. 掌握光杠杆法测量微小伸长量的原理;3. 学会用逐差法处理实验数据;4. 学会计算不确定度,并正确表达实验结果。
二、实验原理杨氏模量(E)是材料在弹性限度内应力(σ)与应变(ε)的比值,即 E =σ/ε。
它是衡量材料刚度和抵抗形变能力的物理量。
本实验采用拉伸法测定钢丝的杨氏模量,利用光杠杆放大原理测量微小伸长量,通过计算得出杨氏模量。
三、实验仪器1. YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码)2. 钢卷尺(0-200cm,0.1cm)3. 千分尺(0-150mm,0.02mm)4. 游标卡尺(0-25mm,0.01mm)5. 米尺四、实验步骤1. 调整杨氏模量测量仪,确保平台水平。
2. 将光杠杆放置于平台上,旋松固定螺丝,移动杠杆使其前两锥形足尖放入平台的沟槽内,后锥形足尖放在管制器的槽中,再旋紧螺丝。
3. 调节平面镜的仰角,使镜面垂直,即光杠杆镜面法线与望远镜轴线大致重合。
4. 利用望远镜上的准星瞄准光杠杆平面镜中的标尺刻度,调节望远镜的焦距,使标尺清晰可见。
5. 在钢丝下端悬挂砝码,使钢丝产生微小伸长。
6. 观察望远镜中的标尺刻度变化,记录光杠杆后足到两前足尖连线的垂直距离b 和望远镜中观察到的标尺刻度值的变化量n。
7. 重复步骤5和6,进行多次测量,记录数据。
8. 使用逐差法处理实验数据,计算杨氏模量的平均值。
五、数据处理1. 根据公式 E = 2δlb/Slb,计算杨氏模量E,其中δ为砝码质量,l为钢丝长度,b为光杠杆后足到两前足尖连线的垂直距离,S为钢丝截面积。
2. 计算不确定度,根据公式ΔE = Δδ/2δ + Δl/l + Δb/b + ΔS/S,其中Δδ、Δl、Δb、ΔS分别为δ、l、b、S的不确定度。
3. 根据计算结果,分析实验误差来源,讨论实验结果与理论值的差异。
六、实验结果与分析1. 通过实验,我们测定了钢丝的杨氏模量,计算结果为 E =2.02×10^5 MPa。
杨氏模量实验报告开展实验自然要写实验报告,杨氏模量实验报告怎样写呢?那么,下面是给大家整理收集的杨氏模量实验报告相关范文,仅供参考。
杨氏模量实验报告1【实验目的】1.1.掌握螺旋测微器的使用方法。
2.学会用光杠杆测量微小伸长量。
3.学会用拉伸法金属丝的杨氏模量的方法。
【实验仪器】杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺),水准器,钢卷尺,螺旋测微器,钢直尺。
1、金属丝与支架(装置见图1):金属丝长约0.5米,上端被加紧在支架的上梁上,被夹于一个圆形夹头。
这圆形夹头可以在支架的下梁的圆孔内自由移动。
支架下方有三个可调支脚。
这圆形的气泡水准。
使用时应调节支脚。
由气泡水准判断支架是否处于垂直状态。
这样才能使圆柱形夹头在下梁平台的圆孔转移动时不受摩擦。
2、光杠杆(结构见图2):使用时两前支脚放在支架的下梁平台三角形凹槽内,后支脚放在圆柱形夹头上端平面上。
当钢丝受到拉伸时,随着圆柱夹头下降,光杠杆的后支脚也下降,时平面镜以两前支脚为轴旋转。
图1 图2 图33、望远镜与标尺(装置见图3):望远镜由物镜、目镜、十字分划板组成。
使用实现调节目镜,使看清十字分划板,在调节物镜使看清标尺。
这是表明标尺通过物镜成像在分划板平面上。
由于标尺像与分划板处于同一平面,所以可以消除读书时的视差(即消除眼睛上下移动时标尺像与十字线之间的相对位移)。
标尺是一般的米尺,但中间刻度为0。
【实验原理】1、胡克定律和杨氏弹性模量固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。
如果外力后仍有残余形变,这种形变称为塑性形变。
应力:单位面积上所受到的力(F/S)。
应变:是指在外力作用下的相对形变(相对伸长DL/L)它反映了物体形变的大小。
用公式表达为: (1)2、光杠杆镜尺法测量微小长度的变化在(1)式中,在外力的F的拉伸下,钢丝的伸长量DL是很小的量。
用一般的长度测量仪器无法测量。
在本实验中采用光杠杆镜尺法。
杨氏模量测量实验报告一、实验目的1、学会用拉伸法测量金属丝的杨氏模量。
2、掌握光杠杆放大法测量微小长度变化的原理和方法。
3、学会使用游标卡尺、螺旋测微器等长度测量仪器。
4、学习数据处理和误差分析的方法。
二、实验原理1、杨氏模量杨氏模量是描述固体材料抵抗形变能力的物理量。
对于一根长度为L、横截面积为 S 的均匀金属丝,在受到沿长度方向的拉力 F 作用时,伸长量为ΔL。
根据胡克定律,在弹性限度内,应力(F/S)与应变(ΔL/L)成正比,比例系数即为杨氏模量 Y,其表达式为:Y =(F/S) /(ΔL/L) = FL /(SΔL)2、光杠杆放大原理光杠杆是一个附有三个尖足的平面镜,前两尖足放在平台的沟内,后尖足置于待测金属丝的测量端面上。
当金属丝伸长时,光杠杆后尖足随之下降,反射镜转动一个小角度θ,使反射光线偏转2θ。
通过望远镜和标尺可以测量出光线在标尺上移动的距离 n,从而计算出金属丝的伸长量ΔL。
设光杠杆常数(两前尖足间距离)为 b,镜面到标尺的距离为 D,则有:ΔL = nD / 2b三、实验仪器杨氏模量测量仪、光杠杆、望远镜及标尺、螺旋测微器、游标卡尺、砝码、待测金属丝等。
四、实验步骤1、仪器调节(1)调节杨氏模量测量仪的底座水平,使金属丝铅直。
(2)将光杠杆放在平台上,使其前两尖足位于平台的沟槽内,后尖足置于金属丝的测量端面上,调整光杠杆平面镜与平台垂直。
(3)调整望远镜和标尺的位置,使望远镜与平面镜等高,且望远镜的光轴与平面镜中心等高。
通过望远镜目镜看清十字叉丝,然后调节望远镜的焦距,直到能清晰地看到标尺的像。
2、测量金属丝的长度 L用米尺测量金属丝的有效长度 L,测量多次,取平均值。
3、测量金属丝的直径 d用螺旋测微器在金属丝的不同位置测量直径 d,测量多次,取平均值。
4、测量光杠杆常数 b用游标卡尺测量光杠杆两前尖足间的距离b,测量多次,取平均值。
5、测量望远镜到标尺的距离 D用米尺测量望远镜到标尺的距离 D。
杨氏弹性模量的测定实验报告一、实验目的1、学习用拉伸法测定金属丝的杨氏弹性模量。
2、掌握用光杠杆法测量微小长度变化的原理和方法。
3、学会使用望远镜、标尺、螺旋测微器等测量长度的仪器。
4、学会用逐差法处理实验数据。
二、实验原理1、杨氏弹性模量杨氏弹性模量是描述固体材料抵抗形变能力的物理量。
设金属丝的原长为$L$,横截面积为$S$,在外力$F$ 的作用下伸长量为$\Delta L$,根据胡克定律,在弹性限度内,应力($F/S$)与应变($\Delta L/L$)成正比,其比例系数即为杨氏弹性模量$E$,数学表达式为:$E =\frac{F \cdot L}{S \cdot \Delta L}$2、光杠杆原理光杠杆装置由一个平面镜及固定在其一端的三足支架组成,三足尖构成等腰三角形。
当金属丝伸长时,光杠杆的后足随之下降,平面镜绕前足转动一个微小角度$\theta$,从而使反射光线偏转一个较大的角度$2\theta$。
通过望远镜和标尺可以测量出标尺像的位移$n$,设光杠杆前后足间距为$b$,镜面到标尺的距离为$D$,则有:$\Delta L =\frac{n \cdot b}{2D}$将上式代入杨氏弹性模量的表达式,可得:$E =\frac{8FLD}{S\pi d^2 n b}$其中,$d$ 为金属丝的直径。
三、实验仪器杨氏模量测定仪、光杠杆、望远镜及标尺、螺旋测微器、游标卡尺、砝码、米尺等。
四、实验步骤1、调节仪器(1)调节杨氏模量测定仪底座的水平调节螺丝,使立柱铅直。
(2)将光杠杆放在平台上,使平面镜与平台垂直,三足尖位于同一水平面,且三足尖与平台的接触点构成等边三角形。
(3)调节望远镜,使其与光杠杆平面镜等高,且望远镜光轴与平面镜中心等高。
然后通过望远镜目镜看清十字叉丝,再将望远镜对准平面镜,调节目镜和物镜,直至能在望远镜中看到清晰的标尺像。
(4)调节标尺的位置,使其零刻度线与望远镜中十字叉丝的横线重合。
光杠杆法测量杨氏模量实验报告实验名称:光杠杆法测量杨氏模量实验目的:通过光杠杆法测量棒状试样的杨氏模量,掌握光杠杆法测量杨氏模量的原理和方法,并了解杨氏模量的概念。
实验原理:光杠杆法是利用对光线的反射和折射现象,间接测量材料的机械性质的一种方法。
在能够发生光弹性和弹性折射现象的材料中,棒状样品在光杠杆上悬挂,试样一端受到恒定的拉力,另一端受到反作用力,一般通过光学仪器观测两端偏转角度来计算试验数据。
杨氏模量是衡量材料刚性和弹性的一个重要的物理量。
它定义为材料的纵向应力与纵向应变的比值,在弹性极限内常数不变,纵向应力和纵向应变呈线性关系。
杨氏模量可以通过拉伸实验或弯曲实验来测量,也可以通过光杠杆法来测量。
实验器材:光杠杆、光源、目镜、光学平台、薄膜压力传感器、电子天平、数显千分尺、计算机。
实验步骤及计算:1. 将试样的长度、直径测量好,并计算出试样的平均直径,然后根据密度、长度、直径计算出试样质量。
2. 将试样安装在光杠杆的中间位置,并调整光源、目镜和光学平台的位置,使其对准光杠杆。
3. 通过调整光源的位置,确定光线的入射角等,保证取得清晰的干涉横纹。
4. 在试样两端各安装一个薄膜压力传感器,以测量施加在试样两端的拉力大小。
5. 先在试样两端施加比较小的拉力,待至稳定后,再逐步增大拉力,每隔1N测量一次拉力值。
6. 同时记录下光杠杆上各角度的读数,注意测量时不要让试样过度弯曲。
7. 对测量到的数据进行处理,计算出试样的杨氏模量E。
实验数据:试样密度:7900 kg/m³试样长度:0.7608 m试样直径:0.0118 m试样质量:0.2533 kg拉力(N)$θ_1$(度)$θ_2$(度)平均偏转角度(度) 1 3.21 3.20 3.205 2 6.15 6.14 6.145 3 9.10 9.09 9.095 4 12.07 12.06 12.065 5 15.03 15.01 15.02 6 17.99 17.97 17.98 7 20.96 20.94 20.95 8 23.91 23.90 23.905 9 26.87 26.86 26.865 10 29.83 29.82 29.825根据实验数据,利用公式:$E = \frac{FL}{4d^2θ}$其中,F为试样两端的拉力,L为试样长度,d为试样平均直径,θ为平均偏转角度。
杨氏模量实验报告杨氏模量实验报告1【实验目的】1.1.掌握螺旋测微器的使用方法。
2.学会用光杠杆测量微小伸长量。
3.学会用拉伸法金属丝的杨氏模量的方法。
【实验仪器】杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺),水准器,钢卷尺,螺旋测微器,钢直尺。
1、金属丝与支架(装置见图1):金属丝长约0.5米,上端被加紧在支架的上梁上,被夹于一个圆形夹头。
这圆形夹头可以在支架的下梁的圆孔内自由移动。
支架下方有三个可调支脚。
这圆形的气泡水准。
使用时应调节支脚。
由气泡水准判断支架是否处于垂直状态。
这样才能使圆柱形夹头在下梁平台的圆孔转移动时不受摩擦。
2、光杠杆(结构见图2):使用时两前支脚放在支架的下梁平台三角形凹槽内,后支脚放在圆柱形夹头上端平面上。
当钢丝受到拉伸时,随着圆柱夹头下降,光杠杆的后支脚也下降,时平面镜以两前支脚为轴旋转。
图1图2图33、望远镜与标尺(装置见图3):望远镜由物镜、目镜、十字分划板组成。
使用实现调节目镜,使看清十字分划板,在调节物镜使看清标尺。
这是说明标尺通过物镜成像在分划板平面上。
由于标尺像与分划板处于同一平面,所以可以消除读书时的视差(即消除眼睛上下移动时标尺像与十字线之间的相对位移)。
标尺是一般的米尺,但中间刻度为0。
【实验原理】1、胡克定律和杨氏弹性模量固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。
如果外力后仍有剩余形变,这种形变称为塑性形变。
应力:单位面积上所受到的力(F/)。
应变:是指在外力作用下的相对形变(相对伸长DL/L)它反映了物体形变的大小。
用公式表达为:(1)2、光杠杆镜尺法测量微小长度的变化在(1)式中,在外力的F的拉伸下,钢丝的伸长量DL是很小的量。
用一般的长度测量仪器无法测量。
在本实验中采用光杠杆镜尺法。
初始时,平面镜处于垂直状态。
标尺通过平面镜反射后,在望远镜中呈像。
那么望远镜可以通过平面镜观察到标尺的像。
望远镜中十字线处在标尺上刻度为当钢丝下降DL时,平面镜将转动q角。
竭诚为您提供优质文档/双击可除光杠杆法测杨氏模量实验报告篇一:杨氏模量实验报告南昌大学物理实验报告实验名称:学院:机电工程学院专业班级:能源与动力工程152学生姓名:王启威学号:5902615035实验地点:106座位号:实验时间:第九周星期一下午4点开始篇二:金属材料杨氏模量的测定实验报告浙江中医药大学学生物理实验报告实验名称金属材料杨氏模量的测定学院信息技术学院专业医学信息工程班级一班报告人学号同组人学号同组人学号同组人学号理论课任课教师实验课指导教师实验日期20XX年3月2日报告日期20XX年3月3日实验成绩批改日期浙江中医药大学信息技术学院物理教研室篇三:大学物理实验-拉伸法测钢丝的杨氏模量(已批阅) 系学号姓名日期实验题目:用拉伸法测钢丝的杨氏模量13+39+33=85实验目的:采用拉伸法测定杨氏模量,掌握利用光杠杆测定微小形变地方法。
在数据处理中,掌握逐差法和作图法两种数据处理的方法实验仪器:杨氏模量测量仪(包括光杠杆,砝码,望远镜,标尺),米尺,螺旋测微计。
实验原理:在胡克定律成立的范围内,应力F/s和应变ΔL/L之比满足e=(F/s)/(ΔL/L)=FL/(sΔL)其中e为一常量,称为杨氏模量,其大小标志了材料的刚性。
根据上式,只要测量出F、ΔL/L、s就可以得到物体的杨氏模量,又因为ΔL很小,直接测量困难,故采用光杠杆将其放大,从而得到ΔL。
实验原理图如右图:当θ很小时,其中l是光杠杆的臂??tanL/l,长。
由光的反射定律可以知道,镜面转过θ,反射光线转过2θ,而且有:tan2??2??故:?Ll?b(2D)bD,即是?L?bl(2D)那么e?2DLFslb,最终也就可以用这个表达式来确定杨氏模量e。
实验内容:1.调节仪器(1)调节放置光杠杆的平台F与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。
(2)调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。
用光杠杆镜尺法测定钢丝的杨氏弹性模量贾肖婵实验内容测定钢丝的杨氏弹性模量教学要求1. 掌握用光杠杆测量微小长度变化的方法,了解其应用。
2. 学习用逐差法处理实验数据。
实验器材杨氏模量测定仪,望远镜标尺架,光杠杆,标准砝码(1kg ),钢卷尺,游标卡尺,螺旋测微计,重垂等。
力作用于物体所引起的效果之一是使受力物体发生形变,物体的形变可分为弹性形变和塑性形变。
固体材料的弹性形变又可分为纵向、切变、扭转、弯曲,对于纵向弹性形变可以引入杨氏模量来描述材料抵抗形变的能力。
杨氏模量是表征固体材料性质的一个重要的物理量,是工程设计上选用材料时常需涉及的重要参数之一,一般只与材料的性质和温度有关,与其几何形状无关。
实验测定杨氏模量的方法很多,如拉伸法、弯曲法和振动法(前两种方法可称为静态法,后一种可称为动态法)。
本实验是用静态拉伸法测定金属丝的杨氏模量。
在研究的纵向弹性形变时,根据杨氏弹性模量的特点,为了计算材料内部各点应力和应变的方便,可将材料做成柱状。
因此,本实验中的样品为一根粗细均匀的细钢丝。
为了测量细钢丝的微小长度变化,实验中使用了光杠杆放大法,利用光杠杆不仅可以测量微小长度变化,也可测量微小角度变化和形状变化。
由于光杠杆放大法具有稳定性好、简单便宜、受环境干扰小等特点,在许多生产和科研领域得到广泛应用。
本实验可以在实验方法,数据处理,长度测量等方面使学员得到基本的训练。
实验原理一、杨氏弹性模量设细钢丝的原长L ,横截面积为S ,沿长度方向施力F 后,其长度改变ΔL ,则细钢丝上各点的应力为F/S ,应变为ΔL/L 。
根据胡克定律,在弹性限度内有S F =LL E ∆∙ (3-1) 则E =LL ∆S F (3-2) 比例系数E 即为杨氏弹性模量。
在国际单位制中其单位为牛顿/米2,记为N·M-2。
通过分析知,作用力可由实验中钢丝下端所挂砝码的重量来确定,原长(起始状态)可由米尺测量,钢丝的横截面积S ,可先用螺旋测微计测出钢丝直径d 后算出S =42d π (3-3)现在的问题是如何测量ΔL ?用米尺准确度太低,用游标卡尺和螺旋测微计呢,测量范围又不够(在此实验中,当L ≈1m时,F 每变化1kg 相应的ΔL 约为0.3mm)。
竭诚为您提供优质文档/双击可除光杠杆法测杨氏模量实验报告篇一:杨氏模量实验报告南昌大学物理实验报告实验名称:学院:机电工程学院专业班级:能源与动力工程152学生姓名:王启威学号:5902615035实验地点:106座位号:实验时间:第九周星期一下午4点开始篇二:金属材料杨氏模量的测定实验报告浙江中医药大学学生物理实验报告实验名称金属材料杨氏模量的测定学院信息技术学院专业医学信息工程班级一班报告人学号同组人学号同组人学号同组人学号理论课任课教师实验课指导教师实验日期20XX年3月2日报告日期20XX年3月3日实验成绩批改日期浙江中医药大学信息技术学院物理教研室篇三:大学物理实验-拉伸法测钢丝的杨氏模量(已批阅) 系学号姓名日期实验题目:用拉伸法测钢丝的杨氏模量13+39+33=85实验目的:采用拉伸法测定杨氏模量,掌握利用光杠杆测定微小形变地方法。
在数据处理中,掌握逐差法和作图法两种数据处理的方法实验仪器:杨氏模量测量仪(包括光杠杆,砝码,望远镜,标尺),米尺,螺旋测微计。
实验原理:在胡克定律成立的范围内,应力F/s和应变ΔL/L之比满足e=(F/s)/(ΔL/L)=FL/(sΔL)其中e为一常量,称为杨氏模量,其大小标志了材料的刚性。
根据上式,只要测量出F、ΔL/L、s就可以得到物体的杨氏模量,又因为ΔL很小,直接测量困难,故采用光杠杆将其放大,从而得到ΔL。
实验原理图如右图:当θ很小时,其中l是光杠杆的臂??tanL/l,长。
由光的反射定律可以知道,镜面转过θ,反射光线转过2θ,而且有:tan2??2??故:?Ll?b(2D)bD,即是?L?bl(2D)那么e?2DLFslb,最终也就可以用这个表达式来确定杨氏模量e。
实验内容:1.调节仪器(1)调节放置光杠杆的平台F与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。
(2)调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。
杨氏模量实验报告开展实验自然要写实验报告,杨氏模量实验报告怎样写呢?那么,下面是给大家整理收集的杨氏模量实验报告相关范文,仅供参考。
杨氏模量实验报告1【实验目的】1.1.把握螺旋测微器的使用方法。
2.学会用光杠杆丈量微小伸长量。
3.学会用拉伸法金属丝的杨氏模量的方法。
【实验仪器】杨氏模量测定仪(包括:拉伸仪、光杠杆、看远镜、标尺),水准器,钢卷尺,螺旋测微器,钢直尺。
1、金属丝与支架(装置见图1):金属丝长约0.5米,上端被加紧在支架的上梁上,被夹于一个圆形夹头。
这圆形夹头可以在支架的下梁的圆孔内自由移动。
支架下方有三个可调支脚。
这圆形的气泡水准。
使用时应调节支脚。
由气泡水准判定支架是否处于垂直状态。
这样才能使圆柱形夹头在下梁平台的圆孔转移动时不受摩擦。
2、光杠杆(结构见图2):使用时两前支脚放在支架的下梁平台三角形凹槽内,后支脚放在圆柱形夹头上端平面上。
当钢丝受到拉伸时,随着圆柱夹头下降,光杠杆的后支脚也下降,时平面镜以两前支脚为轴旋转。
图1 图2 图33、看远镜与标尺(装置见图3):看远镜由物镜、目镜、十字分划板组成。
使用实现调节目镜,使看清十字分划板,在调节物镜使看清标尺。
这是表明标尺通过物镜成像在分划板平面上。
由于标尺像与分划板处于同一平面,所以可以消除读书时的视差(即消除眼睛上下移动时标尺像与十字线之间的相对位移)。
标尺是一般的米尺,但中间刻度为0。
【实验原理】1、胡克定律和杨氏弹性模量固体在外力作用下将发生形变,假如外力撤往后相应的形变消失,这种形变称为弹性形变。
假如外力后仍有残余形变,这种形变称为塑性形变。
应力:单位面积上所受到的力(F/S)。
应变:是指在外力作用下的相对形变(相对伸长DL/L)它反映了物体形变的大小。
用公式表达为:(1)2、光杠杆镜尺法丈量微小长度的变化在(1)式中,在外力的F的拉伸下,钢丝的伸长量DL是很小的量。
用一般的长度丈量仪器无法丈量。
在本实验中采用光杠杆镜尺法。
一、实验目的1. 理解杨氏模量的概念及其在材料力学中的重要性。
2. 掌握使用光杠杆法测量微小形变的方法。
3. 学习利用胡克定律和光杠杆原理计算杨氏模量。
4. 熟悉逐差法和作图法在数据处理中的应用。
二、实验原理杨氏模量(E)是衡量材料在弹性范围内抵抗形变能力的物理量,定义为应力(σ)与应变(ε)的比值,即 E = σ/ε。
在本实验中,通过测量钢丝在拉伸力作用下的形变量和所受拉力,根据胡克定律计算杨氏模量。
实验原理基于以下公式:E = (F L) / (S ΔL)其中:- F 为钢丝所受的拉力;- L 为钢丝的原始长度;- S 为钢丝的横截面积;- ΔL 为钢丝的形变量。
由于钢丝的形变量ΔL 很小,难以直接测量,因此采用光杠杆法进行放大测量。
光杠杆法利用光杠杆的放大原理,将微小的形变量转换为可测量的角度变化,从而提高测量的精度。
三、实验仪器1. 杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺)2. 砝码3. 千分尺4. 米尺5. 光杠杆支架6. 望远镜支架7. 计算器四、实验步骤1. 将杨氏模量测定仪放置在平稳的实验台上,调整望远镜和标尺的相对位置,使望远镜能够观察到标尺的刻度。
2. 将钢丝固定在拉伸仪上,确保钢丝处于垂直状态。
3. 在钢丝上施加不同大小的拉力,利用砝码进行测量。
4. 观察光杠杆平面镜在望远镜中的位置变化,记录相应的角度值。
5. 利用千分尺测量钢丝的直径,计算横截面积 S。
6. 记录钢丝的原始长度 L。
7. 根据实验数据,利用逐差法和作图法处理数据,计算杨氏模量 E。
五、实验结果与分析1. 根据实验数据,绘制 F-ΔL 图像,观察其线性关系。
2. 利用逐差法计算钢丝的形变量ΔL,计算平均形变量ΔL_avg。
3. 计算钢丝的横截面积 S 和原始长度 L。
4. 根据公式 E = (F L) / (S ΔL),计算杨氏模量 E。
六、实验结论通过本次实验,成功测量了钢丝的杨氏模量,验证了胡克定律在弹性范围内的适用性。
南昌大学物理实验报告课程名称:大学物理实验实验名称:杨氏模量的测量学院:信息工程学院专业班级:电子信息类165学生姓名:肖绍斌学号:6110116142实验地点:基础实验大楼座位号:25实验时间:第五周星期三8、9、10节杨氏弹性模量测定实验报告一、摘要弹性模量是描述材料形变与应力关系的重要特征量,是工程技术中常用的一个参数。
在实验室施加的外力使材料产生的变形相当微小,难以用肉眼观察,同时过大的载荷又会使得材料发生塑形变形,所以要通过将微小变形放大的方法来测量。
本实验通过光杠杆将外力产生的微小位移放大,从而测量出杨氏弹性模量,具有较高的可操作性。
二、实验仪器弹性模量测定仪(包括:细钢丝、光杠杆、望远镜、标尺和拉力测量装置);钢卷尺、螺旋测微器、游标卡尺。
三、实验原理(1)杨氏弹性模量定义式任何固体在外力作用下都要发生形变,最简单的形变就是物体受外力拉伸(或压缩)时发生的伸长(或缩短)形变。
设金属丝的长度为L ,截面积为S ,一端固定,一端在伸长方向上受力为F ,伸长为△L 。
定义:物体的相对伸长LL∆=ε为应变, 物体单位面积上的作用力SF=σ为应力。
根据胡克定律,在物体的弹性限度内,物体的应力与应变成正比,即LL E S F ∆= 则有:LS FLE ∆=式中的比例系数E 称为杨氏弹性模量(简称弹性模量)。
实验证明:弹性模量E 与外力F 、物体长度L 以及截面积的大小均无关,而只取决定于物体的材料本身的性质。
它是表征固体性质的一个物理量。
对于直径为D 的圆柱形钢丝,其弹性模量为:LD FLE ∆=24π根据上式,测出等号右边各量,杨氏模量便可求得。
式中的F 、D 、L 三个量都可用一般方法测得。
唯有L ∆是一个微小的变化量,用一般量具难以测准。
故而本实验采用光杠杆法进行间接测量。
(2)光杠杆放大原理光杠杆测量系统由光杠杆反射镜、倾角调节架、标尺、望远镜和调节反射镜组成。
实验时,将光杠杆两个前足尖放在弹性模量测定仪的固定平台上,后足尖放在待测金属丝的测量端面上。
用光杠杆法测钢丝的杨氏模量报告(共8篇)
1. 实验目的
使用光杠杆法测量钢丝的杨氏模量,并了解光杠杆法的基本原理和应用。
2. 实验原理
光杠杆法是通过将钢丝放在水平方向和竖直方向的两种受力状态下测量其拉伸变形的方法。
在光杠杆法中,将悬挂钢丝的弹性形变传递给光杠杆,再通过光纤传感器测量光杠杆的折射量,从而得到钢丝的受力和变形量。
根据胡克定律,杨氏模量可用以下公式计算:
E=(FL)/(AΔL)
其中,E为杨氏模量,F为钢丝所受拉力,L为钢丝长度,A为钢丝横截面积,ΔL为钢丝的伸长量。
3. 实验步骤
1) 将光杠杆立在光电传感器上,并通过电缆将传感器与计算机相连。
2) 调整光线和光杠杆,使其光斑在水平方向上能够落在钢丝的一端。
3) 用夹子固定被测钢丝的另一端,并用量程为1g的秤直接挂载在钢丝上,记录其重量。
4) 逐渐拉伸钢丝,每次增加适量的载荷,直到钢丝断裂为止。
5) 在每次加载后,记录光杠杆折射量。
6) 重复以上步骤测量竖直方向的受力和变形,计算得到钢丝的杨氏模量。
4. 实验结果与分析
通过实验测量,得到钢丝承受压力和变形的数据,如下:
加载量(g)光杠杆折射量(mm)竖直方向折射量(mm)
0 0 0
5 0.102 0.186
10 0.202 0.378
15 0.296 0.582
20 0.392 0.798
25 0.498 1.026
根据以上数据,利用胡克定律计算钢丝的杨氏模量如下:
FL/AΔL= E
F=mg (其中m为钢丝的质量,g为重力加速度)
钢丝的直径d= 0.5mm,面积A= πd²/4= 0.1963mm²
水平方向下:
F= 0.030g,ΔL=0.498mm,L=11.59cm
E= (0.030g×9.8m/s²×11.59cm)/(0.1963mm²×0.498mm)= 113.86GPa
通过实验得到的杨氏模量值十分接近,说明实验严密,数据准确可靠。
5. 实验应用
光杠杆法能够有效地测量钢丝等轻质材料的杨氏模量,广泛应用于材料科学、机械制造、航空航天等领域。
另外,由于光杠杆法不需要物理接触,对样品的破坏非常小,因此适用于对昂贵材料的研究。