dvx dx c m 0 x c1t c3 1 dt dt 1 dv dy y gt2 c2 t c4 m y m g gt c2 2 dt dt 微分方程 积分一次 再积分一次
代入初始条件得: c1 v0 cos0 ,c2 v0 sin0 ,c3 c4 0
18
dvx mgR2 2 即: mvx dx x
d 2 x dvx dvx dx v x dvx ( 2 ) dt dt dx dt dx
v x mgR2 mvx dvx 2 dx v0 R x
(t 0时x R,v x v0 )
则在任意位置时的速度
质点运动微分方程除以上三种基本形式外,还可有极坐标形式, 柱坐标形式等等。 应用质点运动微分方程,可以求解质点动力学的两类问题。
6
质点动力学两类问题
第一类: 已知运动求力—微分 第二类: 已知力求运动—积分
1.绕线轮与滑块,已知ω,r,m,f=0,求rω
x x(t ) ( 式中 y y (t ) 为质点直角坐标形式的 运动方程 ) z z (t )
5
3.自然形式
d 2s m 2 F dt v2 m Fn
(式中s s (t )为质点的弧坐标形式的 运动方程。F , Fn , 分别为力F 在 自然轴系 轴, n轴上的投影)
质点系是力学中最普遍的抽象化模型;
包括刚体,弹性体,流体。
3
三、动力学分类:
质点系动力学
质点动力学
质点动力学是质点系动力学的基础。
四、.动力学的基本问题:大体上可分为两类: 第一类:已知物体的运动情况,求作用力;