2019年河北省沧州市七年级上册期末数学试题(有答案)
- 格式:docx
- 大小:82.36 KB
- 文档页数:14
河北省沧州市七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共9题;共18分)1. (2分) (2019七上·台安月考) 下面四个数中,负数是()A . -7B . 0C . 0.3D . 42. (2分)(2017·日照模拟) 如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是()A .B .C .D .3. (2分)(2017·夏津模拟) 如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A . 90°B . 120°C . 160°D . 180°4. (2分)锐角加上锐角的和是()A . 锐角B . 直角C . 钝角D . 以上三种都有可能5. (2分)﹣2的相反数是()A . 2B . ﹣2C .D . -6. (2分) (2017·三亚模拟) 据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338600000亿次,数学338600000用科学记数法可表示为()A . 3.386×109B . 0.3386×109C . 33.86×107D . 3.386×1087. (2分)如图是一个长方体包装盒,则它的平面展开图是()A .B .C .D .8. (2分) (2016七上·工业园期末) 若∠A, ∠B互为补角,且∠A﹤∠B,则∠A的余角是()A . (∠A+∠B)B . ∠BC . (∠B-∠A)D . ∠A9. (2分)在一个平面内,任意三条直线相交,交点的个数最多有()A . 7个B . 6个C . 5个D . 3个二、填空题 (共6题;共8分)10. (1分)(2017·肥城模拟) 如图,甲、乙两渔船同时从港口O出发外出捕鱼,乙沿南偏东30°方向以每小时10海里的速度航行,甲沿南偏西75°方向以每小时10 海里的速度航行,当航行1小时后,甲在A处发现自己的渔具掉在乙船上,于是迅速改变航向和速度,仍以匀速沿南偏东60°方向追赶乙船,正好在B处追上.则甲船追赶乙船的速度为________海里/小时?11. (1分) (2016七上·卢龙期中) m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy=________.12. (1分) (2017七下·江苏期中) 若,则 =________。
河北沧州2019-2020年上学期七年级期末试卷数学本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1—10小题各3分,11—16小题各2分,每小题给出的四个选项中,只有一项符合题目要求。
)1.数字﹣1207000用科学记数法表示为()A.﹣ 1.207×106 B.﹣ 0.1207×107 C.1.207×106 D.﹣1.207×105 2.如图,该几何体的展开图是( )A. B. C. D.3.如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20°B.40°C.50°D.60°4.在下列式子ab3,﹣4x,﹣35abc,a,0,a﹣b,0.95,x+y3中,单项式有()A.5个B.6个C.7个D.8个5.下列方程中,以-1为解的方程是( )A.3x-2=2x B.4x-1=2x+3 C.5x-3=6x-2 D.3x+1=2x-16.下列说法错误的个数是()①单独一个数0不是单项式; ②单项式-a的次数为0;③多项式-a2+abc+1是二次三项式; ④-a2b的系数是1.A.1B.2C.3D.47.运用等式性质的变形,下面正确的是( ) A. 如果a =b ,那么a +c =b -c B. 如果a c =bc,那么a =b C. 如果a =b ,那么a c =bcD. 如果a =3,那么2a =23a8.若2x 2m y 3与 - 5xy 2n 是同类项,则|m -n|的值是( ) A.0 B.1C.7D.-19、下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线; ③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设; ④把弯曲的铁路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有( ) A . ①② B . ①③ C . ②④ D . ③④10、已知实数a ,b 在数轴上对应的点如图所示,则下列式子正确的是( )A.ab>0B.|a|>|b|C.a -b>0D.a+b>011.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( )A.-5x -1B.5x+1C.-13x -1D.13x+112.下列解方程过程中,变形正确的是( ) A.由2x -1=3得2x=3-1 B.由x4+1=3x+10.1+1.2得x 4+1=3x+101+12C.由-25x=26得x=- 2526 D.由x3-x 2=1得2x -3x=6 13.如图所示,下列说法错误的是( )A .∠1与∠2是同旁内角 B.∠1与∠3是同位角 C.∠1与∠5是内错角 D.∠1和∠6是同位角(第3题)(第10题)(第13题)14.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电量15万度.如果设上半年每月平均用电x度,则所列方程正确的是()A.6x+6(x﹣2000)=150000 B.6x+6(x+2000)=150000C.6x+6(x﹣2000)=15 D.6x+6(x+2000)=1515.某个体商贩在一次买卖中同时卖出两件上衣,每件售价均为135元,若按成本计算,其中一件盈利25%,一件亏本25%, 则在这次买卖中他()A.不赚不赔B.赚9元C.赔18元D.赚18元16.如图,甲乙两人同时沿着边长为30米的等边三角形,按逆时针的方向行走,甲从A以65米/分的速度,乙从B以71米/分的速度行走,当乙第一次追上甲时在等边三角形的()A.AB边上B.点B处C.BC边上D.AC边上卷II(非选择题,共78分)二、填空题(本大题4个小题,每小题3分,共12分。
沧州市人教版七年级上册数学期末试卷及答案百度文库一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( ) A .0.65×108 B .6.5×107 C .6.5×108 D .65×106 2.以下选项中比-2小的是( )A .0B .1C .-1.5D .-2.53.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线 C .垂线段最短 D .两点之间直线最短4.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π5.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( ) A .﹣9℃B .7℃C .﹣7℃D .9℃6.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或737.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个 8.下列四个数中最小的数是( ) A .﹣1 B .0 C .2 D .﹣(﹣1) 9.下列各数中,有理数是( )A 2B .πC .3.14D 3710.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( ) A .300-0.2x =60B .300-0.8x =60C .300×0.2-x =60D .300×0.8-x =6011.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3 B .若-2x=-2y ,则x=y C .若x ym m =,则x y = D .若x y =,则x y m m= 12.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( ) A .不盈不亏B .盈利 37.5 元C .亏损 25 元D .盈利 12.5 元二、填空题13.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.14. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm. 15.﹣213的倒数为_____,﹣213的相反数是_____. 16.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________17.分解因式: 22xy xy +=_ ___________18.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 19.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.20.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.21.五边形从某一个顶点出发可以引_____条对角线. 22.8点30分时刻,钟表上时针与分针所组成的角为_____度. 23.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.24.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______三、解答题25.如图,把△ABC 先向上平移3个单位长度,再向右平移2个单位长度,得到△A 1B 1C 1.(1)在图中画出△A 1B 1C 1,并写出点A 1、B 1、C 1的坐标; (2)连接A 1A 、C 1C ,则四边形A 1ACC 1的面积为______. 26.解方程:131142x x x +-+=- 27.先化简,再求值:22222(4)(322)(121)y xy x xy y x ---+---其中 x =-13,y =-2. 28.解方程:x ﹣2=23x + 29.计算:2×(﹣4)+18÷(﹣3)3﹣(﹣5).30.如图所示,OC 是AOD ∠的平分线,OE 是BOD ∠的平分线,65 25EOC DOC ∠=︒∠=,,求AOB ∠的度数.四、压轴题31.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC =,BE=;(2)当线段CE运动到点A在C、E之间时,①设AF长为x,用含x的代数式表示BE=(结果需化简.....);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.32.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板∠)的顶点与60角画出了直线EF,然后将一副三角板拼接在一起,其中45角(AOB∠)的顶点互相重合,且边OA、OC都在直线EF上.固定三角板COD不动,将(COD三角板AOB绕点O按顺时针方向旋转一个角度α,当边OB与射线OF第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 33.已知:A 、O 、B 三点在同一条直线上,过O 点作射线OC ,使∠AOC :∠BOC =1:2,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 按逆时针方向旋转至图2的位置,使得ON 落在射线OB 上,此时三角板旋转的角度为 度;(2)继续将图2中的三角板绕点O 按逆时针方向旋转至图3的位置,使得ON 在∠AOC 的内部.试探究∠AOM 与∠NOC 之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O 按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM 所在直线恰好平分∠BOC 时,时间t 的值为 (直接写结果).【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 详解:65 000 000=6.5×107. 故选B .点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.D解析:D【解析】【分析】根据有理数比较大小法则:负数的绝对值越大反而越小可得答案.【详解】根据题意可得:2.52 1.501-<-<-<<,故答案为:D.【点睛】本题考查的是有理数的大小比较,解题关键在于负数的绝对值越大值越小.3.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B. 4.D解析:D【解析】【分析】根据中点的定义及线段的和差关系可用a表示出AC、BD、AD的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案.【详解】∵AB a,C、D分别是AB、BC的中点,∴AC=BC=12AB=12a,BD=CD=12BC=14a,∴AD=AC+BD=34 a,∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94aπ,故选:D.【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.5.D解析:D【解析】【分析】这天的温差就是最高气温与最低气温的差,列式计算.【详解】解:该日的最高与最低气温的温差为8﹣(﹣1)=8+1=9(℃),故选:D.【点睛】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数,这是需要熟记的内容.6.A解析:A【解析】【分析】先求出方程的解,把x的值代入方程得出关于m的方程,求出方程的解即可.【详解】解:(x+3)2=4,x﹣3=±2,解得:x=5或1,把x=5代入方程mx+3=2(m﹣x)得:5m+3=2(m﹣5),解得:m=13,把x=﹣1代入方程mx+3=2(m﹣x)得:﹣m+3=2(1+m),解得:m=﹣1,故选:A.【点睛】本题考查了解一元一次方程的解的应用,能得出关于m的方程是解此题的关键.7.C解析:C【解析】【分析】根据垂直的定义和同角的余角相等分别计算后对各小题进行判断,由此即可求解.【详解】∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴∠AOB=∠COD,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确;∠AOB+∠COD不一定等于90°,故③错误;图中小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD一共6个,故④正确;综上所述,说法正确的是①②④.故选C.【点睛】本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.8.A解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.9.C解析:C【解析】【分析】根据有理数及无理数的概念逐一进行分析即可得.【详解】B. 是无理数,故不符合题意;C. 3.14是有理数,故符合题意;D.故选C.【点睛】本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键.10.D解析:D【解析】【分析】要列方程,首先根据题意找出题中存在的等量关系:售价-进价=利润60元,此时再根据等量关系列方程【详解】解:设进价为x元,由已知得服装的实际售价是300×0.8元,然后根据利润=售价-进价,可列方程:300×0.8-x=60故选:D【点睛】本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应弄清楚两点:(1)利润、售价、进价三者之间的关系; (2)打八折的含义.11.D解析:D 【解析】 【分析】等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可. 【详解】A. x=y 两边同时加3,可得到x+3=y+3,故A 选项正确;B. -2x=-2y 两边同时除以-2,可得到x=y ,故B 选项正确;C. 等式x ym m=中,m ≠0,两边同时乘以m 得x y =,故C 选项正确; D. 当m=0时,x y =两边同除以m 无意义,则x ym m=不成立,故D 选项错误; 故选:D . 【点睛】本题考查等式的变形,熟记等式的基本性质是解题的关键.12.D解析:D 【解析】 【分析】设盈利的计算器的进价为x ,则(160%)100x +=,亏损的计算器的进价为y ,则(120%)100y -=,用售价减去进价即可.【详解】解:设盈利的计算器的进价为x ,则(160%)100x +=,62.5x =,亏损的计算器的进价为y ,则(120%)100y -=,125y =,20062.512512.5--=元,所以这家商店盈利了12.5元.. 故选:D 【点睛】本题考查了一元一次方程的应用,找准等量关系列出方程是解题的关键.二、填空题13.10°. 【解析】 【分析】由对称性得:∠BPE=∠B′PE ,∠CPF=∠C′PF ,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,∴∠B′PE+∠C′PF=∠B′PC′+85°,∴2(∠B′PC′+85°)﹣∠B′PC′=180°,解得∠B′PC′=10°.故答案为:10°.【点睛】此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.14.2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8-6=2cm;当点C在线段AB的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.15.﹣ 2【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣2的倒数为﹣,﹣2的相反数是2.【点睛】本题考查的是相反数和倒数,解析:﹣37213【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣213的倒数为﹣37,﹣213的相反数是213.【点睛】本题考查的是相反数和倒数,熟练掌握两者的性质是解题的关键.16.6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,解析:6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考17.【解析】【分析】原式提取公因式xy ,即可得到结果.【详解】解:原式=xy (2y +1),故答案为:xy (2y +1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本 解析:xy(2y 1)+【解析】【分析】原式提取公因式xy ,即可得到结果.【详解】解:原式=xy (2y +1),故答案为:xy (2y +1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.18.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭ba b a a b a b a b a b=()()+⋅-+b a b a b a b b=1a b - 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.19.26,5,【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x 的值.【详解】若经过一次输入结果得131,则5x +1=131,解得x =26;若解析:26,5,45 【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x 的值.【详解】若经过一次输入结果得131,则5x +1=131,解得x =26;若经过二次输入结果得131,则5(5x +1)+1=131,解得x =5;若经过三次输入结果得131,则5[5(5x +1)+1]+1=131,解得x =45; 若经过四次输入结果得131,则5{5[5(5x +1)+1]+1}+1=131,解得x =−125(负数,舍去);故满足条件的正数x 值为:26,5,45. 【点睛】 本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x 的值.20.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=解析:(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.21.2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记解析:2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记知识点(从n 边形的一个顶点出发有(n−3)条对角线)是解此题的关键.22.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.23.4【解析】【分析】由题意可得,求解即可.【详解】解:解得故答案为:4【点睛】本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.解析:4【解析】【分析】由题意可得{}[]1,x x x x =+=,求解即可.【详解】解:{}[]323(1)25323x x x x x +=++=+=解得4x =故答案为:4【点睛】本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键. 24.①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概解析:①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.三、解答题25.(1)画图见解析,点A1(0,5)、B1(-1,2)、C1(3,2);(2)15.【解析】【分析】(1)将△ABC的三个顶点分别向上平移3个单位长度,然后再向右平移2个单位长度,连接各点,可以得到△A1B1C1,根据网格特点,找到各点横纵坐标即可找到△A1B1C1三个顶点的坐标;(2)四边形的面积可看成两个底为5,高为3的三角形的和,由三角形面积公式进行计算即可得.【详解】(1) △A1B1C1如图所示,点A1(0,5)、B1(-1,2)、C1(3,2);(2)四边形A 1ACC 1的面积为:11535322⨯⨯+⨯⨯=15, 故答案为:15.【点睛】 本题考查了作图——平移变换,四边形的面积,熟练掌握平移的性质以及网格的结构特征是解题的关键.26.x=-3【解析】【分析】方程去分母,去括号,移项合并,将x 系数化为1,即可求出解.【详解】去分母得,4+(1+3x )=4x-2(x-1),去括号得,4+1+3x=4x-2x+2,移项得,3x+2x-4x=2-4-1,合并同类项得,x=-3.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.27.化简得:原式=22961x y ++;26.【解析】【分析】先去括号,再合并同类项,然后代入数值.去括号时,注意括号里各项的符号变化,代值时,明确x 、y 所代替的数.【详解】 22222(4)(322)(121)y xy x xy y x ---+---=8y 2-2xy-3x 2+2xy-2y 2+12x 2+1=22961x y ++;当13x=-,2y=-时,原式=1+24+1=26.【点睛】解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.28.x=4【解析】【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】解:去分母得:3x﹣6=x+2,移项合并得:2x=8,解得:x=4.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.29.﹣323.【解析】【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:原式=﹣8﹣23+5=﹣323.【点睛】此题考查的是有理数的混合运算..熟记有理数混合运算法则是关键.30.130︒【解析】【分析】根据题意直接利用角平分线的性质得出∠AOD和∠BOD,进而求出AOB∠的度数.【详解】解:∠EOD=∠EOC-∠DOC=65°-25°=40°,∵OC是∠AOD的平分线,OE是∠BOD的平分线,∴∠AOD=2∠DOC=2⨯25°=50°,∠BOD=2∠EOD=2⨯40°=80°,∴∠AOB=∠AOD+∠BOD =50°+80°=130°.【点睛】本题主要考查角的运算,熟练运用角平分线的定义以及正确掌握角平分线的性质是解题关键.四、压轴题31.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t , =4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健32.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-. 解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.33.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB ,从而可得到问题的答案;(2)先求得∠AOC 的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON ,∠AOM=90°-∠AON ,然后求得∠AOM 与∠NOC 的差即可;(3)可分为当OM 为∠BOC 的平分线和当OM 的反向延长为∠BOC 的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.【详解】(1)由旋转的定义可知:旋转角=∠NOB=90°.故答案为:90°(2)∠AOM﹣∠NOC=30°.理由:∵∠AOC:∠BOC=1:2,∠AOC+∠BOC=180°,∴∠AOC=60°.∴∠NOC=60°﹣∠AON.∵∠NOM=90°,∴∠AOM=90°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.(3)如图1所示:当OM为∠BOC的平分线时,∵OM为∠BOC的平分线,∴∠BOM=∠BOC=60°,∴t=60°÷5°=12秒.如图2所示:当OM的反向延长为∠BOC的平分线时,∵ON为为∠BOC的平分线,∴∠BON=60°.∴旋转的角度=60°+180°=240°.∴t=240°÷5°=48秒.故答案为:12秒或48秒.【点睛】本题主要考查的是三角形的综合应用,解答本题主要应用了旋转的定义、直角三角形的定义以及角的和差计算,求得三角板旋转的角度是解题的关键.。
沧州市人教版(七年级)初一上册数学期末测试题及答案一、选择题 1.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°2.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 3.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .4.下列每对数中,相等的一对是( )A .(﹣1)3和﹣13B .﹣(﹣1)2和12C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)35.计算(3)(5)-++的结果是( )A .-8B .8C .2D .-26.将图中的叶子平移后,可以得到的图案是()A .B .C .D .7.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28 B .30 C .32 D .348.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )A .1601603045x x -= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+= 9.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+510.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .111.估算15在下列哪两个整数之间( )A .1,2B .2,3C .3,4D .4,512.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( )A .45010⨯B .5510⨯C .6510⨯D .510⨯二、填空题13.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____.14.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元.15.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.16.计算:()222a -=____;()2323x x ⋅-=_____.17.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______.18.52.42°=_____°___′___″.19.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.20.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)21.钟表显示10点30分时,时针与分针的夹角为________.22.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.23.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)24.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、解答题25.计算(1)32527-(2)()3335+- 26.某学校七年级举行“每天锻炼一小时,健康生活一辈子”为主题的一分钟跳绳大赛,校团委组织了全级1000名学生参加为了解本次大赛的成绩,校团委随机抽取了其中100名学生的成绩作为样本进行统计,制成如下不完整的统计图表根据所给信息,解答下列问题;(1)m=______,n=______.(2)补全频数分布直方图;(3)若成绩在80分以上(包括80分)为“优”,请你估计该校七年级参加本次比赛的1000名学生中成绩是“优”的有多少人.成绩x(分)频数(人) 频率 50≤x <605 5% 60≤x <7015 15% 70≤x <8020 20% 80≤x <90m 35% 90≤x≤100 25 n27.微信运动和腾讯公益推出了一个爱心公益活动:一天中走路步数达到10000步及以上可通过微信运动和腾讯基金会向公益活动捐款,如果步数在10000步及以上,每步可捐....0.0002元;若步数在10000步以下,则不能参与捐款.(1)老赵某天的步数为13000步,则他当日可捐多少钱?(2)已知甲、乙、丙三人某天通过步数共捐了8.4元,且甲的步数=乙的步数=丙步数的3倍,则丙走了多少步?28.计算与解方程:(1)﹣32+(﹣3)2+3×(﹣2)+|﹣4|; (2)12°24′17″×4﹣30°27′8″;(3)421123x x -+-=. 29.已知:∠AOD=150°,OB ,OM ,ON 是∠AOD 内的射线.(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD .当射线OB 绕点O 在∠AOD 内旋转时, ∠MON= °;(2)OC 也是∠AOD 内的射线,如图2,若∠BOC=m°,OM 平分∠AOC ,ON 平分∠BOD , 求∠MON 的大小(用含m 的式子表示);(3)在(2)的条件下,若m=20,∠AOB=10°,当∠BOC 在∠AOD 内部绕O 点以每秒2°的速度逆时针旋转t 秒,如图3,若3∠AOM=2∠DON 时,求t 的值.30.解方程:5711232x x -+-=+. 四、压轴题31.如图,在数轴上的A 1,A 2,A 3,A 4,……A 20,这20个点所表示的数分别是a 1,a 2,a 3,a 4,……a 20.若A 1A 2=A 2A 3=……=A 19A 20,且a 3=20,|a 1﹣a 4|=12.(1)线段A 3A 4的长度= ;a 2= ;(2)若|a 1﹣x |=a 2+a 4,求x 的值;(3)线段MN 从O 点出发向右运动,当线段MN 与线段A 1A 20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN =5,求线段MN 的运动速度.32.如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是段AB 的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB =15cm ,点C 是线段AB 的“2倍点”.求AC 的长;(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)33.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时.①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数.【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=.故答案为:C.【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.2.D解析:D【分析】根据选项进行一一排除即可得出正确答案.【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错;B 中、8-6y=0x ,可得出43x y =,故B 错;C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y =,交叉相乘得到34x y =,故D 对. 故答案为:D.【点睛】 本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.3.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o ;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等.4.A解析:A【解析】【分析】根据乘方和绝对值的性质对各个选项进行判断即可.【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故选A.5.C【解析】【分析】根据有理数加法法则计算即可得答案.【详解】(3)(5)-++=5+-3-=2故选:C.【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.6.A解析:A【解析】【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案.【详解】解:根据平移不改变图形的形状、大小和方向,将所示的图案通过平移后可以得到的图案是A,其它三项皆改变了方向,故错误.故选:A.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.7.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.8.B解析:B【解析】【分析】甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据两车同时从A地出发到B地,乙车比甲车早到30分钟,列出方程即可得.【详解】甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,由题意得160 4x -1605x=12,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.9.A解析:A【解析】试题分析:设段数为x,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n时,x=4n+1.故选A.考点:探寻规律.10.B解析:B【解析】【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果.【详解】解:由题意可得,当x=1时,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,第六次输出的结果是1,第七次输出的结果是4,第八次输出的结果是2,第九次输出的结果是1,第十次输出的结果是4,……,∵2020÷3=673…1,则第2020次输出的结果是4,故选:B .【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.11.C解析:C【解析】【分析】.【详解】∵9<15<16,∴,故选C.【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将50万用科学记数法表示为5510⨯,故B 选项是正确答案.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.二、填空题13.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx 是同类项,∴m =1,n =3,∴m ﹣n =1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y 3与﹣5y n x 是同类项,∴m =1,n =3,∴m ﹣n =1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.14.100【解析】根据题意可得关于x 的方程,求解可得商品的进价.解:根据题意:设未知进价为x ,可得:x•(1+20%)•(1-20%)=96解得:x=100;解析:100【解析】根据题意可得关于x 的方程,求解可得商品的进价.解:根据题意:设未知进价为x ,可得:x•(1+20%)•(1-20%)=96解得:x=100;15.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.16.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a -=44a()2323x x ⋅-=56x - 【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键17.-5【解析】【分析】根据题意确定出a 的最大值,b 的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】<<,解:459∴<<,23=,a2∴=,b3=-=-,则原式495-故答案为5【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.18.52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即解析:52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.【详解】52.42°=52°25′12″.故答案为52、25、12.【点睛】此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.19.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.20.270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程解析:270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程式,求解即可.【详解】设∠DOE=x,根据OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,∴∠BOD=4x,∠AOC=∠COD=α-x,由∠BOD+∠AOD=180°,∴4x+2(α-x )=180°解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.21.【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°.解:10点30分时,钟面上时针指向数字解析:【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+12×30°.解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+12×30°=135°.故答案为:135°.22.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是解析:18.4C-︒【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.23.【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得故答案为.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.解析:416x+【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得()()()+++++++=+x x x x x1771416x+.故答案为416【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.24.-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣解析:-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣2﹣3﹣12=﹣17.故答案为:﹣17.【点睛】此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.三、解答题25.(1)2;(2)【解析】【分析】(1)根据算术平方根和立方根的定义化简各数,然后再进行减法运算即可;(2)先去括号,然后再进行加减运算即可.【详解】=5-3 =2; (2)()3335+- =3335+-=435-.【点睛】本题考查了实数的运算,熟练掌握相关的运算法则是解题的关键.26.(1)35,25%;(2)见解析;(3)600人【解析】【分析】(1)根据“频数=样本容量×频率”,直接求解即可;(2)求出m 的值,再补全频数分布直方图,即可;(3)由成绩在80分以上(包括80分)的百分比,即可求解.【详解】(1)∵被调查的总人数为100人,∴m=100×35%=35,n=25100×100%=25%, 故答案为:35,25%;(2)补全图形如下:(3)估计该校七年级参加本次比赛的1000名学生中成绩是“优”的有:1000×(35%+25%)=600(人).【点睛】本题主要考查频数分布直方图表,掌握“频数=样本容量×频率”,是解题的关键.27.(1)2.6元;(2)7000步.【解析】【分析】(1)用步数×每步捐的钱数0.0002元即可;(2)设丙走了x 步,则甲走了3x 步,乙走了3x 步,分两种情况讨论即可.【详解】(1)13000×0.0002=2.6元,∴他当日可捐了2.6元钱;(2)设丙走了x步,则甲走了3x步,乙走了3x步,由题意得若丙参与了捐款,则有0.0002(3x+3x+x)=8.4,解之得:x=6000,不合题意,舍去;若丙没参与捐款,则有0.0002(3x+3x)=8.4,解之得:x=7000,符合题意,∴丙走了7000步.【点睛】本题考查了一元一次方程的应用,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.本题也考查了分类讨论的数学思想.28.(1)﹣2;(2)19°10′;(3)x=47.【解析】【分析】(1)根据有理数的混合运算法则及运算顺序依次计算即可;(2)根据度分秒的计算解答即可;(3)根据去分母、去括号、移项,系数化为1解答求解.【详解】解:(1)原式=﹣9+9﹣6+4,=﹣2;(2)原式=48°96′68″﹣30°27′8″,=18°69′60″,=19°10′;(3)3(4﹣x)﹣2(2x+1)=6,12﹣3x﹣4x﹣2=6,﹣7x=﹣4,x=47.【点睛】本题考查了有理数的混合运算、度分秒的计算及解一元一次方程,熟练运用有理数的混合运算法则及运算顺序、度分秒的计算以及一元一次方程的解法是解决问题的关键.29.(1)75;(2)(75-12m)°;(3)t为19秒.【解析】【分析】(1)根据角平分线的定义,以及角度和的关系,可得∠MON=12∠AOD即可得出;(2)根据角平分线的定义,得出∠MOC=12∠AOC,∠BON=12∠BOD,利用角度和与差的关系,得出∠MON=∠MOC+∠BON﹣∠BOC,角度代换即可得出结果;(3)由题意知,∠AOM=12(10+2t+20°),∠DON=12(150﹣10﹣2t)°,根据3∠AOM=2∠DON,列出方程求解即可.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠MOB=12∠AOB,∠BON=12∠BOD,∴∠MON=∠MOB+∠BON,=12∠AOB+12∠BOD,=12∠AOD,=12×150°,=75°,故答案为:75;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∠MON=∠MOC+∠BON﹣∠BOC=12∠AOC+12∠BOD﹣∠BOC=12(∠AOC+∠BOD)﹣∠BOC=12(∠AOB+∠BOC+∠BOD)﹣∠BOC=12(∠AOD+∠BOC)﹣∠BOC=12×(150°+m°)﹣m°=(75-12 m)°,故答案为:(75-12 m)°;(3)∵∠AOM=12∠AOC=12(10+2t+20°)=(15+t)°,∠DON=12∠BOD=12(150﹣10﹣2t)°=(70-t)°,又∵3∠AOM=2∠DON,∴3(15+t)=2(70﹣t),得t=19.答:t为19秒,故答案为:19秒.【点睛】本题考查了角平分线的定义,角度的和差关系式,一元一次方程的列式求解,掌握角平分线的定义是解题的关键.30.x=5.【解析】【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】解:去分母得:2(5x﹣7)﹣6=12+3(x+1),去括号得:10x﹣14﹣6=12+3x+3,移项合并得:7x=35,解得:x=5.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.四、压轴题31.(1)4,16;(2)x=﹣28或x=52;(3)线段MN的运动速度为9单位长度/秒.【解析】【分析】(1)由A1A2=A2A3=……=A19A20结合|a1﹣a4|=12可求出A3A4的值,再由a3=20可求出a2=16;(2)由(1)可得出a1=12,a2=16,a4=24,结合|a1﹣x|=a2+a4可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(3)由(1)可得出A1A20=19A3A4=76,设线段MN的运动速度为v单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v的一元一次方程,解之即可得出结论.【详解】解:(1)∵A1A2=A2A3=……=A19A20,|a1﹣a4|=12,∴3A3A4=12,∴A3A4=4.又∵a3=20,∴a2=a3﹣4=16.故答案为:4;16.(2)由(1)可得:a 1=12,a 2=16,a 4=24,∴a 2+a 4=40.又∵|a 1﹣x|=a 2+a 4,∴|12﹣x|=40,∴12﹣x =40或12﹣x =﹣40,解得:x =﹣28或x =52.(3)根据题意可得:A 1A 20=19A 3A 4=76.设线段MN 的运动速度为v 单位/秒,依题意,得:9v =76+5,解得:v =9.答:线段MN 的运动速度为9单位长度/秒.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A 3A 4的长度及a 2的值;(2)由(1)的结论,找出关于x 的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.32.(1)是;(2)5cm 或7.5cm 或10cm ;(3)10或607. 【解析】【分析】(1)根据“2倍点”的定义即可求解;(2)分点C 在中点的左边,点C 在中点,点C 在中点的右边三种情况,进行讨论求解即可;(3)根据题意画出图形,P 应在Q 的右边,分别表示出AQ 、QP 、PB ,求出t 的范围.然后根据(2)分三种情况讨论即可.【详解】(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t .∵PB =20-2t ≥0,∴t ≤10.∵QP =3t -20≥0,∴t ≥203,∴203≤t ≤10. 分三种情况讨论:①当AQ =13AP 时,20-t =13×2t ,解得:t =12>10,舍去; ②当AQ =12AP 时,20-t =12×2t ,解得:t =10; ③当AQ =23AP 时,20-t =23×2t ,解得:t 607=; 答:t 为10或607时,点 Q 是线段AP 的“2倍点”. 【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键.33.(1)16;(2)①t 的值为3或143秒;②存在,P 表示的数为314. 【解析】【分析】(1)由数轴可知,AB=3,则CD=6,所以D 表示的数为16,(2)①当运动时间是t 秒时,在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t, C 点表示的数为10-t ,D 点表示的数为16-t ,分情况讨论两条线段重叠部分是2个单位长度解答即可;②分情况讨论当t=3秒, t=143秒时,满足3BD PA PC -=的点P , 注意P 为线段AB 上的点对x 的值的限制.【详解】(1)16(2)①在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t,C 点表示的数为10-t ,D 点表示的数为16-t.当BC =2,点B 在点C 的右边时,由题意得:32-10-2BC t t =+=(),解得:t =3,当AD=2,点A 在点D 的左边时,由题意得:16--22AD t t ==,解得:t =143. 综上,t 的值为3或143秒 ②存在,理由如下:当t=3时,A 点表示的数为6,B 点表示的数为9,C 点表示的数为7,D 点表示的数为13.则13-94-6|-7|BD PA x PC x ====,,,-3BD PA PC =,()4--6|-7|x x ∴=, 解得:314x =或112, 又P 点在线段AB 上,则69x ≤≤314x ∴=. 当143t =时,A 点表示的数为283,B 点表示的数为373,C 点表示的数为163,D 点表示的数为343. 则37343816-1-|-|3333BD PA x PC x ====,,, -3BD PA PC =, ∴ 28161--|-|33x x ⎛⎫= ⎪⎝⎭, 解得:7912x =或176, 又283733x ≤≤, x ∴无解综上,P 表示的数为314. 【点睛】本题考查了一元一次方程的应用以及数轴,解题的关键是:(1)由路程=速度×时间结合运动方向找出运动t 秒时点A 、B 、C 、D 所表示的数,(2)根据3BD PA PC -=列出关于t 的含绝对值符号的一元一次方程.。
河北省沧州市2019年七年级上学期数学期末考试试题(模拟卷一)一、选择题1.过平面上三点中的任意两点作直线,可作( ) A.1条 B.3条 C.1条或3条 D.无数条2.如图,点C 是直线AB 上一点,过点C 作CD CE ⊥,那么图中1∠和2∠的关系是( )A .互为余角B .互为补角C .对顶角D .同位角3.如图,长宽高分别为3,2,1的长方体木块上有一只小虫从顶点A 出发沿着长方体的外表面亮到现点B ,则它爬行的最短路程是( )A B . C . D .54.在一次革命传统教育活动中,有n 位师生乘坐m 辆客车.若每辆客车乘60人,则还有10人不能上车,若每辆客车乘62人,则最后一辆车空了8个座位.在下列四个方程6010628m m +=-①;6010628m m +=+②; 1086062n n -+=③;1086062n n +-=④中,其中正确的有( ) A.①③B.②④C.①④D.②③ 5.下列计算正确的是( )A .4a ﹣2a =2B .2x 2+2x 2=4x 4C .﹣2x 2y ﹣3yx 2=﹣5x 2yD .2a 2b ﹣3a 2b =a 2b 6.如图,将一张正三角形纸片剪成四个全等的正三角形,得到4个小正三角形,称为第一次操作;然后,将其中的一个正三角形再剪成四个小正三角形,共得到7个小正三角形,称为第二次操作;再将其中的一个正三角形再剪成四个小正三角形,共得到10个小正三角形,称为第三次操作;……,以上操作n 次后,共得到49个小正三角形,则n 的值为()A .13n =B .14n =C .15n =D .16n = 7.解方程1﹣362x x -=,去分母,得( ) A.1﹣x ﹣3=3xB.6﹣x ﹣3=3xC.6﹣x+3=3xD.1﹣x+3=3x 8.某品牌商品,按标价八折出售,仍可获得10%的利润.若该商品标价为275元,则商品的进价为( ) A .192.5元 B .200元 C .244.5元 D .253元9.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是112-=-1,-1的差倒数为()11112=--.现已知x 1=-21x 3,是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2019的值为( ) A.13- B.1- C.34 D.410.一个有理数的平方等于它本身,那么这个有理数是( )A .0B .1C .±1 D.0或111.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( )A.73610⨯B.83.610⨯C.90.3610⨯D.93.610⨯12.|2|-的相反数为( )A.2B.-2C.12D.12- 二、填空题13.如图所示,OA 表示_____偏_____28°方向,射线OB 表示_____方向,∠AOB=_____.14.已知∠AOB=3∠BOC,射线0D 平分∠AOC,若∠BOD=30°,则∠BOC 的度数为________.15.若x=2是关于x 的方程2x+3m ﹣1=0的解,则m 的值等于_________ 。
河北省沧州市七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)给出下列判断:①单项式5×103x2的系数是5;②x-2xy+y是二次三项式;③多项式-3a2b+7a2b2-2ab+1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是()A . 1个B . 2个C . 3个D . 4个2. (2分)下列四个图形中是三棱柱的表面展开图的是()A .B .C .D .3. (2分)下面不正确的是()A . 数轴是一条规定了原点,正方向和长度单位的射线B . 离原点近的点所对应的有理数的绝对值较小C . 数轴可以表示任意有理数D . 原点在数轴的正中间4. (2分)若方程2x+1=﹣1的解是关于x的方程1﹣2(x﹣a)=2的解,则a的值为()A . -1B . 1C . -D . -5. (2分)一条船在灯塔的北偏东30°方向,那么灯塔在船的什么方向()A . 南偏西30°B . 西偏南40°C . 南偏西60°D . 北偏东30°6. (2分) (2018七上·建昌期末) 下列说法不正确的是()A . 两点之间,直线最短B . 两点确定一条直线C . 互余两角度数的和等于90D . 同角的补角相等7. (2分) (2018七上·湖州月考) - 的相反数是()A . -B .C . 3D . -38. (2分)近似数0.402的有效数字的个数和精确度分别是()A . 3个;精确到千位B . 3个;精确到百分位C . 3个;精确到千分位D . 2个;精确到千分位9. (2分)某土建工程工需动用15台挖、运机械,每台机械每小时能挖土3m3或者运土2 m3,为了使挖土和运土工作同时结束,安排了x台机械运土,则x应满足()A . 2x=3(15–x)B . 3x=2(15–x)C . 15–2x=3xD . 3x–2x=1510. (2分) (2017七上·辽阳期中) 用代数式表示“a的3倍与b的差的平方”,正确的是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)(2017·滨湖模拟) 据媒体报道,我国因环境污染造成的巨大经济损失,每年高达860 000 000元,这个数用科学记数法表示为________元.12. (1分)若|x|=5,|y|=3,且xy>0,则x+y=________.13. (1分) (2019八下·来宾期末) 如图,在Rt△ABC与Rt△DEF中,∠B=∠E=90°,AC=DF,AB=DE,∠A=50°,则∠DFE=________.14. (1分)(2018·仙桃) 我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C 恰好位于渔船B的正北方向18(1+ )n mile处,则海岛A,C之间的距离为________n mile.15. (1分) (2017七上·启东期中) 关于x的方程7x﹣5=kx+9有正整数解,则整数k的值为________.16. (1分) (2019八上·兴仁期末) 观察分析下列数据,按规律填空:1, 2,,,…,第n(n 为正整数)个数可以表示为________ .三、解答题 (共9题;共58分)17. (10分) (2017七上·洱源期中) 某冷库一天的冷冻食品进出记录如表(运进用正数表示,运出用负数表示):进出数量(单位:吨)﹣34﹣12﹣5进出次数21332(1)这天冷库的冷冻食品比原来增加了还是减少了?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨冷冻食品费用500元,运出每吨冷冻食品费用800元;方案二:不管运进还是运出每吨冷冻食品费用都是600元;从节约运费的角度考虑,选用哪一种方案比较合适.18. (10分)我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若与互为相反数,求的值.19. (5分) k为何值时,关于x的方程5(x+3k)-2=3x-4k有(1)正数解;(2)负数解.20. (5分) (2018七上·岳池期末) 如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=25°,求∠AOB的度数.21. (5分) (2016七上·高安期中) 已知A=x2+ax,B=2bx2﹣4x﹣1,且多项式2A+B的值与字母x的取值无关,求a,b的值.22. (5分)分别画出图中几何体的主视图,左视图和俯视图.23. (5分)如图,线段AB=8cm,点C是AB的中点,点D在CB上且DC=1.5cm,求线段BD的长度.24. (10分)某园林门票价格规定如下表:购票人数1~50人51~100人100人以上每人门票价13元11元9元某校一年级甲、乙两班共104人去该园游玩,其中甲班人数较多,有50多人,经估算,若两班都以班为单位分别购票,则一共应付1240元.问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可以省多少钱?25. (3分) (2016七上·江苏期末) 已知∠AOB=90°,∠COD=30°.(1)如图1,当点O、A、C在同一条直线上时,∠BOD的度数是________;(2)将∠COD从图1的位置开始,绕点O逆时针方向旋转n°(即∠AOC=n°),且0<n<180.①如果∠COD的一边与∠AOB的一边垂直,则n=________.②当60<n<90时(如图2),作射线OM平分∠AOC,射线ON平分∠BOD,试求∠MON的度数________.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共58分)17-1、17-2、18-1、18-2、19-1、20-1、21-1、22-1、23-1、24-1、24-2、25-1、25-2、。
沧州市2016—2017学年度第一学期期末教学质量评估七年级数学试题亲爱的同学们:又一个阶段的数学旅途结束了.现在我们用这张试卷对你这段旅程所获进行检测.这份试卷与其说是考试题,不如说是展示自我、发挥特长的舞台,相信你能自主、自信地完成这份答卷,成功的快乐一定会属于你!本试卷共三个大题,27个小题。
总分120分,考试时间共90分钟。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生将自己的学校、姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码贴在答题卡指定位置。
2.选择题必须用2B 铅笔填涂,如需改动用橡皮擦干净后,再涂其他答案标号。
非选择题必须用0.5毫米以上黑色字迹签字笔书写,字迹工整清楚。
3.请按题号在各题指定区域(黑色线框)内答题,超出答题区域内书写的答案无效。
4.请保持卡面清洁,不折叠,不破损。
一、正确选择.(本大题10个小题,每小题2分,共20分)1、在-11,1.2,-2,0 ,-(-2)中,负数的个数有 ( ) A .2个 B .3个 C .4个 D .5个2、数轴上表示-21的点到原点的距离是 ( ) A .21 B .-21C .-2D .23、如果a 表示有理数,那么下列说法中正确的是 ( )A .+a 和-(-a )互为相反数B . +a 和-a 一定不相等C .-a 一定是负数D .-(+a )和+(-a )一定相等4、若|a |=3,|b |=2 ,且a +b >0,那么a -b 的值是 ( ) A .5或1 B .1或-1 C .5或-5 D .-5或-15、单项式-3πxy 2z 3的系数是 ( ) A .-πB .-1C .-3πD .-36、下列方程中,是一元一次方程的是 ( ) A .x 2-4x =3 B .3x -1=2xC . x +2y =1D .xy -3=5 7、若关于x 的方程2x +a -4=0的解是x =-2,则a 的值等于 ( ) A .-8 B .0 C .2 D .8第16题图8、如图,直角三角形绕直线l 旋转一周,得到的立体图形是 ( )9、汽车的雨刷把玻璃上的雨水刷干净属于的实际应用是( ) A .点动成线 B .线动成面 C .面动成体 D .以上答案都不对 10、点C 在线段AB 上,下列条件中不能确定点C 是线段AB 中点的是( ) A .AC =BCB .AC +BC =AB C .AB =2ACD .BC =AB二、准确填空. (本大题10个小题,每小题3分,共30分) 11、比较两数的大小:56-________78-(填“<”,“>”,“=”) 12、用科学记数法表示:3080000= . 13、多项式x 2-2x +3是_______次________项式. 14、若单项式2x n y m-n与单项式3x 3y 2n 的和是5x n y 2n ,则m = ,n = .15、当x = 时,3x +4与4x +6的值相等.16、如图,小红将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,且剪下的两个长条的面积相等.问这个正方形的边长应 为多少厘米?设正方形边长为x cm ,则可列 方程为 . 17、若a 、b 、c 在数轴上的位置如图,则│a │-│b -c │+│c │= .18、8点55分时,钟表上时针与分针的所成的角是 . 19、若一个角的补角是这个角2倍,则这个角的度数为 度.20、平面内不同的两点确定一条直线,不同的三点最多确定三条直线,平面内的不同6个点最多可确定 条直线.三、解答题. (本大题7个小题,共70分) 21、(10分) 计算第17题图A B CD(1) (-1)5×{[432÷(-4)-141×(-0.4)]÷(-31)-2}(2) -22×(-5)+16÷(-2)3-│-4×5│+(85-0.6 25)222、(10分) 先化简,再求值:(1) 3a 2b -[2ab 2-2(-a 2b +4ab 2)]-5ab 2,其中a =-2,b =21.(2) (2x 2-2y 2)-3(x 2y 2+x )+3(x 2y 2+y ),其中x =-1,y =2.23、(10分) 解方程(1)2x +5=3(x -1) (2)32213415xx x --+=-24、(10分) 某检修站,甲小组乘一辆汽车,约定向东为正,从A 地出发到收工时,行走记录为(单位:千米):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.同时,乙小组也从A 地出发,沿南北方向的公路检修线路,约定向北为正,行走记录为:-17,+9,-2,+8,+6,+9,-5,-1,+4,-7,-8.(1)分别计算收工时,甲、乙两组各在A 地的哪一边,分别距A 地多远? (2)若每千米汽车耗油a 升,求出发到收工时两组各耗油多少升?25、(10分) 某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a 千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a .(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?•应交电费是多少元?26、(10分) 如图,已知∠AOC =60°,∠BOD =90°,∠AOB 是∠DOC 的3倍,求∠AOB 的度数.BC27、(10分) 观察下列各式:13+23=1+8=9,而(1+2)2=9,所以13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,所以13+23+33=(1+2+3)2; 13+23+33+43=100,而(1+2+3+4)2=100,所以13+23+33+43=(1+2+3+4)2;所以13+23+33+43+53=( )2= .根据以上规律填空:(1)13+23+33+…+n 3=( )2=[ ]2.(2)猜想:113+123+133+143+153= .七年级数学试题参考答案(人教版)说明:本参考答案只给出一种解答方法,如有其它正确解法请按步酌情给分一、正确选择.1、A2、A3、D4、A5、C6、B7、D8、C9、B 10、B 二、准确填空.11、> 12、3.08×106 13、二,三 14、9,3 15、-2 16、4x =5(x -4) 17、b -a 18、62.5° 19、60 20、15 三、解答题.21、(10分) 解:(1) 0 (2) -222、(10分) (1)解:原式=3a 2b -2ab 2-2a 2b +8ab 2-5ab 2=a 2b +ab 2, 当a =-2,b =21时,原式=2-21=23. (2)解:原式=2x 2-2y 2-3x 2y 2-3x +3x 2y 2+3y =2x 2-2y 2-3x +3y ,当x =-1,y =2时,原式=2-8+3+6=3. 23、(10分) 解:(1)x =8;(2)x =7124、(10分) 解:(1)因为(+15)+(-2)+(+5)+(-1)+(+10)+(-3)+(-2)+(+12)+(+4)+(-5)+(+6)=39. 所以收工时,甲组在A 地的东边,且距A 地39千米。
2019-2020学年河北省沧州市七年级(上)期末数学试卷一、选择题1.温度-4℃比-9℃高()A. B. C. D.2.若x=2是关于x的方程2x+3m-1=0的解,则m的值为()A. B. 0 C. 1 D.3.下列说法中正确的是()A. 数轴上距离原点2个单位长度的点表示的数是2B. 是最大的负整数C. 任何有理数的绝对值都大于0D. 0是最小的有理数4.下列合并同类项中,正确的是()A. B. C. D.5.如图,O是线段AB的中点,C在线段OB上,AC=4,CB=3,则OC的长等于()A. B. 1 C. D. 26.已知m-2n=-1,则代数式1-2m+4n的值是()A. B. C. 2 D. 37.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A. B.C. D.8.小马虎在计算16-x时,不慎将“-”看成了“+”,计算的结果是17,那么正确的计算结果应该是()A. 15B. 13C. 7D.9.某商店把一件商品按进价增加20%作为定价,可是总卖不出去,后来老板把定价降低20%,以48元的价格出售,很快就卖出了,则老板卖出这件商品的盈亏情况是()A. 亏2元B. 亏4元C. 赚4元D. 不亏不赚10.如图所示,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,……按此规律,则第50个图形中面积为1的正方形的个数为()A. 1322B. 1323C. 1324D. 1325二、填空题11.绝对值大于1且小于3的整数有______.12.度数为82°30′16″的角的补角的度数为______.13.x、y两数的平方和减去它们的积的2倍,用代数式表示为______.14.已知∠1与∠2互余,∠2与∠3互补,∠1=67°,则∠3=______.15.如图是一个时钟的钟面,8:00的时针及分针的位置如图所示,则此时分针与时针所成的∠α是______度.16.已知某商品降价20%后的售价为2800元,则该商品的原价为______元.17.12a m-1b3与a3b n是同类项,则m+n=______.18.下列等式变形:①a=b,则=;②若=,则a=b;③若4a=7b,则=;④若=,则4a=7b,其中一定正确的有______(填序号)19.有理数a、b在数轴上的位置如图所示,则化简|2a|+|a+b|-|a-b|的结果为______.20.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则最后一辆车有2个空位.给出下面五个等式:①40m+10=43m-2;②40m-10=43m+2;③=;④=;⑤43m=n+2.其中正确的是______(只填序号).三、解答题21.计算:(1)-16-(-1+)÷3×[2-(-4)2](2)解方程:-=-1(3)先化简,再求值:2(x2-2xy)+[2y2-3(x2-2xy+y2)+x2],其中x=1,y=-.22.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数______,点P表示的数______(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?25.如图,点C在AB上,点M、N分别是AC、BC的中点,(1)若AC=12cm,BC=10cm,求线段MN的长;(2)若点C为线段AB上任意一点,满足AC+BC=acm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若点C在线段AB的延长线上,且满足AC-BC=bcm,点M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,并说明理由.请用一句简洁的话描述你发现的结论.答案和解析1.【答案】B【解析】解:∵-4-(-9)=5,∴温度-4比-9高5.故选:B.温度-4比-9高多少度就是-4与-9的差.本题主要考查有理数的减法在实际中的应用,熟记减去一个数等于加上这个数的相反数是解题的关键.2.【答案】A【解析】解:∵x=2是关于x的方程2x+3m-1=0的解,∴2×2+3m-1=0,解得:m=-1.故选:A.根据方程的解的定义,把x=2代入方程2x+3m-1=0即可求出m的值.本题的关键是理解方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.3.【答案】B【解析】解:A、数轴上距离原点2个单位长度的点表示的数是2或-2,故A错误;B、-1是最大的负整数,故B正确;C、0的绝对值等于零,故C错误;D、没有最小的有理数,故D错误;故选:B.根据数轴上到一点距离相等的点有两个,可判断A;根据整数,可判断B;根据绝对值的意义,可判断C;根据有理数,可判断D.本题考查了有理数,没有最大的有理数,也没有最小的有理数.4.【答案】D【解析】解:A、不是同类项的不能合并,故A错误;B、不是同类项的不能合并,故B错误;C、系数相加字母及指数不变,故C错误;D、系数相加字母及指数不变,故D正确;故选:D.根据合并同类项,系数相加字母及指数不变,可得答案.本题考查了合并同类项,合并同类项系数相加字母部分不变.5.【答案】A【解析】解:∵AC=4,CB=3,∴AB=AC+CB=4+3=7,∵O是线段AB的中点,∴OB=AB=3.5,∴OC=OB-CB=3.5-3=0.5.故选:A.先计算出AB=AC+CB=4+3=7,再根据线段中点的定义得到OB=AB=3.5,然后利用OC=OB-CB进行计算.本题考查了两点间的距离:两点间的连线段长叫这两点间的距离.也考查了线段中点的定义.6.【答案】D【解析】解:∵m-2n=-1,∴1-2m+4n=1-2(m-2n)=1-2×(-1)=3.故选:D.把代数式1-2m+4n为含m-2n的代数式,然后把m-2n=-1整体代入求得数值即可.此题考查代数式求值,注意整体代入思想的渗透.7.【答案】C【解析】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.根据图形,结合互余的定义判断即可.本题考查了对余角和补角的应用,主要考查学生的观察图形的能力和理解能力.8.【答案】A【解析】解:根据题意得:16+x=17,解得:x=3,则原式=16-x=16-1=15,故选:A.由错误的结果求出x的值,代入原式计算即可得到正确结果.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.9.【答案】A【解析】解:设商品进价为x,根据题意得:x(1+20%)(1-20%)=48解得x=50,以48元出售,可见亏2元.故选:A.依据题意,商品按进价增加20%后又降价20%以48元的价格出售的等量关系可列出等式.考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.10.【答案】D【解析】解:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个.当n=50时,==1325,即第50个图形中面积为1的正方形的个数为1325,故选:D.第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=.此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.11.【答案】±2【解析】解:绝对值大于1且小于3的整数有±2.求绝对值大于1且小于3的整数,即求绝对值等于2的整数.根据绝对值是一个正数的数有两个,它们互为相反数,得出结果.主要考查了绝对值的性质.本题要注意不要漏掉-2.绝对值规律总结:绝对值是一个正数的数有两个,它们互为相反数;绝对值是0的数就是0;没有绝对值是负数的数.12.【答案】97°29′44″.【解析】解:度数为82°30′16″的角的补角的度数为:180°-82°30′16″=97°29′44″.故答案为97°29′44″.若两个角的和等于180°,则这两个角互补,其中一个角叫做另一个角的补角.根据已知条件直接求出补角的度数.本题考查了补角的定义,解题时牢记定义是关键.13.【答案】x2+y2-2xy【解析】解:x2+y2-2xy.故答案为:x2+y2-2xy.把x、y两数首先平方,再想加,进一步减去两数积的2倍即可.此题考查列代数式,注意语言叙述的运算方法和运算顺序.14.【答案】157°【解析】解:∵∠1与∠2互余,∠2与∠3互补,∴∠2=90°-∠1,∠2=180°-∠3,∴90°-∠1=180°-∠3,∴∠3=90°+∠1,∵∠1=67°,∴∠3=90°+67°=157°.故答案为:157°.根据互余的两个角的和等于90°,互补的两个角的和等于180°用∠1表示出∠3,再代入数据进行计算即可得解.本题考查了余角和补角,是基础题,熟记概念是解题的关键.15.【答案】120【解析】解:时针每小时转动:360÷12=30°;当8:00时,时针转动了30°×8=240°;故∠α=360°-240°=120°.此类钟表问题,需理清时针每小时所转动的度数,然后再求解.解答此类钟表问题时,一定要搞清时针和分针每小时、每分钟转动的角度.时针12小时转360°,每小时转(360÷12=30)度,每分钟(30÷60=0.5)度;分针1小时转360°,即每分钟转(360÷60=6)度.16.【答案】3500【解析】解:设原价为x,那么:x×80%=2800元,解得x=3500,故原价为3500元.依据题意商品的原价格=2800÷(1-20%).此题的关键是把原价当成单位1来计算.17.【答案】7【解析】解:∵12a m-1b3与a3b n是同类项,∴m-1=3,n=3,∴m=4,n=3,则m+n=7,故答案为:7.根据同类项是字母相同,且相同的字母的指数也相同,可得二元一次方程组,根据解二元一次方程组,可得m、n的值,根据有理数的加法,可得答案.本题考查了同类项,同类项是字母相同,且相同的字母的指数也相同,可得二元一次方程组,根据解二元一次方程组,可得m、n的值,根据有理数的加法,可得答案.18.【答案】②④【解析】解:①a=b,x不能等于0,则=,错误;②若=,则a=b,正确;③若4a=7b,b≠0,则=,错误;④若=,则4a=7b,正确;故答案为:②④根据等式的性质进行计算,判断即可.本题考查的是等式的性质,性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.19.【答案】0【解析】解:原式=-2a+a+b+a-b=0,故答案为0.根据数轴,可去掉绝对值,再计算即可.本题考查了整式的加减,熟练运用合并同类项的法则,这是各地中考的常考点.20.【答案】①③⑤【解析】解:根据总人数列方程,应是40m+10=43m-2,①正确,②错误;根据客车数列方程,应该为=,③正确,④错误;根据总人数和客车数列方程得:43m=n+2.故答案为:①③⑤.首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.21.【答案】解:(1)原式=-1-(-)××(-14)=-1-=-;(2)去分母,得3(x-7)-2(2x-5)=-6,去括号,得3x-21-4x+10=-6,移项,得3x-4x=-6+21-10,合并,得-x=5所以,x=-5;(3)原式=2x2-4xy+(2y2-3x2+6xy-3y2+x2)=2x2-4xy+2y2-3x2+6xy-3y2+x2=2xy-y2.当x=1,y=-时,原式=2×1×(-)-(-)2=-3-=-5.【解析】(1)先计算16、(-4)2,再算括号里面和乘除法,最后算减法得结果;(2)按解一元一次方程的步骤求解即可;(3)先对代数式进行化简,然后再代入求值.本题考查了有理数的混合运算、整式的加减、解一元一次方程等知识点.解决(1)的关键是掌握有理数混合运算的顺序,注意(2)去分母时勿漏乘,(3)需先化简再求值.. 22.【答案】-6 8-5t【解析】解:(1)∵OA=8,AB=14,∴OB=6,∴点B表示的数为-6,∵PA=5t,∴P点表示的数为8-5t,故答案为-6,8-5t;(2)根据题意得5t=14+3t,解得t=7.答:点P运动7秒时追上点H.(1)先计算出线段OB,则可得到出点B表示的数;利用速度公式得到PA=5t,易得P点表示的数为8-5t;(2)点P比点H要多运动14个单位,利用路程相差14列方程得5t=14+3t,然后解方程即可.本题考查了一元二次方程的应用:利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.23.【答案】解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴∠ ∠ ,∠ ∠ .∴∠MON=∠MOC-∠NOC=65°-20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵∠ ∠ ∠ ∠ ∠ ∠ ∠ =∠ ,又∠AOB是直角,不改变,∴∠ ∠ .【解析】(1)根据∠AOB是直角,∠AOC=40°,可得∠AOB+∠AOC=90°+40°=130°,再利用OM是∠BOC的平分线,ON是∠AOC的平分线,即可求得答案.(2)根据∠MON=∠MOC-∠NOC,又利用∠AOB是直角,不改变,可得.此题主要考查角的计算和角平分线的定义等知识点的理解和掌握,难度不大,属于基础题.24.【答案】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a-)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)当在两家商场购买一样合算时,100a+14000=80a+15000,解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算【解析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解.本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.【答案】解:(1)由M、N分别是AC、BC的中点,得MC=AC,CN=BC.由线段的和差,得MN=MC+CN=AC+BC=×12+×10=6+5=11cm;(2)MN=,理由如下:由M、N分别是AC、BC的中点,得MC=AC,CN=BC.由线段的和差,得MN=MC+CN=AC+BC=(AC+BC)=cm;(3)MN=,理由如下:由M、N分别是AC、BC的中点,得MC=AC,CN=BC.由线段的和差,得MN=MC-CN=AC-BC=(AC-BC)=cm;如图:,只要满足点C在线段AB所在直线上,点M、N分别是AC、BC的中点.那么MN就等于AB的一半.【解析】(1)根据线段中点的性质,可得MC、CN,再根据线段的和差,可得答案;(2)根据线段中点的性质,可得MC、CN,再根据线段的和差,可得答案;(3)根据线段中点的性质,可得MC、CN,再根据线段的和差,可得答案.本题考查了两点间的距离,利用了线段中点的性质,线段的和差.。
沧州市七年级上学期数学期末试题一 选择题(1~6题每小题2分,7~10每题3分,共24分)1.若a 的相反数是-3,则a 1的值是( ) A 3 B -3 C 31 D -31 2.将250000用科学记数法表示为( )A 25×104B 2.5×105C 2.5×106D 0.25×1063.有下列四个算式:(1)(-5)+(+3)=8;(2)-(-2)3=6;(3)(+65)+(-61)=32;(4)-3÷(-31)=9. 其中,不正确的有( ) A 0个 B 1个 C 2个 D 3个4.下列说法正确的是( )A 一点确定一条直线B 两条射线组成的图形叫角C 两点之间,线段最短D 若AB=BC ,则B 为AC 的中点 5.下列计算正确的是( )A 5a+2b=7ab B 5a 3-3a 2=2a C 4a 2b-3ba 2=a 2b D -21y 2-41y 2=-43y 46.如图1,C 、D 是线段AB 上的两点,且D 是线段AC 的中点,若AB=10cm ,BC=4cm ,则AD 的长为( )A 2cmB 3cmC 4cmD 6cm7.下面四个图形中,经过折叠能围成如图所示的几何图形的是( )8.若两个非零的有理数a 、b ,满足︱a ︱=a ,︱b ︱=-b ,a+b <0,则在数轴上表示数a 、b 的点正确的是( )9.某顾客以八折的优惠价格买了一件商品,比标记少付了30元,那么他购买这件商品花了( )元 A 70 B 120 C 150 D 300 10.有甲、乙两桶油,从甲桶倒出1/4到乙桶后,乙桶比甲桶还少6升,乙桶原有油30升,则甲桶原有油( ) A 72升 B 60升 C 18升 D 36升二 填空题(每小题3分,共30分)11.比较大小:38015′ 38.15012.已知(a-2)x ︱a ︱-1+4是关于x 一元一次方程,则a=13.甲比乙大15岁,5年前甲的年龄是乙的年龄的2倍,则乙现在的年龄是 岁 14.若x 与9的积等于x 与-16的和,则x=15.若单项式3x m+6y 2和x 3y n 是同类项,则(m+n )2019= 16.在数轴上,表示数(4-3a )的点M 与表示数(2a+3)的点N 分别位于原点两侧且到原点的距离相等,则a 的值为17.如图所示,两块三角板的直角顶点O 重叠在一起,且OB 恰好平分∠COD ,则∠AOD 的度数是 度18.已知三条射线OA 、OB 、OC ,∠AOB=600,若∠AOC=2∠COB ,则∠AOC=19.用棱长是1cm 的小正方形组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是 cm 220.土家传统建筑的窗户上常有一些精致花纹,小超对土家传统建筑非常感兴趣,他观察发现窗格的花纹排列呈现有一定规律.如图,其中“○”代表的就是精致的花纹,第(1)个图有5个花纹,第(2)个图有8个花纹,第(3)个图有11个花纹,…,请问第n 个图有 个花纹.三 解答题(本大题共6题,共66分)21.计算:(10分)﹙1﹚2-24×(31-41+125)-3 ﹙2﹚-16-(-2)2×41-10×﹙17-24﹚201722.解方程(10分) (1)5(x+8)=5-6(2x-7) (2)x-31x -=63-x -123.(10分)先化简,再求值21x-2﹙x-y 2﹚+(-23x+y 2),其中x ,y 满足x =2,y=-324.(12分)如图,图①所示是一个长为2m ,宽为2n 的长方形,用剪刀均分成四个小长方形,然后按图②的方式拼成一个大正方形。
河北省沧州市七年级(上)期末数学试卷一、选择题1.温度-4℃比-9℃高()A. ℃B. ℃C. ℃D. ℃2.若=2是关于的方程2+3m-1=0的解,则m的值为()A. B. 0 C. 1 D.3.下列说法中正确的是()A. 数轴上距离原点2个单位长度的点表示的数是2B. 是最大的负整数C. 任何有理数的绝对值都大于0D. 0是最小的有理数4.下列合并同类项中,正确的是()A. . C D.5.图O是线B的中点,C在线段OB上,AC=4,CB=3,则OC的长等于()A. B. 1 C. D. 26.已知m-2n=-1,则代数式1-2m+4n的值是()A. B. C. 2 D. 37.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A. B.C. D.8.小马虎在计算16-时,不慎将“-”看成了“+”,计算的结果是17,那么正确的计算结果应该是()A. 15B. 13C. 7D.9.某商店把一件商品按进价增加20%作为定价,可是总卖不出去,后老板把定价降低20%,以48元的价格出售,很快就卖出了,则老板卖出这件商品的盈亏情况是()A. 亏2元B. 亏4元C. 赚4元D. 不亏不赚10.如图所示,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,……按此规律,则第50个图形中面积为1的正方形的个数为()A. 1322B. 1323C. 1324D. 1325二、填空题11.绝对值大于1且小于3的整数有______.12.度数为82° ′16″的角的补角的度数为______.13.、y两数的平方和减去它们的积的2倍,用代数式表示为______.14.已知∠1与∠2互余,∠2与∠3互补,∠ =67°,则∠3=______.15.如图是一个时钟的钟面,8:00的时针及分针的位置如图所示,则此时分针与时针所成的∠α是______度.16.已知某商品降价20%后的售价为2800元,则该商品的原价为______元.a3b n是同类项,则m+n=______.17.12a m-1b3与218.下列等式变形:①a=b,则=;②若=,则a=b;③若4a=7b,则=7;④若=7,则4a=7b,其中一定正确的有______(填序号)19.有理数a、b在数轴上的位置如图所示,则化简|2a|+|a+b|-|a-b|的结果为______.20.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则最后一辆车有2个空位.给出下面五个等式:①40m+10=43m-2;②40m-10=43m+2;③=2;④=2;⑤43m=n+2.其中正确的是______(只填序号).三、解答题21.计算:(1)-16-(-1+)÷ ×[2-(-4)2]2(2)解方程:-=-1(3)先化简,再求值:2(2-2y)+[2y2-3(2-2y+y2)+2],其中=1,y=-.222.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数______,点P表示的数______(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?23.已知:如图,∠AOB是直角,∠AOC= °,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?25.如图,点C在AB上,点M、N分别是AC、BC的中点,(1)若AC=12cm,BC=10cm,求线段MN的长;(2)若点C为线段AB上任意一点,满足AC+BC=acm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若点C在线段AB的延长线上,且满足AC-BC=bcm,点M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,并说明理由.请用一句简洁的话描述你发现的结论.答案和解析1.【答案】B【解析】解:∵-4-(-9)=5,∴温度-4℃比-9℃高5℃.故选:B.温度-4℃比-9℃高多少度就是-4与-9的差.本题主要考查有理数的减法在实际中的应用,熟记减去一个数等于加上这个数的相反数是解题的关键.2.【答案】A【解析】解:∵=2是关于的方程2+3m-1=0的解,∴2×2+ m-1=0,解得:m=-1.故选:A.根据方程的解的定义,把=2代入方程2+3m-1=0即可求出m的值.本题的关键是理解方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.3.【答案】B【解析】解:A、数轴上距离原点2个单位长度的点表示的数是2或-2,故A错误;B、-1是最大的负整数,故B正确;C、0的绝对值等于零,故C错误;D、没有最小的有理数,故D错误;故选:B.根据数轴上到一点距离相等的点有两个,可判断A;根据整数,可判断B;根据绝对值的意义,可判断C;根据有理数,可判断D.本题考查了有理数,没有最大的有理数,也没有最小的有理数.4.【答案】D【解析】解:A、不是同类项的不能合并,故A错误;B、不是同类项的不能合并,故B错误;C、系数相加字母及指数不变,故C错误;D、系数相加字母及指数不变,故D正确;故选:D.根据合并同类项,系数相加字母及指数不变,可得答案.本题考查了合并同类项,合并同类项系数相加字母部分不变.5.【答案】A【解析】解:∵AC=4,CB=3,∴AB=AC+CB=4+3=7,∵O是线段AB的中点,∴OB=AB=3.5,∴OC=OB-CB=3.5-3=0.5.故选:A.先计算出AB=AC+CB=4+3=7,再根据线段中点的定义得到OB=AB=3.5,然后利用OC=OB-CB进行计算.本题考查了两点间的距离:两点间的连线段长叫这两点间的距离.也考查了线段中点的定义.6.【答案】D【解析】解:∵m-2n=-1,∴1-2m+4n=1-2(m-2n)=1-2×(-1)=3.故选:D.把代数式1-2m+4n为含m-2n的代数式,然后把m-2n=-1整体代入求得数值即可.此题考查代数式求值,注意整体代入思想的渗透.7.【答案】C【解析】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.根据图形,结合互余的定义判断即可.本题考查了对余角和补角的应用,主要考查学生的观察图形的能力和理解能力.8.【答案】A【解析】解:根据题意得:16+=17,解得:=3,则原式=16-=16-1=15,故选:A.由错误的结果求出的值,代入原式计算即可得到正确结果.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.9.【答案】A【解析】解:设商品进价为,根据题意得:(1+20%)(1-20%)=48解得=50,以48元出售,可见亏2元.故选:A.依据题意,商品按进价增加20%后又降价20%以48元的价格出售的等量关系可列出等式.考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.10.【答案】D【解析】解:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+ + +…+(n+1)=个.当n=50时,==1325,即第50个图形中面积为1的正方形的个数为1325,故选:D.第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+ + +…+n+ =.此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.11.【答案】±2【解析】解:绝对值大于1且小于3的整数有±2.求绝对值大于1且小于3的整数,即求绝对值等于2的整数.根据绝对值是一个正数的数有两个,它们互为相反数,得出结果.主要考查了绝对值的性质.本题要注意不要漏掉-2.绝对值规律总结:绝对值是一个正数的数有两个,它们互为相反数;绝对值是0的数就是0;没有绝对值是负数的数.12.【答案】97°29′44″.【解析】解:度数为82° ′ 6″的角的补角的度数为: 8 °-82° ′ 6″=97°29′ ″.故答案为97°29′ ″.若两个角的和等于 8 °,则这两个角互补,其中一个角叫做另一个角的补角.根据已知条件直接求出补角的度数.本题考查了补角的定义,解题时牢记定义是关键.13.【答案】2+y2-2y【解析】解:2+y2-2y.故答案为:2+y2-2y.把、y两数首先平方,再想加,进一步减去两数积的2倍即可.此题考查列代数式,注意语言叙述的运算方法和运算顺序.14.【答案】 7°【解析】解:∵∠1与∠2互余,∠2与∠3互补,∴∠2=9 °-∠1,∠2= 8 °-∠3,∴9 °-∠ = 8 °-∠3,∴∠ =9 °+∠1,∵∠ =67°,∴∠ =9 °+67°= 7°.故答案为: 7°.根据互余的两个角的和等于9 °,互补的两个角的和等于 8 °用∠1表示出∠3,再代入数据进行计算即可得解.本题考查了余角和补角,是基础题,熟记概念是解题的关键.15.【答案】120【解析】解:时针每小时转动: 6 ÷ 2= °;当8:00时,时针转动了 °×8=2 °;故∠α= 6 °-2 °= 2 °.此类钟表问题,需理清时针每小时所转动的度数,然后再求解.解答此类钟表问题时,一定要搞清时针和分针每小时、每分钟转动的角度.时针12小时转 6 °,每小时转( 6 ÷ 2= )度,每分钟( ÷6 = . )度;分针1小时转 6 °,即每分钟转( 6 ÷6 =6)度.16.【答案】3500【解析】解:设原价为,那么:×8 %=28 元,解得=3500,故原价为3500元.依据题意商品的原价格=28 ÷(1-20%).此题的关键是把原价当成单位1计算.17.【答案】7【解析】解:∵12a m-1b3与a3b n是同类项,∴m-1=3,n=3,∴m=4,n=3,则m+n=7,故答案为:7.根据同类项是字母相同,且相同的字母的指数也相同,可得二元一次方程组,根据解二元一次方程组,可得m、n的值,根据有理数的加法,可得答案.本题考查了同类项,同类项是字母相同,且相同的字母的指数也相同,可得二元一次方程组,根据解二元一次方程组,可得m、n的值,根据有理数的加法,可得答案.18.【答案】②④【解析】解:①a=b,不能等于0,则=,错误;②若=,则a=b,正确;③若4a=7b,b≠ ,则=,错误;④若=,则4a=7b,正确;故答案为:②④根据等式的性质进行计算,判断即可.本题考查的是等式的性质,性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.19.【答案】0【解析】解:原式=-2a+a+b+a-b=0,故答案为0.根据数轴,可去掉绝对值,再计算即可.本题考查了整式的加减,熟练运用合并同类项的法则,这是各地中考的常考点.20.【答案】①③⑤【解析】解:根据总人数列方程,应是40m+10=43m-2,①正确,②错误;根据客车数列方程,应该为=,③正确,④错误;根据总人数和客车数列方程得:43m=n+2.故答案为:①③⑤.首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.21.【答案】解:(1)原式=-1-(- 2)× ×(-14)=-1-7=- ;(2)去分母,得3(-7)-2(2-5)=-6,去括号,得3-21-4+10=-6,移项,得3-4=-6+21-10,合并,得-=5所以,=-5;(3)原式=22-4y +(2y 2-32+6y -3y 2+2)=22-4y +2y 2-32+6y -3y 2+2=2y -y 2.当=1,y =- 2时,原式=2× ×(- 2)-(- 2)2=-3-9=-5 .【解析】(1)先计算16、(-4)2,再算括号里面和乘除法,最后算减法得结果;(2)按解一元一次方程的步骤求解即可;(3)先对代数式进行化简,然后再代入求值.本题考查了有理数的混合运算、整式的加减、解一元一次方程等知识点.解决(1)的关键是掌握有理数混合运算的顺序,注意(2)去分母时勿漏乘,(3)需先化简再求值.. 22.【答案】-6 8-5t【解析】 解:(1)∵OA=8,AB=14,∴OB=6,∴点B 表示的数为-6,∵PA=5t ,∴P 点表示的数为8-5t ,故答案为-6,8-5t ;(2)根据题意得5t=14+3t,解得t=7.答:点P运动7秒时追上点H.(1)先计算出线段OB,则可得到出点B表示的数;利用速度公式得到PA=5t,易得P点表示的数为8-5t;(2)点P比点H要多运动14个单位,利用路程相差14列方程得5t=14+3t,然后解方程即可.本题考查了一元二次方程的应用:利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为,然后用含的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.23.【答案】解:(1)∵∠AOB是直角,∠AOC= °,∴∠AOB+∠AOC=9 °+ °= °,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴∠2∠ 6 °,∠2∠ 2 °.∴∠MON=∠MOC-∠NOC=6 °-2 °= °,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵∠ ∠ ∠2∠2∠2∠ ∠ =2∠ ,又∠AOB是直角,不改变,∴∠2∠ °.【解析】(1)根据∠AOB是直角,∠AOC= °,可得∠AOB+∠AOC=9 °+ °= °,再利用OM是∠BOC 的平分线,ON是∠AOC的平分线,即可求得答案.(2)根据∠MON=∠MOC-∠NOC,又利用∠AOB是直角,不改变,可得.此题主要考查角的计算和角平分线的定义等知识点的理解和掌握,难度不大,属于基础题.24.【答案】解:(1)设每个足球的定价是元,则每套队服是(+50)元,根据题意得2(+50)=3,解得=100,+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为: × + (a-)=100a+14000(元),到乙商场购买所花的费用为: × + .8× •a =80a +15000(元);(3)当在两家商场购买一样合算时,100a +14000=80a +15000,解得a =50.所以购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算【解析】(1)设每个足球的定价是元,则每套队服是(+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解.本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.【答案】解:(1)由M 、N 分别是AC 、BC 的中点,得MC = 2AC ,CN = 2BC . 由线段的和差,得MN =MC +CN = 2AC + 2BC = 2× 2+ 2× =6+ = cm ;(2)MN = 2,理由如下:由M 、N 分别是AC 、BC 的中点,得MC = 2AC ,CN = 2BC .由线段的和差,得MN =MC +CN = 2AC + 2BC = 2(AC +BC )= 2cm ;(3)MN = 2,理由如下:由M 、N 分别是AC 、BC 的中点,得MC = 2AC ,CN = 2BC .由线段的和差,得MN =MC -CN = 2AC - 2BC = 2(AC -BC )= 2cm ;如图:,只要满足点C 在线段AB 所在直线上,点M 、N 分别是AC 、BC 的中点.那么MN 就等于AB 的一半.【解析】(1)根据线段中点的性质,可得MC 、CN ,再根据线段的和差,可得答案;(2)根据线段中点的性质,可得MC、CN,再根据线段的和差,可得答案;(3)根据线段中点的性质,可得MC、CN,再根据线段的和差,可得答案.本题考查了两点间的距离,利用了线段中点的性质,线段的和差.。