Opto-Mechanical IF for ANSYS
- 格式:pdf
- 大小:339.74 KB
- 文档页数:11
巧妙转换Pro/ENGINEER 与ANSYS 间的模型数据文章来源:《CAD/CAM 与制造业信息化》 文章作者:武夷学院电子工程系 郭波 邹丽梅 发布时间:2006-05-17 字体: [大 中 小]今 《PTC 模具设计专家64位版》(PTC Ex 基于Pro/MECHANICA 的机床拖板有限三维设计软件Pro/Engineer 在机床Pro/E 下螺旋扫描所生成弹簧的力学Pro/MECHANICA 与ANSYS 在装配体结构P ROE 阵列在显示器透气孔上的设计方Pro/Engineer 扩展模块详细介绍Pro/ENGINEER 开发工具Pro/TOOLKIT日 导 读ANSYS 软件诞生于上世纪70年代。
在有限元分析软件的发展史上,ANSYS 一直作为一个重要成员存在于激烈的市场竞争中,生存下来并不断发展壮大。
目前ANSYS 是世界上最有影响的以有限元分析为基础的CAE 软件之一,广泛应用于机械制造、水利、石油化工、轻工、航空航天、电子及土木工程等行业的一般工业设计及科学研究。
使用ANSYS 进行分析必须通过构建三维几何模型,虽然其本身附带三维建模模块,但其建模能力与流行三维造型软件如Pro/ENGINEER 、UG 和CATIA 等相比实在太弱。
构建分析中需要的复杂的结构和曲面,在ANSYS 当中实际很难完成。
Pro/ENGINEER (以下简称Pro/E )是美国PTC 公司的产品,目前已经发布了Pro/ENGINEER Wildfi re 3.0版。
1985年PTC 公司成立于美国波士顿,开始参数化建模软件的研究。
经过10余年的发展,Pro/E 已经成为最优秀的三维建模CAD 软件之一。
Pro/ENGINEER 是一个基于特征的参数化实体造型系统,用户能迅速方便地利用其建立各种庞大复杂的模型。
热点模具网论坛随着计算机技术的不断发展,利用先进的CAD/CAE 工具对机械系统进行研究已经成为一种可行方案。
ANSYS在⽆轴承永磁同步电动机设计中的应⽤…蔓堕皇塑…竺.!苎曼……………………………………缨裴%“⼀.!ANSYS在⽆轴承永磁同步电动机设计中的应⽤张涛(淮阴⼯学院,江苏淮安223001)摘要:在⽆轴承永磁同步电动机设计中,应⽤ANSYS软件进⾏辅助设计、分析。
设计结果直观、准确,能够节约永磁材料和缩短设计周期。
关键词:⽆轴承电动机;永磁同步电动机;ANSYS;电磁分析中图分类号:TMMl⽂献标识码:A⽂章编号:11104—7018(2008)04-0015⼀03ApplicationofANSYSonBearinglessPermanentMagnetSynchronousMotorDesignzHANGTao按警(HuaiyinInstituteofTechnology,Huaihn223001,China)j:i=Abstract:Inthispaper,bearinglesspermanentmagneticsynchronousmotor(PMSM)wasanalyzedbyANSYS.Thea.onalysisresultswereveryintuitionisticandexact.Thecharacteristicswereimportantforoptimizingrotordesignandreducingj之:孽thepermanentc:onsume.Thecircularperio;dofmoto;rdesignwerealsoshortenKeywordsbearinglessmotor;PMSMANSYSelectromagnetismanalysis‘l圣:;;i墨:\i秘.,.⼀⼒绕组电流呈⾮线性关系,所以清楚地掌握内部磁!蠢ujIi场关系是进⾏电机设计和调试运⾏的关键。
;芝r-磁轴承具有⽆接触、不需润滑的优点,已在现代ANSYS是通⽤的有限元分析软件,在ANSYS{蒜⾼速机械设备中得以应⽤。
ansys mechanical apdl常用代码-回复Ansys Mechanical APDL常用代码ANSYS Mechanical APDL是ANSYS公司的一款功能强大的通用有限元分析软件,常用于机械、电子、航空航天等工程领域的结构分析和优化。
在使用APDL软件进行分析时,掌握一些常用的代码是非常重要的。
本文将详细介绍一些常用的代码,并进行逐步回答相关问题。
一、几何建模1.命令:ET,1,SHELL181说明:定义壳单元类型为SHELL181。
问题:如何定义壳单元类型?回答:在APDL中,使用ET命令可以定义单元类型。
其中,1为单元类型号码,SHELL181为单元类型名称。
使用SHELL181可以定义二维壳单元,适用于模拟薄壳结构。
2.命令:KEYOPT,1,1,1说明:设置壳单元为平面应力假设。
问题:如何设置壳单元平面应力假设?回答:在APDL中,使用KEYOPT命令可以设置单元的选项键值。
其中,1表示壳单元的选项键号,1表示将该选项键值设置为1,即为平面应力条件。
这样可以在分析中使用平面应力假设。
3.命令:SIZE,1说明:设置单元尺寸。
问题:如何设置单元尺寸?回答:在APDL中,使用SIZE命令可以设置单元的尺寸。
其中,1表示单元尺寸命令组号。
通过指定相应的参数,例如厚度,可以设置单元的尺寸。
二、加载边界条件1.命令:N,1,0,0说明:在坐标(0,0)处创建一个节点。
问题:如何创建一个节点?回答:在APDL中,使用N命令可以创建一个节点。
其中,1表示节点号码,0和0表示节点的坐标。
通过指定不同的坐标可以在不同位置创建节点。
2.命令:D,1,UX,0说明:将节点1的X方向位移约束为0。
问题:如何约束节点的位移?回答:在APDL中,使用D命令可以约束节点的位移。
其中,1表示节点号码,UX表示需要约束的位移方向,0表示位移约束的数值。
通过指定不同的位移方向和数值可以对节点的位移进行约束。
——集功能完整性、技术先进性与易学易用性于一体的高端通用机械分析程序机械分析产品关键词●功能完整以结构力学分析为主,涵盖线性、非线性、静力、动力、疲劳、断裂、复合材料、优化设计、概率设计、热及热结构耦合、压电等机械分析中几乎所有的功能。
●技术先进非线性:从单元技术、本构模型技术和求解技术等各个方面为高效地解决各种复杂非线性问题提供了坚实保障;动力学:独具特色、简便易用的刚柔混合多体动力学分析技术,基于三维结构的全面的转子动力学分析技术等;梁壳结构:非线性/实体/复合材料壳结构、非线性/复合材料/真实截面梁结构、基于MPC的自动点焊处理技术等为薄壁结构提供了独特的模拟分析能力;高效并行:适应于各种计算机体系结构的高效分布式并行计算;加速收敛:独特的“VT变分技术”大大减少非线性和瞬态动力学计算的迭代时间。
●易学易用全面集成于A N S Y S新一代协同仿真环境A N S Y S Wo r k b e n c hEnvironment,具有超强的易学易用性。
作为ANSYS的核心产品,ANSYS Mechanical是最顶级的通用机械仿真分析系统,在全球拥有超过13000家的用户群体,是世界范围应用最为广泛的MCAE软件,在中国亦占据了超过40%的市场份额。
它除了提供全面的结构、热、压电、声学、以及耦合场等分析功能外,还创造性地实现了与ANSYS新一代计算流体动力学分析程序CFX的任意双向流固耦合计算。
完整的分析功能、先进的仿真技术、独特的易学易用性等是它的最主要特色。
ANSYS Mechanical——集功能完整性、技术先进性与易学易用性于一体的高端通用机械分析程序集功能完整性、技术先进性与易学易用性于一体的高端通用机械分析程序镍钛形状记忆合金材料模拟索膜找形分析橡胶护套分析线面接触弹簧模拟白车身的模态分析发动机叶盘循环对称模态分析利用模态综合法进行飞机整机模态分析悬架刚柔混合动力分析双体船波浪冲击分析多转子临界转速计算Campbell 图储油罐固液耦合地震响应分析(象腿现象)弹射座椅瞬态冲击响应■ 非线性分析● 几何非线性● 材料非线性● 接触非线性● 单元非线性■ 动力学分析● 模态分析- 自然模态- 预应力模态- 阻尼复模态- 循环模态- 模态综合法● 瞬态分析- 非线性全瞬态- 线性模态叠加法● 谐响应分析● 响应谱分析- 单点谱- 多点谱● 随机振动● 转子动力学- 临界转速- 不平衡响应- 稳定性- 2d 或平面单元的陀螺效应;● 多刚体、多柔体动力学■叠层复合材料■屈曲分析航天蒙皮板承受极限压力载荷考虑时效特征的复合材料板屈曲分析4层复合材料层间失效模拟加筋板复合材料屈曲分析VLCC极限承载能力分析薄膜的褶皱分析油桶的后屈曲分析●非线性叠层壳单元●高阶叠层实体单元●单元特征- 初应力- 层间剪应力- 温度相关的材料属性- 应力梯度跟踪- 中面偏置● Tsai-Wu失效准则●图形化- 图形化定义材料截面- 3D方式察看板壳结果- 逐层查看纤维排布- 逐层查看分析结果●线性屈曲分析●非线性屈曲分析●后屈曲分析●循环对称屈曲分析集功能完整性、技术先进性与易学易用性于一体的高端通用机械分析程序■ 断裂力学分析● 应力强度因子计算● J 积分计算● 能量释放率计算■ 大题化小● P 单元技术● 子结构分析技术● 子模型分析技术船体模型大题化小■ 热分析● 稳态、瞬态● 传导、对流、辐射● 相变(热焓)● 流体单元● 非线性- 材料特性与温度相关- 表面热交换系数与温度相关- 面面接触传热- 单元生死BGA电子封装瞬态热分析裂纹扩展区域预测初始缺陷引起的裂纹扩展坝体浇筑过程的热分 雷达发射机冷板热分析摩擦生热相互辐射热流量橡胶密炼室温度场分布发动机热冲击■耦合分析●热-结构耦合分析●热-电分析●静流体-结构完全耦合●声场分析,声-结构耦合分析- 近/远场模拟- 模态、谐响应、瞬态分析●压电分析- 电激励、机械激励- 模态、谐响应、瞬态分析■设计优化●优化算法- 子空间迭代法- 一阶法●多种辅助工具- 随机搜索法- 等步长搜索法- 乘子计算法- 最优梯度法- 设计灵敏度分析●拓扑优化●变分优化技术发声器周围声压分布电解铝设备温度场分析采用直接耦合法一次计算到焊接过程中的温度、应力分布压电材料MEMS谐振器通过施加电压改变谐振频率ANSYS与CFX双向瞬态流-固-热直接耦合分析结构尺寸对应力影响的响应图开孔的位置作为优化参数响应参数蜘蛛网图拓扑优化200个优化参数采用变分优化技术后,计算时间由两周缩减到两个小时集功能完整性、技术先进性与易学易用性于一体的高端通用机械分析程序■ 概率设计系统(PDS)● 十种概率输入参数● 考虑参数的相关性● 两种概率计算方法- 蒙特卡罗法直接抽样Latin Hyper cube 抽样- 响应面法中心合成Box-Behnken 设计● 支持分布式并行计算● 可视化概率设计结果- 输出响应参数的离散程度Statistics Histogram Sample Diagram- 输出参数的失效概率Cumulative Function Probabilities- 离散性灵敏度Sensitivities Scatter DiagramResponse Surface结果离散图灵敏度的直方图与饼图■ 二次开发特征● ANSYS 参数化设计语言(APDL)● 用户可编程特性(UPF ) ● 用户界面设计语言(UIDL)● 专用界面开发工具(TCL/TK )● 外部命令● 面向对象编程语言(SDK)广州日立自动扶梯专用分析系统■ 求解器● 迭代求解器- 分布式预条件共轭梯度(DPCG)- 分布式雅可比共轭梯度 (DJCG)- 非完全共轭梯度(ICCG)● 直接求解器- 稀疏矩阵- 波前求解器● 特征值- 分块 Lanczos 法- 子空间法- 凝聚法- QR 阻尼法(阻尼特征值)- 非对称法- LANPCG- 超节点法(SNODE )● VT 求解加速技术- 减少迭代的次数- 对于初次求解可以加快2至5倍- 对于参数的改变(如尺寸、材料、载荷等)可以加快3至10倍采用VT 求解加速技术后,求解时间加快了2.9倍PCG 求解器速度随CPU 数量增加,求解速度基本线性加快悬架动力分析(2.5千万DOF)■ 并行求解器● 分布式并行求解器- 自动将大型问题拆分为多个子域,分发给分布式结构并行机群的不同CPU (或节点)求解- 支持不限CPU 数量的共享式并行机或机群- 求解效率与CPU个数呈线性提高气动载荷作用下飞机整机强度分析集功能完整性、技术先进性与易学易用性于一体的高端通用机械分析程序● 代数多重网格求解器- 支持多达8个CPU 的共享式并行机- CPU 每增加一倍,求解速度提高80%-对病态矩阵的处理性能优越将模型分为多个区域,分配给不同的机器计算随着有限元算法理论、计算机硬件和软件技术的进步和实际工业需求的提高,现代CAE 技术的应用已逐步由以线性模拟为主向以非线性模拟为主快速发展。
Opto-Mechanical I/F for ANSYSVictor Genberg, Keith Doyle, Gregory MichelsSigmadyne, Inc., 803 West Ave, Rochester, NY 14611genberg@AbstractThermal and structural output from ANSYS is not in a form useful for optical analysis software. Temperatures, displacements and stresses at arbitrarily located FE nodes can not be input directly into optical software. This paper discusses the post-processing steps required to present ANSYS results in a useable format for CODEV, ZEMAX, and OSLO. Specific issues include optical surface deformations, thermo-optic effects, adaptive optics, and dynamic response. Finite element computed optical surface deformations are fit to several polynomial types including Zernikes, aspheric, and XY polynomials. Higher frequency deformations are interpolated to a user-defined uniform grid array using element shape functions to create interferogram files. Three-dimensional shape function interpolation is used to create OPD maps due to thermo-optic effects (dn/dT), which are subsequently fit to polynomials and/or interferogram files. Similar techniques are also used for stress birefringence effects. Adaptive optics uses influence functions to minimize surface error before or after pointing and focus correction.IntroductionHigh performance optical systems require integrated optomechanical analysis to predict performance (Reference 1). This requires that finite element analysis (FEA) results be accurately passed to optical analysis programs (see Figure - Integrated Analysis). Optical analysis programs have very limited input formats. Rigid body motions of optics are input using one file format, whereas elastic distortions are typically described as Zernike polynomials or rectangular arrays in a separate file.Integrated AnalysisZernike polynomials are an infinite set of polynomials (see Figure - Zernike polynomials) of radius raised to a power (N) multiplying sines and cosines of multiples (M) of polar angle. The terms N and M are referred to as the radial and circumferential wave numbers. These polynomials are similar to the Seidel aberrations used to represent optical performance (Reference 2).Zernike polynomialsTypical modifications to FEA data include:•Convert units•Align coordinate systems•Switch rotations to left-handed system•Fit displacements with Zernike polynomials•Interpolate results from FEA mesh to a rectangular arrayIn a lens system, not only are surface distortions important, but also index of refraction changes due to temperature (thermo-optic effects) and stress (stress-optic effects) are required for a complete performance prediction. The index of refraction changes with temperature and stress and can significantly affect optical performance. To get these effects into the optical analysis, it is necessary to integrate through each optic and write the net effect as an optical path difference (OPD) file.In this paper, an interface program called SigFit will be discussed which converts FEA thermal and structural results from ANSYS to optical analysis programs CODE V, ZEMAX, and OSLO. A typical analysis flow is shown in (see Figure - Analysis Flow).Analysis FlowStructural DistortionOften raw FEA results are dominated by rigid-body motion (see Figure - Mirror on delta frame) as in the deformed side view (see Figure - Deformed in 1g). If the deformations are processed in SigFit, the rigid-body motions can be subtracted to see the elastic distortions, the elastic distortions with power removed, and the surface with all selected Zernike polynomials removed (see Figure- Surface results). Subtraction of rigid-body motion allows the user to understand and quantify the elastic deformations by themselves and may also simulate rigid body motion removal in the actual hardware. Power subtraction is often performed to simulate focus correction in the optical system or to allow power changes to be tracked separately from the rest of the surface deformation. The residual after all terms removed represents how accurately the selected set of Zernike polynomials represent the deformation. This data is represented in tabular form (see Figure - Zernike Table) and written in files for the specific optical analysis program of choice.Mirror on delta frame Deformed in 1gSurface resultsZernike TableA special issue that requires attention is that the raw Z displacement does NOT represent the optical sag (Reference 3). If an optic, supported at it's vertex, deforms under an isothermal temperature increase, then the radius-of-curvature increases causing a loss of optical power (see Figure - Radial correction). In that figure, the FEA Z displacement is positive whereas the optical sag is negative. The proper sag can be calculated by correcting the Z displacement using the radial displacement and the optical prescription of the surface. SigFit calculates and uses the corrected sag for surface distortion calculations.Radial correctionTo write the FEA results in optics format, SigFit will account for the following translation issues:1)Convert FEA units to optics units, including wavelength of light2)Convert results to optical coordinate systems, including left-handed rotations3)Allow use of surface normal (CODE V, OSLO) or axial sag deformations (ZEMAX).4)Account for apertures and obstructions when processing FEA results5)Use the normalization and ordering of Zernikes in the target optics code6)Use area weighting in the fitting process to account for non-uniform FEA meshesIn addition to the optical files created, SigFit will write nodal files in ANSYS format so that results of the SigFit analysis can be displayed on the FEA model.Higher order surface distortions, such as local mount effects, or quilting sag in lightweight mirrors, are typically poorly represented by Zernike polynomials. In this case, the FEA model results can be converted in SigFit to rectangular arrays (Hit Maps) in the same format as interferometric test data. To calculate the displacement at an array point, SigFit uses FEA shape functions to interpolate (linear or cubic) from the arbitrary FEA mesh (Reference 4). As a data check on the interpolation, SigFit writes a dummy visualization finite element model of the rectangular mesh in ANSYS format so the interpolated results can be compared graphically to the original FEA results (see Figure - Interpolated results). The resulting Hit Map may be used for comparison of analysis and test on a point-by-point basis. The Hit Map can also be used as a theoretical back-out array, to allow optical fabricators to polish correction factors into the finished optic.Within SigFit, the interpolation between FEA and Hit Map can run both ways. Thus interferometric test data may be brought into SigFit as a deformed shape and interpolated onto the FEA mesh. The shape may be fit with Zernikes, or compared to FEA results point by point. This could also be used in the adaptive optic analysis module as a deformation to be corrected by actuators.Interpolated resultsThermo-Optic and Stress-Optic EffectsIn many lens materials, the index of refraction (n) is a function of temperature (T). A lens subjected to temperature changes will perform differently due to dn/dT effects. An optics program allows the importation of optical-path-difference (OPD) maps to be applied to optical surfaces to account for the thermo-optic index change. Within SigFit, an OPD map is created by integrating the dn/dT effect through each optic. The integration along an arbitrary path requires 3D shape function interpolation from the nodal temperatures (see Figure - Thermo-optic effects). SigFit writes the OPD map in optical format (Zernike polynomials or Hit Map array) and nodal file format for ANSYS plotting.Thermo-optic effectsSimilar effects are caused by stress induced changes to index of refraction. SigFit uses similar integration to calculate stress-optic OPD maps or stress birefringence maps (Reference 5).A lens system subjected to a laser beam absorbs heat which causes thermo-elastic distortion, thermo-optic OPD efects and stress-optic OPD effects (see Figure - Lens system). The SigFit files were passed to CODE V for system optical analysis. The contribution of each effect is shown as CODE V output (see Figure - System Wavefront).Lens systemSystem WavefrontAdaptive AnalysisThe NASA JWST orbiting telescope will have a very large primary mirror which will be subjected to temperature variations causing undesirable distortions. A set of on-board actuators will be used improve the optical performance by correcting the thermo-elastic distortions. SigFit provides an adaptive analysis capability to determine the proper actuator inputs and the resulting performance of the corrected system (Reference 6). The analyst creates a set of influence functions which are surface deflections for unit actuator forces and analyzes for the unwanted distortion. SigFit will solve for the scale factors on actuatorsto drive the surface RMS to a minimum (see Figure - Adaptive Analysis). The corrected surface is fit with Zernike polynomials and written in optics format. The corrected surface is also written to ANSYS nodal files for viewing graphically.Adaptive AnalysisDynamic AnalysisIf dynamic mode shapes are passed to SigFit, they can be decomposed into rigid-body and elastic distortion components (Reference 7). SigFit can then use modal analysis techniques to conduct harmonic, random or transient analysis. The resulting response will be reported as rigid-body motion and elastic surface RMS motion. This technique is especially useful for random analysis since the resulting nodal displacements from an FEA random analysis have lost all phasing (sign) information. From the FEA random response results, the user cannot distinguish between rigid body (pointing) errors and elastic (wavefront) errors (see Figure - Random Response). SigFit not only decomposes the response into rigid body and elastic effects, but it lists the percent contribution of each mode to each effect. The modal contributions are valuable for creating design improvements.Random ResponseSystem AnalysisFor optical systems where the deformations are small, linear superposition may apply. If so, SigFit offers a system response analysis capability (Reference 8). In this approach, the optical analysis program is used to create a set of sensitivity response at a key optical output location such as the exit pupil. These sensitivities are the wavefront response at the exit pupil represented as a Zernike table, due to unit Zernike inputs at each surface. This is a large matrix, but can be created by running a script program. For any given load case (static or dynamic), the system response is calculated by superposition. The system response capability is especially useful in adaptive optics (Reference 9). A simple telescope with an adaptive primary mirror is used as an example (see Figure - Simple Telescope). For a gravity load along the optical axis, the primary mirror, secondary mirror, and exit pupil are shown. If adaptive control is applied to correct only the primary mirror, a significant improvement is shown. However, if the adaptive control is applied to the exit pupil response, much better system performance is obtained. The adaptive primary not only nulls itself, but creates a reverse figure to correct the secondary mirror as well (see Figure -Telescope Correction).Simple TelescopeTelescope CorrectionSystem analysis provides a very useful design tool. Using traditional analysis methods, the mechanical engineer must interface with the optical engineer to obtain system level response for every design change (see Figure - Old Design Process). If the optical design does not change, only the mechanical support structure, the sensitivity matrix discussed above is still valid. The mechanical engineer can cycle through design trades on his own, using system level response as a performance metric (see Figure - New Design Process).Old Design ProcessNew Design ProcessConclusionAn opto-mechanical interface program for ANSYS has been discussed. SigFit offers many features which make it useful to enhance the overall design process of optical systems. More details are given in the reference papers below as well as the SigFit documentation. The papers and documentation are all available for download from .References1.K. Doyle, V. Genberg, G. Michels, Integrated Optomechanical Analysis, TT58, SPIE Press, Oct, 20022.V. Genberg, G. Michels, K. Doyle, "Othogonality of Zernike Polynomials", SPIE Paper # 4771-33 July, 20023.V. Genberg, G. Michels, K. Doyle, "Making Mechanical FEA Results Useful in Optical Design", SPIE Paper 4769-4, July,20024.V. Genberg, “Shape Function Interpolation of 2D and 3D Finite Element Results”, MSC World Users Conference, May 19935.K. Doyle, V. Genberg, G. Michels, “Numerical methods to compute optical errors due to stress birefringence”, SPIE Paper4789-05, July, 20026.V. Genberg, G. Michels, "Opto-Mechanical Analysis of Segmented/Adaptive Optics", SPIE Paper 4444-10, August, 20017.V. Genberg, K. Doyle, G. Michels, "Optical performance as a function of dynamic mechanical loading", SPIE Paper 5178-4,20038.V. Genberg, K. Doyle, G. Michels, “Optomechanical Design and Analysis of Adaptive Optical Systems using FEA and OpticalDesign Software”,FEMCI Workshop, 20039.K. Doyle, V. Genberg, G. Michels, "Integrated optomechanical analysis of adaptive optical systems",SPIE Paper 5178-5, 2003。