杨氏模量实验报告模版
- 格式:pdf
- 大小:606.27 KB
- 文档页数:8
杨氏模量测定(横梁弯曲法)、实验目的1. 学习用弯曲法测量金属的杨氏模量2. 学习微小位移测量方法二、实验仪器JC-1读数显微镜待测金属片砝码片若干口三、实验原理宽度为b,厚度为a,有效长度为d的棒在相距dx的、02两点上横断面,在棒弯曲前相互平行,弯曲后则成一小角度dr,棒的下半部分呈拉伸状态,而上半部分呈压缩状态,棒的中间有薄层虽然弯曲但长度不变。
现在来计算一下与中间层相距为y ,厚度为dy,形变前长为dx的一段,弯曲后伸长了yd,,由胡克定律可计算它所到的拉力dF :对中心薄层所产生的力矩d& 2 dM = Eb y2dydx整个横断面产生力矩为:2 d -y dy =2Eb — sdx [3 一1 如果使得棒弯曲的外力作用在棒有效长度的中点上,那么棒的两端分别施加mg,才2一1 -能使棒平衡。
棒上距离中点为x,长度为dx的一段,由于mg力的作用产生弯曲下降:待测金属片支撑架可挂砝码片的刀dFdS 二dF = Eb —dS 二bdydxydyd a/2M =Eb一dx 12 dxo(d棒处于平衡状态时,有外力(d -mg 对该处产生的力矩1 mg — _ x2 2 122应该等于该处横断 面弯曲所产生的力矩。
1mg 丄 Ea 3b 巴二2 、、2 丿 12 dx<2 d 日= 6mg 'dEa 'b J 2--x dx 啤y uEa 3b ^2二警 d X 2dXEa 3b 0——XI <2丿X 3㊁ Ea 3b 三 o _ mgd 3 -4Ea 3b上式整理可得:6mg因此只要测定外力 mg 使金属片弯曲伸长量 金属片的有效长度 d ,宽度b ,厚度a 就可以测出金属片的杨氏模量。
四、实验步骤 1. 2. 3. 4. 5. 6.用支架支撑好金属片,并在有效长度的中点上挂上带有挂砝码的刀口(一定得确保 刀口挂在中心位置处)。
调节好读数显微镜的目镜, 判断标准是调好的目镜可以清晰地看到分划板和十字叉 丝。
测量杨氏模量实验报告一、实验目的1、学会用拉伸法测量金属丝的杨氏模量。
2、掌握用光杠杆法测量微小长度变化的原理和方法。
3、学会使用望远镜、标尺和螺旋测微计等测量仪器。
4、学习数据处理和误差分析的方法。
二、实验原理杨氏模量是描述固体材料抵抗形变能力的物理量。
设一根长度为L、横截面积为 S 的金属丝,在受到沿长度方向的拉力 F 作用下伸长了ΔL。
根据胡克定律,在弹性限度内,应力(F/S)与应变(ΔL/L)成正比,比例系数即为杨氏模量 Y,其表达式为:\Y =\frac{FL}{S\Delta L}\由于金属丝的伸长量ΔL 很小,难以用常规的测量工具直接测量,本实验采用光杠杆法进行测量。
光杠杆是一个带有可旋转的平面镜的支架,其前足置于固定平台上,后足置于金属丝的测量端。
当金属丝伸长或缩短时,光杠杆的后足会随之升降,带动平面镜旋转一个微小角度θ。
通过望远镜观察经平面镜反射的标尺像,可以测量出标尺像的移动距离 n。
根据几何关系,有:\\tan\theta \approx \theta =\frac{n}{D}\其中 D 为光杠杆平面镜到标尺的距离。
又因为\(\Delta L =\frac{b}{2D}n\),其中 b 为光杠杆后足到两前足连线的垂直距离。
将\(\Delta L =\frac{b}{2D}n\)代入杨氏模量的表达式,可得:\Y =\frac{8FLD}{S\pi d^2 n b}\其中 d 为金属丝的直径。
三、实验仪器1、杨氏模量测量仪:包括底座、立柱、金属丝、光杠杆等。
2、望远镜及标尺:用于观测光杠杆反射的标尺像。
3、螺旋测微计:测量金属丝的直径。
4、游标卡尺:测量光杠杆后足到两前足连线的垂直距离 b 和金属丝的长度 L。
5、砝码若干:提供拉力。
四、实验步骤1、调整仪器调节杨氏模量测量仪底座水平,使金属丝竖直。
调整望远镜与光杠杆平面镜高度大致相同,使望远镜光轴与平面镜中心等高。
调节望远镜目镜,看清十字叉丝;调节望远镜物镜,使能清晰看到标尺的像。
第1篇一、实验背景杨氏模量(Young's Modulus)是材料力学中的一个重要物理量,它表征了材料在受力时抵抗形变的能力。
在工程实践中,杨氏模量是衡量材料刚度的重要指标之一,对材料的选择和结构设计具有重要意义。
本实验旨在通过实验方法测定金属材料的杨氏模量,并掌握相关实验原理和操作步骤。
二、实验原理1. 杨氏模量的定义杨氏模量(E)是指材料在弹性变形范围内,单位面积上所承受的应力与相应的应变之比。
其数学表达式为:E = σ / ε其中,σ为应力,ε为应变。
应力(σ)是指单位面积上的力,其数学表达式为:σ = F / A其中,F为作用在材料上的力,A为受力面积。
应变(ε)是指材料形变与原始长度的比值,其数学表达式为:ε = ΔL / L其中,ΔL为材料形变的长度,L为原始长度。
2. 胡克定律在弹性变形范围内,杨氏模量与应力、应变之间存在线性关系,即胡克定律:σ = Eε该定律表明,在弹性变形范围内,材料的应力与应变成正比。
3. 实验原理本实验采用拉伸法测定金属材料的杨氏模量。
具体实验步骤如下:(1)将金属样品固定在实验装置上,使其一端受到拉伸力F的作用。
(2)测量金属样品的原始长度L0和受力后的长度L。
(3)计算金属样品的形变长度ΔL = L - L0。
(4)根据胡克定律,计算应力σ = F / A,其中A为金属样品的横截面积。
(5)计算应变ε = ΔL / L0。
(6)根据杨氏模量的定义,计算杨氏模量E = σ / ε。
三、实验仪器1. 拉伸试验机:用于施加拉伸力F。
2. 样品夹具:用于固定金属样品。
3. 量具:用于测量金属样品的原始长度L0、受力后的长度L和形变长度ΔL。
4. 计算器:用于计算应力、应变和杨氏模量。
四、实验步骤1. 将金属样品固定在实验装置上,确保其牢固。
2. 调整拉伸试验机,使其施加一定的拉伸力F。
3. 测量金属样品的原始长度L0。
4. 拉伸金属样品,使其受力后的长度L。
大学物理实验金属杨氏模量实验报告一、实验目的1、学会用伸长法测量金属丝的杨氏模量。
2、掌握用光杠杆放大原理测量微小长度变化的方法。
3、学会用逐差法处理实验数据。
二、实验原理1、杨氏模量的定义杨氏模量是描述固体材料抵抗形变能力的物理量。
对于一根长度为L、横截面积为 S 的金属丝,在受到沿长度方向的拉力 F 作用时,伸长量为ΔL。
根据胡克定律,在弹性限度内,应力与应变成正比,即:\F/S = Y \times \Delta L/L\其中,Y 为杨氏模量。
2、光杠杆放大原理光杠杆是一个带有可旋转平面镜的支架。
将金属丝的微小伸长量ΔL 转化为光杠杆平面镜的转角θ,再通过测量平面镜反射光线在标尺上的移动距离Δn,就可以计算出微小伸长量ΔL。
根据几何关系,有:\\Delta L = b \times \Delta n / 2D \其中,b 为光杠杆前后脚的距离,D 为平面镜到标尺的距离。
三、实验仪器杨氏模量测量仪、光杠杆、望远镜、直尺、砝码、螺旋测微器、游标卡尺等。
四、实验步骤1、调整仪器(1)将杨氏模量测量仪的底座调水平,使金属丝竖直。
(2)调整光杠杆平面镜与平台垂直,望远镜与平面镜等高,并使望远镜水平对准平面镜。
2、测量金属丝长度 L用直尺测量金属丝的长度,重复测量三次,取平均值。
3、测量金属丝直径 d用螺旋测微器在金属丝的不同位置测量直径,共测量六次,取平均值。
4、测量光杠杆前后脚距离 b用游标卡尺测量光杠杆前后脚的距离,测量一次。
5、测量平面镜到标尺的距离 D用直尺测量平面镜到标尺的距离,测量一次。
6、加砝码测量依次增加砝码,每次增加相同质量,记录对应的标尺读数。
7、减砝码测量依次减少砝码,记录对应的标尺读数。
五、实验数据记录与处理1、原始数据记录(1)金属丝长度 L =______ cm(2)金属丝直径 d(单位:mm)|测量次数|1|2|3|4|5|6||||||||||直径|_____|_____|_____|_____|_____|_____|(3)光杠杆前后脚距离 b =______ cm(4)平面镜到标尺的距离 D =______ cm(5)砝码质量 m =______ kg|砝码个数|0|1|2|3|4|5|6|7|8||||||||||||增加砝码时标尺读数 n1(单位:cm)|_____|_____|_____|_____|_____|_____|_____|_____||减少砝码时标尺读数 n2(单位:cm)|_____|_____|_____|_____|_____|_____|_____|_____|2、数据处理(1)计算金属丝直径的平均值\d_{平均} =\frac{d_1 + d_2 +\cdots + d_6}{6}\(2)计算金属丝横截面积 S\S =\frac{\pi d_{平均}^2}{4}\(3)计算增加砝码时的伸长量Δn1\\Delta n_1 =\frac{n_1 n_0}{8} \(4)计算减少砝码时的伸长量Δn2\\Delta n_2 =\frac{n_8 n_7}{8} \(5)计算平均伸长量Δn\\Delta n =\frac{\Delta n_1 +\Delta n_2}{2} \(6)计算杨氏模量 Y\ Y =\frac{8mgLD}{\pi d_{平均}^2 b \Delta n} \3、不确定度计算(1)测量金属丝长度 L 的不确定度\\Delta L =\frac{\Delta L_1 +\Delta L_2 +\Delta L_3}{3} \(2)测量金属丝直径 d 的不确定度\\Delta d =\sqrt{\frac{\sum_{i=1}^6 (d_i d_{平均})^2}{6(6 1)}}\(3)测量光杠杆前后脚距离 b 的不确定度\\Delta b =\Delta b_1 \(4)测量平面镜到标尺的距离 D 的不确定度\\Delta D =\Delta D_1 \(5)计算伸长量Δn 的不确定度\\Delta \Delta n =\sqrt{\frac{\sum_{i=1}^8 (n_i \overline{n})^2}{8(8 1)}}\(6)计算杨氏模量 Y 的不确定度\\Delta Y = Y \sqrt{(\frac{\Delta L}{L})^2 +(\frac{2\Delta d}{d})^2 +(\frac{\Delta b}{b})^2 +(\frac{\Delta D}{D})^2 +(\frac{\Delta \Delta n}{\Delta n})^2} \4、实验结果表达\ Y = Y_{平均} \pm \Delta Y \六、误差分析1、测量误差(1)测量金属丝长度、直径、光杠杆前后脚距离、平面镜到标尺的距离时存在读数误差。
杨氏模量测量实验报告【实验名称】:杨氏模量测量实验【实验目的】:1.了解杨氏模量的定义和物理意义;2.掌握用实验方法测量杨氏模量的原理和步骤;3.熟练掌握实验仪器的使用方法和注意事项;4.学会分析处理实验数据,计算出被测物体的杨氏模量。
【实验仪器】:万能试验机、游标卡尺、数显卡尺、电子天平等。
【实验原理】:杨氏模量是描述物体抗拉性质的一个重要指标,它可以衡量物体在受到拉伸或压缩作用下的刚性程度。
在实验中,我们采用悬挂法来测量杨氏模量,具体步骤如下:1. 将被测物体悬挂在两个支点之间,保持水平,使其自由悬挂;2. 加上一定的负荷,在达到恒定的应力状态后,记录物体的长度变化量;3. 根据胡克定律,计算出物体所受的拉力大小,并根据形变和拉力的关系求出物体的杨氏模量。
【实验步骤】:1.准备工作(1)清洗被测物体表面,去除污垢和氧化层。
(2)使用游标卡尺或数显卡尺等测量被测物体的直径、长度等尺寸参数,并记录下来。
(3)悬挂被测物体到万能试验机的上夹具,保证其自由悬挂并水平。
2.实验操作(1)在万能试验机上加负荷,使被测物体达到恒定的应力状态。
(2)记录被测物体的长度变化量,并计算出拉力大小。
(3)根据拉力和形变的关系,求出被测物体的杨氏模量。
3.数据处理(1)根据实验所得数据,绘制出应力-应变曲线。
(2)通过斜率法或者曲线拟合法,求出被测物体的杨氏模量。
4.实验注意事项(1)掌握好实验仪器的使用方法,严格按照实验流程进行操作,以免发生意外。
(2)保持被测物体的表面光滑干净,避免影响实验结果。
(3)在实验过程中,需要注意对温度、湿度等因素的控制,以保证实验结果的准确性。
【实验结果】:本实验所测得被测物体的杨氏模量为XXX。
根据计算结果和应力-应变曲线,可以看出所测物体具有较好的抗拉性能和刚性特性。
报告编号:YT-FS-7377-42大学实验报告模板三篇(完整版)After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas.互惠互利共同繁荣Mutual Benefit And Common Prosperity大学实验报告模板三篇(完整版)备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。
文档可根据实际情况进行修改和使用。
篇一:大学物理实验报告格式实验名称:杨氏弹性模量的测定院专业学号姓名同组实验者20XX年月日实验名称一、实验目的。
二、实验原理。
三、实验内容与步骤。
四、数据处理与结果。
五、附件:原始数据****说明:第五部分请另起一页,将实验时的原始记录装订上,原始记录上须有教师的签名。
篇二:大学实验报告册模板实验课程名称开课学院理学院指导老师姓名学生姓名学生专业班级200— 200 学年第学期实验课程名称:实验课程名称:篇三:浙江大学实验报告模板专业:____姓名:____实验报告学号:____ 日期:____ 地点:____ 课程名称:_______指导老师:____成绩:____ 实验名称:_______实验类型:____同组学生姓名:____一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得实验名称:_______姓名:____学号:____这里填写您企业或者单位的信息Fill In The Information Of Your Enterprise Or Unit Here。
一、实验目的1. 了解杨氏模量的概念及其在材料力学中的应用。
2. 掌握杨氏模量的测定方法,即拉伸法。
3. 培养实验操作技能和数据处理能力。
二、实验原理杨氏模量(E)是描述材料在受到拉伸或压缩时抵抗形变的能力的物理量。
根据胡克定律,在弹性限度内,材料的相对伸长(或压缩)量与外力成正比,即:ΔL/L = F/S E其中,ΔL为材料的伸长量,L为材料的原始长度,F为施加在材料上的外力,S为材料的横截面积,E为杨氏模量。
本实验采用拉伸法测定杨氏模量,通过测量材料在拉伸过程中产生的伸长量,结合材料的原始长度和横截面积,计算出杨氏模量。
三、实验仪器与材料1. 杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺)2. 螺旋测微器3. 游标卡尺4. 钢直尺5. 金属丝(直径约为0.5mm)四、实验步骤1. 将金属丝一端固定在杨氏模量测定仪的拉伸仪上,另一端连接到重物托盘。
2. 调整螺栓,使金属丝处于铅直状态。
3. 使用游标卡尺测量金属丝的直径,并记录数据。
4. 将望远镜和标尺放置在光杠杆前方约1.2m处。
5. 调节望远镜和标尺,使标尺铅直,光杠杆平面镜平行于标尺。
6. 观察望远镜中的标尺像,记录初始像的位置。
7. 挂上重物,使金属丝产生一定的伸长量。
8. 观察望远镜中的标尺像,记录新的像的位置。
9. 计算金属丝的伸长量,并记录数据。
10. 重复步骤7-9,进行多次测量,取平均值。
五、数据处理与结果分析1. 计算金属丝的横截面积S,S = π (d/2)^2,其中d为金属丝直径。
2. 计算金属丝的相对伸长量ΔL/L,ΔL/L = ΔL/L0,其中L0为金属丝的原始长度,ΔL为金属丝的伸长量。
3. 根据公式E = F/S ΔL/L,计算杨氏模量E。
4. 计算多次测量的平均值,并求出标准偏差。
六、实验结果1. 金属丝直径d:0.48mm2. 金属丝原始长度L0:500mm3. 金属丝伸长量ΔL:0.5mm4. 金属丝横截面积S:0.185mm^25. 杨氏模量E:2.10×10^11 Pa七、结论通过本实验,我们成功地测定了金属丝的杨氏模量,结果为2.10×10^11 Pa。
杨氏模量的测定【实验目的】1. 掌握用光杠杆测量微小长度变化的原理和方法,了解其应用。
2. 掌握各种长度测量工具的选择和使用。
3. 学习用逐差法和作图法处理实验数据。
【实验仪器】MYC-1型金属丝杨氏模量测定仪(一套)、钢卷尺、米尺、螺旋测微计、重垂、砝码等。
【实验原理】 一、杨氏弹性模量设金属丝的原长L ,横截面积为S ,沿长度方向施力F 后,其长度改变ΔL ,则金属丝单位面积上受到的垂直作用力F/S 称为正应力,金属丝的相对伸长量ΔL/L 称为线应变。
实验结果指出,在弹性范围内,由胡克定律可知物体的正应力与线应变成正比,即LLYS F ∆= (1) 则LL SF Y ∆=(2) 比例系数Y 即为杨氏弹性模量。
在它表征材料本身的性质,Y 越大的材料,要使它发生一定的相对形变所需要的单位横截面积上的作用力也越大。
Y 的国际单位制单位为帕斯卡,记为Pa (1Pa =12m N ;1GPa =910Pa )。
本实验测量的是钢丝的杨氏弹性模量,如果钢丝直径为d ,则可得钢丝横截面积S42d S π=则(2)式可变为L d FLY ∆=24π (3)可见,只要测出式(3)中右边各量,就可计算出杨氏弹性模量。
式中L (金属丝原长)可由米尺测量,d (钢丝直径),可用螺旋测微仪测量,F (外力)可由实验中钢丝下面悬挂的砝码的重力F=mg 求出,而ΔL 是一个微小长度变化(在此实验中 ,当L ≈1m时,F 每变化1kg 相应的ΔL 约为0.3mm)。
因此,本实验利用光杠杆的光学放大作用实现对钢丝微小伸长量ΔL 的间接测量。
二、光杠杆测微小长度变化尺读望远镜和光杠杆组成如图2所示的测量系统。
光杠杆系统是由光杠杆镜架与尺读望远镜组成的。
光杠杆结构见图2(b )所示,它实际上是附有三个尖足的平面镜。
三个尖足的边线为一等腰三角形。
前两足刀口与平面镜在同一平面内(平面镜俯仰方位可调),后足在前两足刀口的中垂线上。