对智能变电站继电保护配置的分析
- 格式:doc
- 大小:36.50 KB
- 文档页数:5
220kV智能变电站继电保护及自动化分析
智能变电站继电保护及自动化是现代电力系统中的重要组成部分,它能够对电力系统进行可靠的安全保护和自动化控制。
本文将针对220kV智能变电站的继电保护和自动化进行分析。
继电保护是指针对电力系统中的故障情况进行保护动作的一种自动化系统。
在220kV 智能变电站中,继电保护系统主要包括主保护和备用保护两部分。
主保护设备通过对电路参数进行实时监测,一旦发现故障情况,就会触发动作保护,切断故障区域与系统其他部分的连接。
备用保护设备在主保护设备故障时,起到备份和补充的作用,保证系统的连续运行和可靠性。
自动化控制是指对电力系统中的操作进行自动化处理的一种手段。
在220kV智能变电站中,自动化控制系统主要包括监控、调度、数据采集和信息处理等功能。
通过现场监控设备的数据采集,自动化控制系统可以实时监测变电站的运行状态和装置参数,监控系统不仅能够提供变电站的运行状态,还能实现对设备的故障诊断和维护管理。
自动化控制系统还可以通过远程控制的方式,对变电站进行远程操作和控制,提高操作效率和安全性。
在220kV智能变电站中,继电保护和自动化控制紧密结合,互为支撑。
继电保护系统通过对电力系统中的故障情况进行监测和保护,保证变电站的安全运行;自动化控制系统通过对变电站的运行状态进行监控和控制,提高变电站的运行效率和可靠性。
智能变电站继电保护配置分析作者:李俊来源:《华中电力》2014年第04期摘要:智能变电站作为我国在电力方面新生力量,代表了一种新的发展趋势,可以预见的是,它还会有着更加广泛的运用。
在加大电力研究和创新发电方法的同时,我们时刻也不能忽视安全问题,安全是一切方案和生产过程顺利进行的保障。
本文针对智能变电站的继电保护配置,讨论了它的运行状况以及保护措施。
关键词:智能变电站;继电保护;配置一、智能变电站继电保护配置构造智能变电站是现代电网的重要组成部分,它对电能的输送有着统一协调的功能。
智能变电站主要分为两个部分:智能设备和智能高级应用。
智能设备作为变电站的基础,将一次设备和智能组件有机结合起来,而智能组件是由预测控制装置、安全装置、控制安全装置、状态监测装置、智能终端构成的,这几个元素可以推动一次设备稳定运行,因此智能组件也被称为二次设备。
智能组件在智能变电站的运行中有着重要的作用,数据不仅仅是传输的工具,也可以成为调度和解析的重要依据。
在分析数据的过程中,从变压器的监测结果可以判断出是否存在安全隐患以及异常参数。
智能变电站可以分为三个层次:现场间断层、中间网络通信层、后台操作层。
(一)过程层。
过程层通过监控电气量来实现对继电的保护,以交换机作为载体传递信息,还能检测设备运行参数。
(二)间隔层。
间隔层的作用是保护和控制设备,对间隔层的数据需要及时收集,以助于控制命令的下达和开展操作及其他功能。
间隔层起到一个过渡的作用。
(三)站控层。
站控层主要功能是及时汇总全站信息,对数据库保持更新,向间隔层和过程层传递指令。
具体构造如下图:二、智能变电站继电保护装置运行状况及改进措施智能变电站继电保护覆盖了许多环节,并且运行过程周围环境将会变得复杂。
一旦自身发生故障,将会对电力系统运行产生巨大的影响。
继电保护装置的设置可以提供一个相对稳定的运行环境,进而给人们用电提供更可靠的保障。
对于智能变电站继电保护装置的使用和维护需要按照相应的国家规范,提高其有效运行的可靠性。
智能变电站的继电保护措施分析智能变电站是指利用先进的信息技术和智能设备来实现对电力系统进行监测、控制和管理的新型电力设施。
相比传统变电站,智能变电站具有更高的安全性、可靠性和智能化程度。
继电保护是智能变电站中的重要组成部分,它起着对电力系统进行监测和保护的重要作用,保障系统的安全和稳定运行。
一、智能变电站继电保护的概念继电保护是指利用电气设备将电流、电压等参数信号转换成对应的继电保护信号,实现对电气设备进行监测和保护的技术手段。
在智能变电站中,继电保护不仅仅是简单的对电力设备进行监测和保护,而是实现了智能化、数字化、网络化等多种技术手段的融合,这使得继电保护系统更加灵活、智能和高效。
1. 智能化:智能变电站继电保护具有自学习、自适应、自调节的功能,能够根据电力系统的运行情况实时调整保护参数和逻辑,提高系统的响应速度和准确性。
2. 高可靠性:智能变电站继电保护系统采用了多重冗余、自动切换和自愈合等技术手段,提高了系统的可靠性和稳定性,确保了电力系统的安全运行。
3. 网络化:智能变电站继电保护系统能够实现与主站系统、远动设备等智能设备的联网通信,实现信息的共享和协同控制,提高了系统的整体运行效率。
4. 多功能化:智能变电站继电保护系统具有不仅仅是对电流、电压等参数进行保护,而且还能实现对故障诊断、设备状态监测、数据采集等多种功能的综合保护。
1. 智能变电站继电保护系统采用了先进的数字信号处理技术,能够实现对电流、电压等信号的高速采集和处理,提高了系统的响应速度和抗干扰能力。
2. 智能变电站继电保护系统采用了多种智能算法,能够实现对电力系统运行状态的在线监测和故障预警,及时发现并处理潜在的故障隐患。
4. 智能变电站继电保护系统采用了先进的人机交互技术,能够实现对继电保护系统的远程操作和监控,提高了系统的运行效率和可靠性。
1. 在未来,智能变电站继电保护系统将会向着更加智能化、自动化、自适应化的方向发展,实现对电力系统更加高效、可靠的保护。
智能变电站继电保护分析及异常情况处理摘要:自动化技术是高新技术当中普及率比较高的一种,将自动化技术和继电保护技术结合起来,是未来一段时间确保电力系统稳定运行的必然选择。
从实际情况来看,继电保护自动化技术在电力系统中的应用确实发挥了应有的作用,但是其具体的应用细节还不够清晰,这方面的研究,可谓是势在必行。
关键词:智能变电站;继电保护;异常情况处理引言变电站的自动化综合设计本质是为了提升变电站的安全性和可靠性,同时降低运行过程的风险,保障电能供应质量。
而通过功能组合和优化设计之后,能够借助先进的计算机技术和通信技术等强化系统的操作能力和判断能力。
近年来我国大多数变电站精密自动化改造阶段完成了二次回路综合设计,本次研究也将围绕二次继电保护改造工程当中的回路问题采取相应的技术检验和监控监测措施。
1智能变电站概述智能变电站一次基于传统变电站,使用数字平台,采用IEC61850标准,然后以通信规范和相关理论知识为参考信息,实现变电站内部信息与外部设备的共享与协作。
由于变电站的高度集成性,通过一些智能操作、通信以及运维集成,大大提高整个电力系统的运行质量和效率。
以网络通信技术为中心,还可以对电站设备进行实时控制,科学的运行管理可以提高整个变电站的效率,为电力企业的可持续发展做出贡献。
在运行过程下,智能变电站继电保护过程中存在一些危险,一次体现在:(1)当GOOSE保护装置的接收软件板出现问题时,例如漏投问题,保护装置将无法继续处理其他设备发送的GOOSE信号,这很容易导致拒动故障。
(2)如果保护装置的GOOSE漏投,则该装置不会将GOOSE信号发送到其他相关装置,也就是说无法发送命令来控制软压板。
(3)保护装置中的SV软压板也可能会出现漏投的问题,这个问题相应的合并单元将不会执行逻辑运算,同样保护装置将拒动或误动,无法正常工作。
(4)如果保护装置的软压板有漏投问题,则保护装置没有相应的功能。
(5)在实际工作中,如果开关中智能终端的检修压板不能正常工作,则仅当其处于保护工作状态时,才不会进行跳闸操作,否则可能导致严重事故。
智能变电站的继电保护方法分析作者:石勇石明山纪云博周杨来源:《文化产业》2016年第04期摘要:随着智能变电站的快速发展,各种新型电力设备数量不断增加,这对于继电保护装置设置的要求也越来越高,为了保护智能变电站的安全、稳定运行,必须加强继电保护设置,采用合适方法,充分发挥继电保护装置的重要作用,提高智能变电站的经济效益和社会效益。
故在本文中主要对智能变电站的继电保护方法进行了简单的分析与探讨。
关键词:智能变电站;继电保护;方法分析一、智能变电站中的继电保护电网系统中,智能变电站继电保护配置主要分为智能变电站过程层继电保护与变电站层继电保护。
首先,在电网系统中,智能变电站过程层继电保护配置主要是根据智能变电站过程层的一次设备情况,独立对于一次设备进行主保护的配置。
在根据智能变电站过程层一次设备情况进行继电保护配置时,对于智能变电站过程层一次设备主保护的配置需要分为两种。
一是在进行电网系统中,智能变电站过程层一次设备本身就是智能化设备的保护配置时,变电站的一次设备保护装置安装在变电站智能设备的内部;二是如果变电站的一次设备是老设备改造的,对于这样的变电站一次设备的主保护配置应该将保护设施以及合并器、测控等功能设备在一次设备附近进行就近安装,以保证智能变电站设备运行与维护工作便利。
在电网智能变电站中,过程层继电保护配置中的电网信息的采集与传输,整个智能变电站系统中都是通过以太网实现。
二、智能站繼电保护技术发展研究目前智能变电站继电保护信息的集成和共享给继电保护调试、检修工作带来了诸多的困难和不确定性,其调试检修工作量也完全不亚于常规变电站。
如智能站调试除了常规的保护功能测试外,增加诸多延时和同步性能的测试、软压板功能测试、检修机制测试、丢帧断链测试、光衰耗和光功率测试和网络测试等,且目前很多功能没有较好的测试手段或者无法测试,如网络风暴、交换机性能、涉多间隔保护装置数据同步测试。
对全站系统配置的验证,需要SCD 配置文件离线审查和现场调试相结合,很可能因某一参数设置没审查到或某一细微项目没调试到位而导致保护装置误动或拒动,另可能因人为原因导致最终保存的SCD配置文件与现场装置实际配置不一致,给后期检修、改扩建带来隐患。
智能变电站的继电保护措施分析智能变电站是在传统的变电站基础上融入了先进的信息通信技术和智能化控制系统的一种新型变电设施。
智能变电站采用了先进的继电保护措施,以确保电网的安全运行和保护设备的正常工作。
以下是对智能变电站继电保护措施的分析。
一、电流保护电流保护是智能变电站最基本的保护功能之一。
智能变电站采用了先进的电流传感器和数字化继电保护装置,能够对电流进行准确测量并进行相应的保护动作。
在发生短路故障或过负荷情况下,智能变电站能够及时切断故障电路,保护设备不受损坏。
二、电压保护电压保护是智能变电站对电网电压异常情况的保护措施。
智能变电站通过对电网电压进行实时监测和测量,对过高或过低的电压进行及时判断,并采取相应的保护动作,以保护设备免受电压异常引起的损坏。
三、差动保护差动保护是智能变电站对变压器、发电机等设备进行保护的一种重要手段。
智能变电站利用差动继电器对设备的输入和输出电流进行比较,当输入和输出电流之间存在差异时,判断为设备故障,及时切断设备电源,保护设备不受损坏。
六、跳闸保护跳闸保护是智能变电站在发生电力故障时保护设备的一种重要手段。
智能变电站能够通过相应的继电保护设备实现故障检测、故障定位和电路切除等功能,及时切断故障电路,保护设备和人员的安全。
七、通信保护智能变电站采用了先进的通信技术,能够与上级电网控制中心进行远程通信和监控。
通过与电网控制中心的通信,智能变电站能够实时获取电网信息和接收远程指令,及时判断和响应故障情况,以保证电网的安全运行和设备的正常工作。
智能变电站的继电保护措施采用了先进的电流保护、电压保护、差动保护、频率保护、过电流保护、跳闸保护和通信保护等技术手段,能够实时监测和保护电网的安全运行,保护设备免受损坏。
智能变电站的继电保护措施的应用,提高了变电站的自动化水平和运行效果,也为电网的安全稳定运行提供了重要保障。
对智能变电站继电保护配置的分析
【摘要】随着电力技术的不断发展,我国的智能电网技术以及智能电气设备都取得了较大的发展,在技术上取得了突破新的进步。
就目前我国的电力发展形势而言,智能变电站已经取代了传统的变电站,成为变电站发展和改革的一种趋势。
由于继电保护装置是智能变电站中一个非常重要的组成部分,因此对继电保护配置的研究也成为了人们关注的一个焦点,本文笔者结合自身工作经验,对智能变电站的继电保护配置的相关问题进行探讨和研究,希望能对相关方面的研究和发展有所帮助。
【关键词】智能变电站;继电保护配置;整定计算;最小灵敏度系数
1.前言
电力行业与人们的日常生活以及社会的经济发展息息相关,因此是国民经济中支柱产业之一。
所以,通过采取一定的措施和手段,保证输变电系统保持一种稳定、安全的运行状态至关重要。
现代社会,人们对电力的需求不断加大,同时经济发展的需求也对电力行业提出了更高的要求,所以智能变电站的提出了发展可以说是一种良好的趋势,因为这是我国电力行业走向智能化、信息化和数字化的一个重要标志。
但是智能变电站在运行的过程中很大程度上都依赖于其内部的继电保护配置,可以说没有继电保护配置,就没有智能变电站,因此,只有做好智能变电站的继电保护配置的维护工作,不断的加强继电保护配置工作的水平,这样才能保证整个智能变电站的安全稳定的运行。
2.智能变电站的继电保护配置概述
继电保护配置,是智能变电站中一个非常重要的组成部分,这一配置在保证智能变电站的正常运行以及提高整个智能变电站的整体运行效率上起着无可替代的作用。
正是因为继电保护配置独一无二的作用,所以我们才在继电保护配置实际运行的过程中不断的引入智能化的理念,从而使得智能变电站中的继电保护配置不断发展为智能化配置。
智能变电站,顾名思义,就是采取先进的、具备可靠性和集成环保性的智能化设备,并且结合数字化系统,为变电站注入新型的信息化思想,然后对整个变电站的数据进行及时、有效的采集、储存、测量、分类以及控制等,最终实现整个电力网络的网络化和智能化,实现信息共享。
智能变电站在我国的提出和发展,注定为我国的电力企业的进步注入了一股新鲜的动力,但是由于我国的智能变电站的起步较晚,因此,我国智能变电站的建设还处于一个研究和发展阶段,但是目前,智能变电站在运行过程中的层级性已经清晰的呈现出来了。
通常而言,智能变电站包括三层,分为过程层、间隔层以及变电站控制层。
其中,一次
设备以及各种智能化的组件构成了过程层,过程层主要担任整个变电站的电能分配以及电力的变换传输工作;间隔层主要负责变电站数据的传输;控制层主要负责对整个自动化系统以及其它几个系统的控制,通过对电力系统的控制实现整个变电站的数据采集、监控等工作。
而继电保护配置存在于这三个层之间的任一层,是对这几个层进行配置,进而保证这些层都可以运行在一种高效而稳定的状态之中,下面,笔者对继电保护配置进行详细的介绍。
3.智能变电站继电保护的主要任务
智能变电站的继电保护配置的任务会根据变电站的运行情况有不同的分类。
(1)按照保护对象分类,则继电保护的主要任务主要由以下两个部分组成:输电线路和主设备保护。
在这两个任务中,主设备主要包括发电机、变压器、母线、电抗器以及电容器;(2)按保护功能分类,导致智能变电站出现故障的原因是多方面的,包括内部原因和外部原因等,因此,根据保护功能的不同,继电保护可以分为短路故障保护和异常运行保护。
其中,在继电保护中其主导作用的是短路故障保护,又被称之为主保护、设备保护;异常运行保护根据异常情况的不同被分为电流保护、过负荷保护、失磁保护等[1];(3)按装置结构分类,主要分为数字保护、信号保护、计算保护等,总体而言,可以分为模拟式保护和数字式保护两个类别。
其中,机电型保护装置、晶体型保护装置以及集成电路型保护装置等都属于模拟式保护;而微型计算机保护装置、微处理保护装置等都属于数字式保护;(4)按动作原理分类,按照动作原理进行分类是从专业电力理论原理的角度出发的,主要分为过电流保护、过电压保护、功率方向保护、距离保护、差动保护、载波保护等。
从这些分类方法中我们可以看出继电保护的多样性和复杂性,因此对继电保护配置的研究仍然需要很长的路要走,还需要我们进行不断的探索和研究。
4.继电保护配置的整定计算
继电保护配置在运行的过程中,适应电力系统运行变化的能力是有限的,因此我们需要对各种继电保护给出一个整定值,编制出一个整定方案,整定方案一般而言都是按照电力系统的电压等级或是设备来编制的,同时,还需要按照继电保护的功能进行方案划分。
由于电力系统的运行不是一成不变的,所以继电保护方案也要按照电力系统的变化而进行及时的调整,如果继电保护配置的运行情况超出了预订的适应范围,那么我们就需要对全部或是部分的继电保护配置进行重新的镇定计算,编制出一个新的镇定方案,以满足电力系统的新的运行需求。
因此我们在这里就提到一个概念:继电保护灵敏性,继电保护灵敏性是指继电保护装置对于其保护范围内发生故障或不正常运行状态时的反映能力。
我们通常用继电保护灵敏性来
反映继电保护配置对于电力系统运行状态的适应程度,通常用最小灵敏度系数来表示:K r=I k/K gT K T K i I sb*r≥1.5[2]
其中,K r代表继电保护配置的灵敏度;I k代表智能变电站二次侧出口处最小两相短路电流,A;K gT代表变压器的组别系数,K T代表变压器的变压比;K i代表高压配电箱电流互感器的变流比;I sb*r代表瞬时过流继电器工作电流。
通过公式,我们可以计算出继电保护配置的最小灵敏度系数。
线路继电保护的配置及整定计算
保护分类保护类型组成元件计算条件最小灵敏度系数
带方向的电流或电压保护零序、负序方向
元件
按被保护区末端
金属性短路计算
2
发电机、变压器、线路及电动机纵联差动保护差电流元件按被保护区末端
金属性短路计算
2
主保护平行线路横差方
向和电流平衡保
护电压或电流启动
元件
电路两侧未断开
前,其中一侧保
护按线路中性点
金属性短路计算
2
母线完全差动保
护差电流元件按金属性短路计
算
2
距离保护距离启动元件按被保护区末端
金属性短路计算1.5
距离测量元件 1.3
电流保护和电压
保护电流和电压元件按被保护区末端
金属性短路计算
1.5
母线不完全差动
保护差电流元件按金属性短路计
算
1.5
平行线路横差方向和电流平衡保
护电流元件线路一侧断开
后,按另一侧对
端金属性短路计
算
1.5
主保护的个别元
件中性点非直接接
地保护
电流元件按被保护区末端
金属性短路计算
1.5
距离保护负序或零序增量
启动元件
按被保护区末端
金属性短路计算
4
平行线路横差方
向保护
零序方向元件线路两侧均为断
开前,其中一侧
按保护线路中间
金属性短路计算
4
线路一侧断开
后,另一侧保护
按对侧金属性短
路计算
2.5
后备保护电流保护和电压
保护电流、电压元件按相邻电力设备
和线路末端金属
性短路计算
1.2
该表中的灵敏度系数即为电力系统在不同的运行状态和运行条件之下所需的继电保护设备的最小灵敏度系数[3]。
5.结束语
综上所述,本文笔者主要对智能变电站的继电保护配置进行了分析了研究。
在智能变电站运行的过程中,继电保护配置起到了保驾护航的作用,同时继电保护配置也对提高变电站的运行效率起到非常重要的影响,目前国内对这方面的研究仍不是很成熟,因此还需要我们进行更深入的、进一步的探索和研究。
【参考文献】
[1]李锋,谢俊,兰金波,夏玉裕,钱国明. 智能变电站继电保护配置的展望和探讨[J]. 电力自动化设备,2012,02:122-126.
[2]解晓东. 智能变电站继电保护配置分析[D].山东大学,2013.
[3]王同文,谢民,孙月琴,沈鹏. 智能变电站继电保护系统可靠性分析[J]. 电力系统保护与
控制,2015,06:58-66.。