小升初数学专项练习:分数应用题
- 格式:doc
- 大小:365.00 KB
- 文档页数:6
分数问题—专题练习《浓度问题》一.选择题1.(2018秋•抚宁区期末)含糖量是10%的糖水200克,糖不变,要使含糖量降低到8%,需要加水() A.4克B.50克C.250克【分析】抓住糖的重量不变,先根据一个数乘分数的意义,用“20010%20⨯=”计算出糖水中糖的质量;后来糖水的8%是20克,根据已知一个数的几分之几是多少,用除法求出后来糖水的质量,根据“后来糖水的质量-原来糖水的质量=加入水的质量”解答即可.【解答】解:20010%8%200⨯÷-=-250200=(克)50答:需要加水50克.故选:B.2.(2019•益阳模拟)在浓度为16%的40千克盐水中,蒸发()水后可将浓度提高到20%.A.8千克B.9千克C.16千克D.4千克【分析】用40千克减去浓度是20%的盐水的盐水的重量,就是应蒸发掉水的重量.因盐的重量不变,含盐⨯千克,含盐20%的盐水的重量就是20%的盐水中的盐等于含盐16%的盐水中的盐,既(4016%)⨯÷千克,据此解答.(4016%20%)-⨯÷,【解答】解:404016%20%=-,40328=(千克);答:蒸发8千克水后可将浓度提高到20%.故选:A.3.(2019•益阳模拟)现在有果汁含量为40%的饮料600ml,要把它变成果汁含量为25%的饮料,需要加水()ml.A.400 B.240 C.360 D.100【分析】根据一个数乘分数的意义,先用“60040%⨯”计算出600ml 果汁饮料中含有果汁的重量是240ml ,进而根据“果汁含量不变”,得出后来果汁含量为25%的饮料的果汁含量是240ml ;根据已知一个数的几分之几是多少,求这个数,用除法计算出后来果汁饮料的重量,继而用“后来果汁饮料的重量-原来果汁饮料的重量”解答即可.【解答】解:果汁含量:60040%240()ml ⨯=,后来果汁饮料的重量:24025%960()ml ÷=,需要加水:960600360()ml -=,答:需要加水360ml .故选:C .4.(2019•益阳模拟)把20克的盐放入100克水,盐与水的最简整数比是( )A .1:6B .1:5C .20:100【分析】要求“盐与水的比是多少”,必须知道盐和水的质量,此题已经给出,所以用盐的质量:水的质量即可.【解答】解:20:1001:5=.故选:B .5.(2018•长沙)浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克,混合后所得到的酒精溶液的浓度是( )A .62.5%B .60%C .61.5%D .57%【分析】根据“溶质质量=溶液质量⨯浓度”分别求出每种浓度溶液中纯酒精的质量,再用两种溶液中酒精的质量之和除以两种溶液的质量.【解答】解:(50070%30050%)(500300)⨯+⨯÷+(350150)800=+÷500800=÷62.5%=答:混合后所得到的酒精溶液的浓度是62.5%.故选:A .6.有甲、乙、丙三种盐水,按甲与乙的数量之比为2:1混合得到浓度为13%的盐水,按甲与乙的数量之比为1:2混合得到浓度为14%的盐水,如果按甲、乙、丙的数量之比为1:1:3混合得到的盐水浓度为10.2%,那么丙的浓度为( )A .7%B .8%C .9%D .7.5%【分析】根据:“按甲与乙的数量之比为2:1混合”,“按甲与乙的数量之比1:2混合”,“按甲、乙、丙的数量之比1:1:3混合”.从上面的条件中我们发现,只要使前两次操作得到的12%的盐水与14%的盐水重量相等,就可以使12%的盐水与14%的盐水混合,得到浓度为(12%14%)213%+÷=的盐水,这种盐水里的甲和乙的数量比为1:1.现在我们要用这样的盐水与盐水丙按2:3混合,得到浓度为10.2%的盐水,13%10.2% 2.8%-=,这样2份的13%的盐水就多了5.6%,这5.6%正好补全了丙盐水与10.2%的盐水的差距,5.6%3 1.87%÷≈,10.2% 1.87%8.33%-=,所以丙盐水的浓度为8.33%.【解答】解:(12%14%)213%+÷=;(13%10.2%)2 5.6%-⨯=;10.2% 5.6%3-÷10.2% 1.87%≈-8.33%=答:丙盐水的浓度约为8.33%.故选:B .二.填空题7.(2019•广东)杯中有浓度为36%的盐水,倒入一定量的水后,盐水的浓度降低到30%,若要稀释到浓度为24%,则再加入的水是上次所加水的 1.5 倍.【分析】这杯浓度为36%的盐水,假设盐水重100克,盐就是10036%36⨯=克,倒入一定量的水后,盐水的浓度降低到30%,由于盐的重量不变,所以此时盐水的重量是盐的重量除以浓度,是3630%120÷=克,那么加入水的重量就是12010020-=克,若要稀释到浓度为24%,那么加入水的重量应是3624%12030÷-=克,用除法求出再加入的水是上次所加的几倍即可.【解答】解:假设盐水重100克,盐的重量:10036%36⨯=(克)÷=(克)浓度30%时盐水的重量:3630%120-=(克)加入水的重量:12010020÷=(克)浓度24%时盐水的重量:3624%150-=(克)第二次加入水的重量:15012030÷=3020 1.5答:再加入的水是上次所加水的1.5倍.故答案为:1.5.8.(2019春•沈阳月考)1000千克葡萄含水率为96.5%,一周后含水率降为96%,这些葡萄的质量减少了125千克.【分析】含水率下降,这一过程中纯葡萄的质量不变,先把原来葡萄的总质量看成单位“1”,用原来葡萄的质量乘96.5%,求出原来水的质量,进而求出纯葡萄的质量;再把后来葡萄的总质量看成单位“1”,它-就是纯葡萄的质量,再根据分数除法的意义求出后来葡萄的总质量,用原来的总质量减去现在的(196%)的总质量,就是减少的质量.-⨯【解答】解:1000100096.5%=-1000965=(克)35÷-35(196%)=÷354%=(千克)875-=(千克)1000875125答:这些葡萄的质量减少了125千克.故答案为:125.9.(2019•郑州模拟)浓度为70%和40%的酒各一种,现在要用这两种酒配制含酒精60%的酒300克,需要浓度70%的酒200克,浓度40%的酒克.-克,根据一种浓度是70%,另一种浓度为40%,【分析】设取70%的酒精x克,则取40%的酒精(300)x现在要配制成浓度为60%的洒精300克,可列方程求解.【解答】解:设取70%的酒精x 克,则取40%的酒精(300)x -克,则由题意得:70%(300)40%30060%x x +-=⨯,0.71200.4180x x +-=0.360x =200x =所以300300200100x -=-=(克).答:需70%的酒精200克,40%的酒精100克.故答案为:200;100.10.(2019•长沙)130克含盐5%的盐水,与含盐9%的盐水混合,配成含盐6.4%的盐水,这样配成的6.4%的盐水有 200 克.【分析】设含盐9%的盐水为x 克,则配成的盐水中含盐是(1305%9%)x ⨯+,盐水是(130)x +克,再根据含盐率是6.4%,列出方程求出x 的值,再加上130克即可.【解答】解:设含盐9%的盐水为x 克,根据题意可得方程:1305%9%(130) 6.4%x x ⨯+=+⨯,6.50.098.320.064x x +=+,0.026 1.82x =,70x =,13070200+=(克),答:这样的盐水有200克.故答案为:200.11.(2019•长沙)100克15%浓度的盐水中,放进了盐8克,为使溶液的浓度为20%,那么,还得再加进水 7 克.【分析】加入8克后,溶液共有10015823⨯+=克盐,达到20%后的溶液总质量为2320%115÷=(克).加入8克盐后总质量为108克,故应该再加水1151087-=(克).【解答】解:(10015%8)20%(1008)⨯+÷-+,2320%108=÷-,115108=-,7=(克);答:还得再加水7克.12.(2019•上街区)有糖水若干,加入一定量的水后,含糖率降低到3%,第二次又加入同样多的水后,含糖率降低到2%,第三次再加入同样多的水,这时糖水的含糖率是 1.5 %.【分析】糖水第一次加入水后含糖率降低到了3%,第二次在加入同样多的水后含糖率降到了2%,这里面不变的量是糖的质量没有变,我们可以设加入了X 水,原来有的水看成1,那么第一次加入水后糖的含量是(1)3%X +⨯第二次加入水后糖的含量是(1)2%X X ++⨯,这样我们就可以求出加入的水是X 是多少,(1)3%(1)2%X X X +⨯=++⨯可以求出1X =,第三次加入同样多的水后糖的含量是3(11)3%(113) 1.5%200+⨯÷+⨯==故第三次加入同样多的水后这时糖水的含糖量是1.5%.【解答】解:设加入水x 杯,第一次加入x 杯水后,糖水的含糖百分比变为3%--即含糖(1)3%x +⨯第二次又加入同样多的水,糖水的含糖百分变比为2%--即含糖(1)2%x x ++⨯得(1)3%(1)2%x x x +⨯=++⨯1x = 第三次再加入同样多的水,糖水的含糖3(11)3%(113) 1.5%200+⨯÷+⨯==故第三次加入同样多的水后的糖水的含糖量是1.5%答:第三次加入同样多的水后,这时糖水的含糖量是1.5%.13.(2018•长沙)小高想要配制浓度为35%的盐水,目前他有浓度为20%的盐水280克.需要再加入浓度为40%的盐水 840 克.【分析】原盐水从20%到35%,浓度提高了35%20%15%-=,加入的盐水从40%到35%,浓度减少了40%35%5%-=,原盐水共280克,所以加入的盐水应该为:28015%5%840⨯÷=克.【解答】解:280(35%20%)(40%35%)⨯-÷-28015%5%=⨯÷840=(克)答:需要再加入浓度为40%的盐水 840克.故答案为:840.14.(2018•南京)两个相同的瓶子装满酒精溶液,一个瓶中酒精与水的体积之比是3:1,而另一个瓶中酒精与水的体积之比是4:1.若把两瓶酒精溶液混合,混合液中酒精与水的体积之比是 31:9 .【分析】根据题意,把两瓶酒精溶液混合后,酒精与水的体积之和没变,把两个酒精瓶的容积分别看作一个单位,求出酒精和水各占酒精瓶容积的几分之几,然后再求混合液中酒精和水的体积之比是多少. 【解答】解:将一个酒精瓶容积看成一个单位,则在一个瓶中,酒精占33314=+,水占11134=+; 而在另一个瓶中,同样,酒精占44415=+,水占11415=+;于是在混合液中,酒精和水的体积之比是:3411():()4545++,319:2020=,31:9=.答:混合液中酒精和水的体积之比是31:9.故答案为:31:9.15.(2018•南昌)桶中有些浓度为40%的某种盐水,当加入5千克水后,浓度降低到30%,再加入 8 千克盐,可使盐水的浓度提高到50%.【分析】设原来盐水为x 千克,则原溶液中盐的质量40%x ⨯,加入水后盐的质量不变但溶液质量增加,所以可求出原来盐水的质量;同样加入盐后盐的质量40%x y =⨯+,溶液质量5x Y =++,从而依据浓度公式列式求解.【解答】解:设原来有盐水x 克,40%(5)30%x x ÷+=,0.40.3(5)x x =⨯+,0.40.3 1.5x x =+,0.1 1.5x =,15x =;设再加入y 克盐,(1540%)(155)50%y y ⨯+÷++=,60.5(20)y y +=⨯+,60.5100.50.5y y y y +-=+-,60.56106y +-=-,0.50.540.5y ÷=÷,8y =,答:再加入8千克盐,可使盐水的浓度提高到50%.故答案为:8.16.(2018•长沙)一杯盐水,第一次加入一定量的水后,盐水的含盐百分比变为15%;第二次又加入同样多的水,盐水的含盐百分比变为12%;第三次再加入同样多的水,盐水的食盐百分比将变为 10 %.【分析】由题意可知:第一次加入一定量的水后,盐水含盐量的百分比变为15%,第二次又加入同样多的水,盐水含盐量的百分比变为12%,那么由含盐量不变即可列式计算.【解答】解:第一次加入一定量的水后,盐水含盐量的百分比变为15%,第二次又加入同样多的水,盐水含盐量的百分比变为12%,那么由含盐量不变,第二次又加入同样多的水后,含盐量=第一次加入一定量的水后的盐水12%⨯+第二次所加入的水的重量12%⨯=第一次加入一定量的水后的盐水15%⨯,所以第一次加入一定量的水后的盐水:所加入一定量的水12%:15%12%4:1=-=;所以未加水时的盐水:每次所加入一定量的水41:13:1=-=;所以第三次加入同样多的水,盐水含盐量的百分比将变为(31)15%10%3111+⨯=+++.故答案为:10.17.(2017•长沙)将100g 浓度为20%的食盐溶液与200g 浓度为25%的食盐溶液混合,再将混合溶液蒸发100g 水,得到的溶液浓度为 35% .【分析】根据溶液混合前后,溶质的质量不变,溶质质量=溶液质量⨯溶质的质量分数,溶质质量分数100%=⨯溶质质量溶液质量,进行分析解答.【解答】解:溶液混合前后,溶质的质量不变,100g 浓度为20%的食盐溶液与200g 浓度为25%的食盐溶液混合,再将混合溶液蒸发100g 水,最后所得溶液的溶质质量分数是10020%20025%100%100200100⨯+⨯⨯+-2050100%200+=⨯ 70100%200ϖ=⨯35%=;答:得到的溶液浓度为35%.故答案为:35%.三.判断题18.(2008秋•疏勒县期末)把10克糖放入到90克水中,这时糖水的含糖率为10%. √ .(判断对错) 【分析】应正确理解含糖率,即糖的重量占糖水重量的百分之几,计算方法为:100%⨯糖的重量糖水的重量;进行解答继而进行判断; 【解答】解:10100%10%1090⨯=+; 故答案为:√.19.将a 克盐完全溶解在一些清水中,含盐率正好是10%,若接着在这些盐水中又溶解a 克盐后,含盐率就达到20%. 错误 .(判断对错)【分析】根据盐的重量是a 克,含盐率=盐的重量÷盐和水的总重量100%⨯,即可求出盐水重量10%10a a ÷=克,再加入a 克盐后,盐是2a 克,盐水的重量为1011a a a +=,再根据含盐率=盐的重量÷盐和水的总重量100%⨯,据此解答.【解答】解:盐水重量10%10a a ÷=(克),含盐率:()(10)18.18%a a a a +÷+≈,所以若接着在这些盐水中又溶解a 克后,含盐率就达到20%,是错误的. 故答案为:错误.四.应用题20.(2019秋•温县期末)某酒厂有48︒的白酒(含酒精48%)125千克,现在要把它勾兑成50︒的白酒,需要添加酒精多少千克?【分析】根据题意,加入酒精,把含酒精48%的白酒变成含酒精50%的白酒,那么水的质量不变,先把原来白酒的总质量看成单位“1”,用原来白酒的总质量乘(148%)-,求出水的质量,再把后来白酒的总质量看成单位“1”,它的(150%)-就是水的质量,然后根据分数除法的意义求出后来白酒的总质量,再减去原来白酒的总质量,就是加入酒精的质量.【解答】解:125(148%)⨯-12552%=⨯65=(千克)65(150%)÷-6550%=÷130=(千克)1301255-=(千克)答:需要添加酒精5千克.21.(2019春•黄冈期末)在质量为200kg ,浓度为50%的硫酸溶液中,再加入多少千克浓度为5%的硫酸溶液,就可以配制浓度为25%的硫酸溶液?【分析】先求出200千克浓度为50%的硫酸中的含硫酸的量,设出加入x 千克浓度为5%的硫酸溶液,就可以配制浓度为25%的硫酸溶液.则加入的溶液中含硫酸的量为5%x 千克,而配制成的溶液中含硫酸的量为25%(200)x ⨯+千克,由此根据硫酸的含量不变列出方程,解答即可.【解答】解:设加入x 千克浓度为5%的硫酸溶液,就可以配制浓度为25%的硫酸溶液.根据硫酸的含量不变列出方程:20050%5%25%(200)x x ⨯+⨯=+1000.050.2550x x +=+0.250x =250x =答:加入250千克浓度为5%的硫酸溶液,就可以配制浓度为25%的硫酸溶液.22.(2019•郑州)浓度10%的酒精溶液50克、浓度15%的酒精溶液50克与浓度12%的酒精溶液100克混合,混合后的酒精溶液浓度是多少?【分析】先计算各种酒精溶液中酒精的含量,以及酒精溶液的总质量,然后根据浓度问题公式:浓度=溶质÷溶液100%⨯,代入公式计算混合后酒精溶液的浓度即可.【解答】解:(5010%5015%10012%)(5050100)100%⨯+⨯+⨯÷++⨯24.5200100%=÷⨯12.25%=答:混合后的酒精溶液的浓度为12.25%.23.(2019•泉州模拟)甲、乙两种酒各含酒精72%和48%,要配制含酒精64%的酒3600克,应当从这两种酒精中各取多少克?【分析】根据题意,设需要甲酒x 克,则需要乙酒(3600)x -克,根据酒精的含量不变,有:甲种酒中酒精含量+乙种酒中酒精含量64%=的酒的酒精含量,列方程求解即可.【解答】解:设需要甲酒x 克,则需要乙酒(3600)x -克,72%48%(3600)360064%x x +⨯-=⨯0.720.4836000.4836000.64x x +⨯-=⨯0.243600(0.640.48)x =⨯-0.2436000.16x =⨯2400x =360024001200-=(克)答:需要甲种酒2400克,乙种酒1200克.24.(2018秋•高碑店市期末)一杯糖水90克,糖和水的质量比是1:8,如果再加入10克糖,这时糖占糖水的百分之几?【分析】含糖率是指糖的质量占糖水总质量的百分之几;先用原来糖水的总质量乘118+,求出原来糖的质量,再把原来糖的质量加上放入糖的质量,求出后来糖的总质量,然后用原来糖水的总质量加上加入的糖的质量,即可求出后来糖水的总质量,然后用后来糖的总质量除以后来糖水的总质量,再乘100%即可.【解答】解:1901018⨯=+(克)(1010)(9010)100%+÷+⨯20100100%=÷⨯20%=答:这时糖占糖水的是20%.25.(2018春•辛集市期末)把含盐为5%的40kg盐水,调制成含盐率为2%的盐水.先把你的调制方法写出来,再计算说明.【分析】含盐量由5%降到2%,可以运用加水的方法,先把原来盐水的总质量看成单位“1”,用原来盐水的质量乘5%,求出不变的盐的质量,再用盐的质量除以后来的含盐率,即可求出后来盐水的总质量,进而求出加水的质量.【解答】解:405%2⨯=(千克)22%100÷=(千克)1004060-=(千克)答:可以加入60千克的水.26.(2018•东莞市模拟)含糖6%的糖水40克,要配制成含糖20%的糖水,应加糖多少克?【分析】浓度为6%的糖水40克,含水的质量为40(16%)37.6⨯-=(克),加糖的过程中,水的质量不变,浓度为20%的糖水重量是37.6(120%)÷-,计算出结果,再减去40克即可.【解答】解:水的质量为:40(16%)37.6⨯-=(千克);新的糖水的质量为:37.6(120%)47÷-=(千克);所以需要加糖:47407-=(千克).答:需要加糖7千克.27.(2019春•湖南月考)浓度为20%、18%、16%的三种盐水,混合后得到50克18.8%的盐水.如果18%的盐水比16%的盐水多15克,问:每种盐水各多少克?【分析】根据题干,设16%盐水有x 克,则18%的盐水有(15)x +克,又因为混合后共50克,则20%的盐水有:50(15)352x x x --+=-克,然后用各自的质量乘各自的浓度,得出各自的盐的重量,再相加,即等于50克浓度为18.8%的盐水中盐的重量,据此列方程为:16%18%(15)20%(352)5018.8%x x x ⨯+⨯++⨯-=⨯,然后解方程即可得出答案.【解答】解:设16%的盐水质量为x 克,则18%的盐水质量为(15)x +克,20%的盐水质量为50(15)(352)x x x --+=-克.则根据题意可得:16%18%(15)20%(352)5018.8%x x x ⨯+⨯++⨯-=⨯0.160.18 2.770.49.4x x x +++-=9.70.069.4x -=0.060.3x =5x =51520+=(克)5052025--=(克)答:16%、18%20%的三种盐水分别有5克、20克、25克.4.16%、18%、20%的盐水各5克、20克、25克28.(2019春•湖北月考)甲种酒精4千克,乙种酒精6千克,混合成的酒精含纯酒精62%;如果甲种酒精和乙种酒精一样多,那么混合成的酒精含纯酒精61%.甲种酒精中含酒精的百分数是多少?【分析】甲种酒精4升,乙种酒精6升,混成的酒精含纯酒精62%,即乙种酒精比甲多了2升,其中纯酒精共(46)62% 6.2+⨯=(升);如果用4升甲与4升乙混合,那么混合成的酒精含纯酒精61%,其中纯酒精共(44)61% 4.88+⨯=(升);也即2升乙酒精中含纯酒精6.2 4.88 1.32-=(升),所以乙种酒精中含纯酒精的百分数为:(1.322)100%66%÷⨯=,甲为:61%266%56%⨯-=,据此解答即可.【解答】解:(46)62% 6.2+⨯=(升);如果用4升甲与4升乙混合,那么混合成的酒精含纯酒精61%,其中纯酒精共(44)61% 4.88+⨯=(升); 2升乙酒精中含纯酒精6.2 4.88 1.32-=(升),乙种酒精中含纯酒精的百分数为:(1.322)100%66%÷⨯=,甲为:61%266%56%⨯-=,答:甲种酒精中含纯酒精56%,乙种酒精中含纯酒精66%.29.(2019•长沙)有甲、乙、丙三瓶溶液,甲比乙浓度高6%,乙的浓度是丙的4倍.如果把乙溶液倒入甲中,就会使甲溶液的浓度比原来下降2.4%:如果把丙溶液倒入乙溶液中,就会使乙溶液的浓度比原来下降2.25%;如果把甲、丙两瓶溶液混合,则混合液的浓度正好等于乙溶液的浓度.请问:甲、乙、丙三瓶溶液的质量比是多少?它们的浓度分别是多少?【分析】设乙溶液的浓度为%x ,甲乙丙三种溶液的质量分别为:A ,B ,C ,甲乙混合后浓度为:6 2.4% 3.6x x +-=+,乙丙混合后浓度为: 2.25x -,甲丙混合后浓度为x ,据此列方程解答即可.【解答】解:设乙溶液的浓度为%x ,甲乙丙三种溶液的质量分别为:A ,B ,C ,则有:甲的浓度为(6)x +,丙的浓度为4x,依题意有如下关系:(6) 3.6Bx A x x A B +⨯+=++23A B =①4 2.25x Bx C x B C +⨯=-+32.25 2.254Cx B C =-② (6)4xA x C x A C ⨯++⨯=+364CxA =③ 将③式代入①式,得12CxB =④ 将④式代入②式,得4x =,即乙溶液的浓度为4%,则甲溶液的浓度为10%,丙溶液的浓度为1%.将4x =代入②式,得3C B =,因此::3:2:6A B C =.答:甲、乙、丙三瓶溶液的质量比是3:2:6,甲的浓度为:10%,乙的浓度为:4%,丙的浓度为1%.30.(2018•东莞市)将100克浓度为40%的盐水和150克浓度为10%的盐水混合,要配制成浓度为30%的盐水,需再加浓度为40%的盐水多少克?【分析】根据已有盐水的浓度和质量,算出第一次混合后的浓度,即(10040%15010%)(100150)22%⨯+⨯÷+=,然后根据“十字相乘法”解答即可.【解答】解:(10040%15010%)(100150)⨯+⨯÷+55250=÷22%=(40%30%):(30%22%)--10%:8%=5:4=(100150)54+÷⨯25054=÷⨯200=(克)答:需再加浓度为40%的盐水200克.五.解答题31.(2019•长沙)把浓度为20%的盐水倒掉5千克后,再往剩下的盐水中加入浓度为60%的盐水30千克,得到浓度为35%的盐水.原来浓度为20%的盐水有多少千克?【分析】设原来浓度为20%的盐水有x 千克,倒掉5千克后,变为(5)x -千克,再依据浓度公式,含盐率=盐的重量盐水的重量,由此列式求解.【解答】解:设原来浓度为20%的盐水有x 千克,(5)20%3060%(530)35%x x -⨯+⨯=-+⨯20%11835%8.75x x -+=+15%8.25x =55x =,答:原来浓度为20%的盐水有55千克.32.(2019•宁波)有盐水若干升,加入一定量的水后,盐水浓度降到3%,又加入同样多的水后,盐水浓度又降到2%,再加入同样多的水,此时浓度是多少?未加入水时盐水浓度是多少?【分析】浓度为3%,也就是盐3份水97份,共100份,浓度下降为2%,原来3份盐就成了2%,因此可求出加入了多少份水.第二次加水后盐和水总共32%150÷=(份),第二次加水15010050-=(份),即每次加水50份,然后根据浓度公式就可以求出:第三次加水后的浓度和不加水前的浓度,据此解答.【解答】解:浓度为3%,也就是盐3份水97份,共100份,浓度下降为2%,原来3份盐就成了2%. 第二次加水后盐和水总共:32%150÷=(份),第二次加水15010050-=(份),即每次加水50份, 所以,第三次加水后浓度3 1.5%15050=+, 不加水前的浓度为36%10050=-;答:第三次加水后浓度为1.5%,未加水前浓度为6%.33.(2019•广东模拟)有A 杯浓度为25%的盐水和B 杯浓度为40%的盐水混合在一起后,得到的盐水浓度为30%,A 杯盐水重量与B 杯盐水之比是 2 : .【分析】我们要以先设A 杯水中有盐水为x ,则有盐的含量就是25%x 即是14x ,设B 杯中有盐水为主y ,则盐的含量就是30%y ,即310y ;两杯混合后和到的盐水重量是,x y +,而这时的盐含量是,30%()x y +;即3()10x y +.我们可以利用两杯盐的分别所占的比比例和,与混合后的盐所占的比例,我们可以建立等式:123()4510x y x y +=+,我们可以利用等式性质,得到:2:1x y =.故A 杯盐水重量与B 杯之比是2:1.【解答】解:设有A 杯中有盐水X ,则盐有14x ,B 杯中有盐水y ,则有盐25y ,故有方程我们可以建立等式:123()4510x y x y +=+1232020()204510x y x y ⨯+⨯=+⨯5866x y x y +=+8665y y x x -=-2y x =2y x x x ÷=÷21y x =2212y x ÷=÷12y x = 故:2:1x y =答:A 杯盐水和B 杯盐水重量之比是2:1.34.(2019•长沙)甲种酒精纯酒精含量为72%,乙种酒精纯酒精含量为58%,混合后纯酒精含量为62%,如果每种酒精取的数量比原来多15升,混合后纯酒精含量为63.25%,问第一次混合时,甲乙两种酒精各取了多少升.【分析】先求出第一次取出的甲、乙酒精的重量比,再求出第二次取出的甲乙的重量比,然后设第一次混合时,甲种酒精应取2x 升,乙种酒精应取5x 升,根据第二次取出的甲乙的重量比列出方程求解,即可解决问题.【解答】解:第一次取出的甲、乙酒精的重量比为:(62%58%):(72%62%)2:5--=;第二次取出的甲、乙酒精的重量比为:(63.25%58%):(72%63.25%)3:5--=;设第一次混合时,甲种酒精应取2x 升,乙种酒精应取5x 升,则(215):(515)3:5x x ++=,3(515)5(215)0x x +-+=,154510750x x +--=,57545x =-,530x=,x=;6x=⨯=,2261255630x=⨯=.答:第一次混合时,甲种酒精应取12升、乙种酒精取30升.35.(2017•长沙)浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克,混合后所得到的酒精溶液的浓度是多少?【分析】根据“溶质质量=溶液质量⨯浓度”分别求出每种浓度溶液中纯酒精的质量,再用两种溶液中酒精的质量之和除以两种溶液的质量.⨯+⨯÷+【解答】解:(50070%30050%)(500300)=+÷(350150)800=÷800800=62.5%答:混合后所得到的酒精溶液的浓度是62.5%.36.(2019•长沙)一种35%的新农药,如果稀释成浓度为1.75%时,治虫最有效,用多少千克浓度为35%的农药加多少千克的水,才能配成1.75%的农药800千克?【分析】先要明白:药+水=药水,药水的浓度是:药占药水的百分之几.要配制浓度为1.75%的新农药⨯,即14千克.因为是用35%的药水配制而成,800千克,则800千克药水中所含的药即可求出(800 1.75%)÷.最后用800千克减去40千克即为所加水的重因此,所需要浓度为35%的药水数就可求出,即:1435%量,分步列式解答即可.⨯÷【解答】解:药的含量:(800 1.75%)35%=÷1435%=(千克)40-=(千克).水的重量:80040760答:需要浓度为35%的新农药40千克,需加水760千克.37.(2018•娄底模拟)要调配两种不同浓度的桔子汁,甲容器中有纯桔汁8升,乙容器中有水7升,如果要使甲容器中纯桔汁含量为80%,乙容器中纯桔汁含量为40%,则最后甲、乙容器各有多少升?【分析】现有的甲容器中,桔子汁为100%,要稀释到80%,得:880%10÷=(升),要从乙中到入甲中1082-=(升)的水,则乙中还剩725-=(升)的水; 要使乙中含有40%的桔子汁,则要从甲往乙到入桔子汁,设要从甲中倒入乙x 升,则:80%(5)40%x x ÷+=,解之得5x =,则甲中有80%的桔子汁:8255+-=(升),乙中有40%的桔子汁:72510-+=(升).【解答】解:现有的甲容器中,桔子汁为100%,要稀释到80%,得:880%10÷=(升),要从乙中到入甲中1082-=(升)的水,则乙中还剩725-=(升)的水;要使乙中含有40%的桔子汁,则要从甲往乙到入桔子汁,设要从甲中倒入乙x 升,80%(5)40%x x ÷+=80%40%2x x =+40%2x =5x =,则甲中有80%的桔子汁:825+-105=-5=(升),乙中有40%的桔子汁:725-+55=+10=(升),答:最后甲容器有5升、乙容器有10升.38.(2018•重庆模拟)甲容器中有浓度为20%的盐水400克,乙容器中有浓度为10%的盐水600克,分别从甲和乙中取相同重量的盐水,把从甲容器中取出的盐水倒入乙容器,把乙容器中取出的盐水倒入甲容器,现在甲、乙容器中盐水浓度相同,则甲、乙容器中各取出多少克盐水倒入另一个容器?【分析】设甲、乙容器中各取出x 克盐水倒入另一个容器,然后根据现在甲、乙容器中盐水浓度相同,列方程为:(400)20%10%(600)10%20%400600x x x x -⨯+-⨯+=,解之得240x =,据此解答即可.【解答】解:设甲、乙容器中各取出x 克盐水倒入另一个容器,由题意得:(400)20%10%(600)10%20%400600x x x x -⨯+-⨯+=600(800.1)400(600.1)x x -=+4804800.62400.4x x --=+4800.60.62400.40.6x x x x -+=++480240x =+240480x +=240240480240x +-=-240x =答:甲、乙容器中各取出240克盐水倒入另一个容器.39.(2018•长沙)用含盐5%的盐水和含盐8%的盐水混合成含盐6%的盐水600克,问这两种盐水应各取多少克?【分析】本题含有两个未知数,可用方程解答,设需要浓度为5%的盐水x 克,则需要浓度为8%的盐水(600)x -克,由此用乘法分别表示出其中所含的食盐多少克,这两部分食盐相加就等于浓度为6%的盐水600克所含的食盐量,据此关系列方程解答即可.【解答】解:设需要浓度为5%的盐水x 克,则需要浓度为8%的盐水(600)x -克,5%8%(600)6006%x x +⨯-=⨯5%488%36x x +-=3%12x =400x =600400200-=(克),答:需要浓度为5%的盐水400克,需要浓度为8%的盐水200克.。
小升初专题----分数除法应用题类型一:已知一个数的几分之几是多少,求这个数。
例题:一桶色拉油,用去全部的47,正好用去24千克。
原来这桶色拉油有多少千克?变式:1、一列火车从甲地开往乙地,已经行了全程的53,距离乙地还有245千米。
甲、乙两地之间的距离是多少千米?变式2:食堂里运进西红柿120千克,是运进茄子质量的54,运进茄子的质量是运进豆角质量的32。
食堂运进豆角多少千克?变式3:五年级有学生245人,三好学生人数是全年级学生人数的71,恰好又是男生人数的31,五年级男生有多少人?变式4:小敏看一本书,第一天看了全书的51,第二天又看了余下的21,这时还剩80页没有看。
这本书共有多少页?变式5:地球赤道的周长大约是4万千米,比光每秒传播距离的51还少2万千米。
光每秒传播多少万千米?小试牛刀:1、学校买来80本故事书,相当于学校购买图书总数的72,学校共买来多少本图书? 2、南湖小学有2400名学生,南湖小学的学生人数是东湖小学的2524。
东湖小学有多少名学生?3、果园里有梨树160棵,占全部果树的61。
梨树相当于桃树的78,果园里共有多少棵果树?果园里共有多少棵桃树?4、工程队修一条路,修了500米正好修了这条路的32,还剩多少米没有修?5、苹果有12个,是桃个数的31,梨的个数是桃的41,梨有多少个?6、学校开联欢会,六(3)班买了三种糖,奶糖是水果糖的107,又是酥糖的57,水果糖有2千克,买来酥糖多少千克?7、有3筐苹果,甲筐苹果的质量为15千克,是乙筐苹果质量的53,乙筐苹果质量是丙筐苹果质量的45,丙筐苹果的质量是多少千克?8、小强:“我数学测验考了95分,”小丽:“你比我的考试分数的89还多5分”,小丽数学考了多少分?小升初真题练:1、新华书店运来一批图书,第一天卖出的比总数的81多16本,第二天卖出的比总数的21少8本,还余下67本。
这批图书一共有多少本? 2、有甲、乙两筐苹果,若取出甲筐苹果的51放入乙筐,两筐苹果就一样重了。
专题04《分数加减法应用题》1.(2019秋•东莞市期中)纺织厂今年九月份比八月份节约用电38,九月的用电量是八月份的()A.38B.311C.811D.582.(2018秋•长阳县校级期末)一个蛋糕平均分成9份,李刚吃了19,张华吃了29,刘红吃了49,还剩()A.19B.29C.183.(2019秋•晋安区期中)为了保护环境,某公园今年植树比去年多110,今年植树相当于去年的()A.110B.910C.11104.(2019•株洲模拟)一根绳子长45米,比另一根短14米,两根绳子共()米A.1120B.7120C.59D.171205.(2019•株洲模拟)公园里,松树占树木总数的38,柳树占总数的512,两种树共占总数的几分之几?其他树木占总数的几分之几?正确的是()A.两种树共占总数的1924,其他树木占总数的524B.两种树共占总数的1724,其他树木占总数的724C.两种树共占总数的78,其他树木占总数的18D.两种树共占总数的58,其他树木占总数的386.(2019•湘潭模拟)一堆苹果,先拿走这堆苹果的18,再拿走这堆苹果12,两次共拿走这堆苹果的()A.58B.116C.58个7.(2018春•抚宁区期末)一杯纯牛奶,小海喝了14杯后,加满开水,又喝了半杯.这时,他喝的()多.A.纯牛奶B.开水C.一样8.(2019秋•丹江口市期末)根据如图信息,可以知道一桶油重千克.9.(2019春•黄冈期末)一根绳子用去35米后,剩下的比用去的少16米,这根绳子原来长米.10.(2018秋•古丈县期末)一块蛋糕,小芳吃了15,小明吃了25,两人一共吃了这块蛋糕的,还剩.(填分数)11.(2018秋•博兴县期末)一批肥料有200吨,第一次运走20%,第二次运35%,剩下的货物占这批货物的%.12.(2019春•通州区期末)学校打算把一批课外书的14分给六年级,25分给五年级,38分给四年级.你觉得这个方案可行吗?13.(2019秋•薛城区期末)一个哈密瓜,刘玉吃了它的28,张磊吃了它的38,这个哈密瓜平均分成了块,他们一共吃了这个哈密瓜的,还剩块;赵旭又吃了2块,还剩下这个哈密瓜的.14.(2019春•秦皇岛期末)一杯牛奶,红红喝了15杯后加满水,又喝了13杯后加满水,接着又喝了半杯后再加满水,最后把整杯都喝了.小红喝的多.15.(2019•亳州模拟)修一条路,第一天修了全长的112,第二天比第一天多修了全长的115,第三天比第一天少修了全长的130.三天一共修了全长的.16.(2019•长沙模拟)有一个储油罐,第一天用去910吨,第二天用去920吨,这时还剩下14吨.油罐里原来有油吨.17.(2018秋•长阳县期末)一块烧饼,小明吃它的38,小丽吃它的58,两人把烧饼吃完了.(判断对错)18.(2018秋•花都区期末)科技书的本数比故事书少613,那么科技书的本数是故事书的713.(判断对错)19.(2015春•成都期末)若男生人数是女生人数的34,那么男生人数比女生人数少14.(判断对错)20.(2014秋•赣县校级月考)一根电线长3米,用去23米后,还剩下35米..(判断对错)21.(2019秋•铜官区期末)铜陵市出租车收费标准是:2.5km以内7元;超过2.5km,每千米1.9元(不足1km按1km计算).李叔叔打车行驶7.8千米,他应付给司机多少钱?22.(2019秋•巨野县期末)一种笔记本原每本4.8元,降价后每本4.5元,原来买150本笔记本的钱,现在可以买多少本这种笔记本?23.(2018秋•李沧区期末)一捆电线剪下18.4米,剩下的比剪下的2倍少7.5米,这捆电线原来长多少米?24.(2019春•陆丰市期末)一支钢笔9.5元,一个文具盒6.8元,买这两种文具,小丽带了20元钱够不够?25.(2019秋•蓝山县期末)五年级同学去敬老院“献爱心”活动,其中捐赠时间用了34小时,义务劳动时间比捐赠时间多25小时,两种活动共用了多少小时?26.(2019春•黄冈期末)水果批发市场卖出一批水果,数量如表.用一辆载质量为3.5吨的货车去运货,能一次运完吗?27.(2019春•泰兴市期末)一块地有67公项,其中17栽桃树,16栽梨树,其余的栽萃果树.栽苹果树的面积占这块地的几分之几?28.(2018秋•册亨县期末)工人师傅给一个礼堂铺地砖.上午铺了27,下午铺了37.上午和下午一共铺了几分之几?下午比上午多铺了几分之几?29.(2018秋•雨花区期末)一张面积是2200cm的纸,已经用完了整张纸的14.已经用完的面积是2cm,还剩这张纸的() ().30.(2019春•法库县校级月考)根据学校气象小组的记录,当地3月雨天天数占全月总天数的13,晴天天数占全月总天数的49.(1)雨天与晴天共占全月总天数的几分之几?(2)提出一个数学问题并解决.31.(2018春•东台市校级月考)一根彩带全长45米,第一次用去全长的14,第二次用去全长的38,用了两次后,这根彩带还剩下全长的几分之几?32.(2018秋•新蔡县校级月考)作文竞赛,设一,二,三等奖若干名,获一,二等奖的占总数的34,获二、三等奖的占总数的78,获二等奖的占总数的几分之几.33.(2018秋•建邺区期末)如图有一块长方形的菜地,其中的110种辣椒,茄子的占地和辣椒同样大,黄瓜的占地是辣椒的4倍.(1)在图中分别表示出三种蔬莱占地的大小.(2)和合起来一共占这块地的12.(3)剩下的部分种西红柿,西红柿比辣椒多占这块地的() ().34.(2018秋•沾益区期末)一杯牛奶,第一次喝了它的15,第二次喝了它的25,还剩几分之几没有喝?35.(2019春•蒙城县期末)一块巧克力,小东吃了18,小红吃了38,一共吃了几分之几?还剩几分之几?36.(2018秋•桐梓县期末)一条绳子,第一次用了17,第二次用了37,两次一共用了几分之几?还剩几分之几?。
分数应用题专项训练1、图书室有故事书420册,文艺书是故事书的56,文艺书多少册?答案:420×562、图书室有故事书420册,文艺书比故事书多51,文艺书多少册?答案:420×(1+51)3、图书室有故事书420册,文艺书比故事书少51,文艺书多少册?答案:420×(1-51)4、图书室有故事书420册,文艺书与故事书的比是6:5,文艺书多少册? 答案1: 420÷5×6 答案2:420×565、图书室有故事书和文艺书共440册,文艺书是故事书的56,文艺书、故事书各有多少册?答案1:文艺书 440÷(5+6)×6 故事书440÷(5+6)×5 答案2:文艺书440÷(1+56)×56故事书440÷(1+56)6、图书室有故事书420册,故事书是文艺书的65,文艺书多少册?答案:420÷657、图书室有故事书420册,故事书比文艺书少61,文艺书多少册?答案:420÷(1-61)8、图书室有故事书和文艺书共450册,故事书比文艺书多41,文艺书、故事书各有多少册?答案1:文艺书 440÷(1+4+4)×4 故事书440÷(1+4+4)×(1+4) 答案2:文艺书440÷(1+41)故事书440÷(1+41)×(1+41)9、图书室有故事书和文艺书共450册,文艺书与故事书的比是4:5,文艺书、故事书各有多少册? 答案1:文艺书 450÷(4+5)×4 故事书450÷(4+5)×5 答案2:文艺书450×94故事书450×9510、学校图书室故事书比文艺书少40册,文艺书是故事书的56,文艺书、故事书各有多少册?答案1:文艺书 40÷(6-5)×6 故事书40÷(6-5)×5答案2:文艺书40÷(56-1)×56故事书40÷(56-1)11、学校图书室故事书比文艺书少40册,文艺书比故事书多51 ,文艺书、故事书各有多少册?答案:文艺书40÷51×(1+51)故事书40÷5112、学校图书室故事书比文艺书少40册,故事书比文艺书少51 ,文艺书、故事书各有多少册? 答案:文艺书40÷51故事书40÷51×(1-51)13、学校图书室故事书比文艺书少140册,文艺书与故事书的比是7:5,文艺书、故事书各有多少册? 答案1:文艺书 140÷(7-5)×7 故事书140÷(7-5)×5 答案2:文艺书140÷5757+-×577+ 故事书140÷5757+-×575+答案3:文艺书140×577- 故事书140×575-14、学校图书室故事书比文艺书少40册,文艺书比故事书多51,两种书共多少册?答案:40÷51×(1+1+51)15、修一条长2400m 的路,第一天修全长的31,第二天修全长的41,两天共修多少米? 答案:2400×(31+41)16、修一条长2400m 的路,第一天修全长的31,第二天修全长的41,再修多少米才能修完? 答案:2400×(1-31-41)17、修一条长2400m 的路,第一天修全长的31,第二天修全长的41,第二天比第一天少修多少米? 答案:2400×(31-41)18、修一条长2400m 的路,第一天修全长的31,第二天修了600米,两天共修多少米?答案1:2400×31+600答案2:2400×(31+2400600)19、修一条长2400m 的路,第一天修全长的31,第二天修了600米,还剩下多少米没修?(两种方法) 答案1:2400-2400×31-600答案2:2400×(1-31)-600 20、修一条长2400m 的路,第一天修全长的31,第二天再修多少米就能完成这条路的43?答案:2400×(43-31)21、修一条长2400m 的路,第一天修全长的31,第二天比第一天多修了200米,两天共修多少米?(两种方法) 答案1:2400×31+2400×31+200答案2:2400×(31+31)+20022、修一条长2400m 的路,第一天修全长的31,第二天比第一天多修41,两天共修多少米?答案:2400×31+2400×31×(1+41)23、修一条长2400m 的路,第一天修全长的31,比第二天少修51,两天共修多少米?答案:2400×31+2400×31÷(1-51)24、修一条长2400m 的路,第一天修全长的31,第二天修了一段后,这时已修与未修的比是5:3,第二天修了多少米?还剩下多少米没修?答案:第二天 2400×(355+-31)还剩2400×353+25、修一条乡间公路,第一天修全长的31,第二天修全长的41,两天共修350米,这条路全长多少米? 答案:350÷(31+41)26、修一条乡间公路,第一天修全长的31,第二天修全长的41,还剩下350米没修,这条路全长多少米? 答案:350÷(1-31-41)27、修一条乡间公路,第一天修全长的31,第二天修全长的41,第一天比第二天多修60米,这条路全长多少米?答案:350÷(31-41)28、修一条乡间公路,第一天修全长的31,第二天修全长的41,第一天修800米,第二天修了多少米? 答案:800÷31×4129、修一条乡间公路,第一天修全长的31,第二天修了600米,这时已修与未修的比是7:5,这条路全长多少米?答案:600÷(577 -31)30、修一条乡间公路,第一天修全长的31,第二天修了600米,这时已修与全长的比是7:12,这条路全长多少米?答案:600÷(127-31)31、修一条乡间公路,第一天修全长的31,第二天比第一天多修了200米,两天一共修了800米,这条乡间公路全长多少米?答案:(800-200)÷(31+31)32、修一条乡间公路,第一天修全长的31,第二天比第一天少修了200米,两天一共修了800米,这条乡间公路全长多少米?答案:(800+200)÷(31+31)33、修一条乡间公路,第一天修全长的31,第二天比第一天多修了200米,这时还剩下800米没修,这条乡间公路全长多少米?答案:(800+200)÷(1-31-31)34、修一条乡间公路,第一天修全长的31,第二天比第一天少修了200米,还剩下800米没修,这条乡间公路全长多少米?答案:(800-200)÷(1-31-31)35、一桶油,用去41,还剩30kg ,这桶油重多少千克?答案:30÷(1-41)36、一桶油,第一次用去它的41,第二次用去15kg ,这时桶内还剩30kg ,这个油桶可以盛油多少千克? 答案:(15+30)÷(1-41)37、一桶油,第一次用去41,第二次比第一次多用去15kg ,这时桶里还剩30kg 。
六年级下册数学小升初总复习专项训练分数、百分数应用题一、填空题1.比多30%的数是390,24的3/4比的5/6少12。
2.一项工程用40天完工,比计划提前8天完成,实际时间提前了 %,工作效率提高了 %。
3.妈妈买回一段布,缩水后是2.4米,这种布的缩水率是4%,妈妈买回米布。
4.113,11011,1315,1619,…是一串有规律的数,这串数中第九个数是,如果其中某个分数的分母是1999,那么这个数的分子是。
5.把9米长的绳子平均截成5段,每段占这根绳子的,每段长米。
6.把0.803,56,0.83,0.803和22/25,这五个数按从小到大的顺序排列是 < < < < 。
7.一个最简分数,分子减去能被2,3 整除的最小的一位数,分母加上最小的质数,所得的分数的倒数是514,原来的最简分数是。
8.甲、乙两班各有200本课文书,甲给乙本后,乙的本数比甲多50°9.把3千克水加到盐水中,得到浓度为10%的盐水,再把1千克盐加到所得到的盐水中,这时盐水浓度为20%,原来的盐水浓度是。
10.有大、小两个圆纸片,小圆纸片的面积是50平万厘米,大圆纸片的直径比小圆纸片大20%,大圆纸片的面积比小圆纸片的面积大平方厘米。
二、判断题(对的打“√”,错的打“×”)1.甲数是乙数的80%,乙数就是甲数的125% ( )2.如果a>0,那么a一定大于1a( )3.六二班男生人数是女生人数的23,女生人数占全班人数的40% ( )4.王师傅加工98个零件,其中有2个不合格,合格率是98% ( )5.在含盐率10%的450克盐水中,加入50克水,新盐水的含盐率是15% ( )三、选择题(将正确答案的序号填在括号里)1.把一个分数的分子乘10,分母除以0.1,这个分数和原来相比( )A.比原数小B.比原数大C.大小不变2.一个车间改革后,人员减少20%,当工作时间增加20%后,产量比原来增加50%,工作效率( )A.提高916B.提高310C.提高54% 3.把10千克盐溶解到100千克水里,盐水的含盐率是( )A.10%B.110%C.约9.1%D.90%4.下列说法正确的是( )A.某工厂进行技术改造后,产品质量大幅提高,产品合格率达120%B.把3千克面包平均分给5个小朋友,每个小朋友分到60%千克C.甲数的12与乙数的50%一定相等D.甲数是8,乙数是5,算式(85)÷5 =60%,表示甲数比乙数多60%四、计算题(1)65×(2.25+416)÷77%−1213 (2)(4.3×2.375÷138×1043)×52(3)(145+223)÷[(4−156)÷134] (4)12+34+78+1516+3132+6364+127128+2552562.列式计算。
小升初数学名校题:分数百分数应用题(三)练习1、某种皮衣标价为1650元,若以8折降价出售仍可盈利10%(相对于进价)那么若以标价1650元出售,可盈利元。
2、某商品成本为每个80元,如果按每个100元卖,可卖出1000个。
当这种商品每个涨价1元,销售量就减少20个。
为了赚取最多的利润,售价应定为每个元。
3、小张将一车白菜运到菜市场出售,以每千克0.50元卖出一半,剩下的打八折出售,一车菜共卖180元。
这车菜有多少千克?4、某商店进了一批笔记本,按 30%的利润定价.当售出这批笔记本的 80%后,为了尽早销完,商店把这批笔记本按定价的一半出售.问销完后商店实际获得的利润百分数是多少?5、电影票原价每张若干元,后应观众要求打折售票,观众增加一半,收入增加了1/5。
那么一张电影票实际是打几折出售的?6、有一个商贩,400元买进的衣服卖了480元,赚了20%,可是另一件衣服却赔了15%。
两件衣服合起来计算,商贩赚了5%。
另一件衣服的买进价是多少元?7、一批商品,按期望获得 50%的利润来定价.结果只销掉 70%的商品.为尽早销掉剩下的商品,商店决定按定价打折扣销售.这样所获得的全部利润,是原来的期望利润的82%,问:打了多少折扣?8、李校长向某课桌生产厂订购了定价为100元的课桌80套。
李校长对厂长说:“如果你肯减价,那么每减1元,我们就多订购4套。
”厂长听后算了一下:若减价5%,则由于李校长多订购,所获利润反而比原来多100元。
问:这种课桌每套的成本是多少元?9、某商品按定价出售,每件利润为成本的25%,后来按原定价的90%出售,结果每天售出的件数比降价前增加了1.5倍,每天经营这种商品的总利润比降价前增加了%。
10、张师傅以1元钱3个苹果的价格买进苹果若干个,又以2元钱5个苹果的价格将这些苹果卖出,如果他要赚得10元钱利润,那么他必须卖出几个苹果?。
小升初数学必考分数应用题(附答案)1.把甲乙丙三根木棒插入水池中,三根木棒的长度和为360厘米,甲有3/4在水外,乙有4/7在水外,丙有2/5在水外。
水有多深?【答案】设水深x厘米,则甲长4x,乙长7x/3,丙长5x/34x+7x/3+5x/3=360x=45水有45cm深。
2.小刚有若干本书,小华借走一半加一本,剩下的书小明借走一半加两本,再剩下的书小峰借走一半加三本,最后小刚还剩下两本书,那么小刚原有还剩下两本书,那么小刚原有多少本书?【答案】考点:逆推问题。
分析:本题需要从问题出发,一步步向前推,小刚剩的2本书加上3本就是小明借走后的一半,那么就可以求出小明借走后的数量,同理可以求出小华借走后的数量,进而可求小明原有的数量。
解答:解:小峰未借前有书:(2+3)÷(1-1/2)=10(本)小明未借之前有:(10+2)÷(1-1/2)=24(本)小刚原有书:(24+1)÷(1-1/2)=50(本)答:小明原有书50本。
3.甲数比乙数多1/3,乙数比甲数少几分之几?【答案】乙数是单位“1”,甲数是:1+1/3=4/3乙数比甲数少:1/3÷4/3=1/44.有梨和苹果若干个,梨的个数是全体的5/3少17个,苹果的个数是全体的7/4少31个,那么梨和苹果的个数共多少?【答案】解:设总数有35X个那么梨有35X*3/5-17=21X-17个苹果有35X*4/7-31=20X-31个20X-31+21X-17=35X41X-48=35X6X=48X=8所以梨有21×6-17=109个,苹果有20×6-31=89个。
5.有一个分数,它的分母比分子多4,如果把分子、分母都加上9,得到的分数约分后是9分之7,这个分数是多少?【答案】设分子为X,分母为X+4,则(X+9)/(X+13)=7/9得X=5答:该分子为5/9。
6.把一根绳子分别折成5股和6股,5股比6股长20厘米,这根绳子长多少米?【答案】这根绳子长20÷(1/5-1/6)=600cm7.小萍今年的年龄是妈妈的1/3,两年前母女的年龄相差24岁。
小升初数学专题讲练:分数、百分数应用题姓名:________ 班级:________ 成绩:________同学们,经过一段时间的学习,你一定长进不少,让我们好好检验一下自己吧!一、解答题1 . 一个县前年西瓜总产量是560万千克,比去年少了。
去年全县西瓜总产量是多少万千克?2 . 打扫多功能教室,甲组同学小时可以打扫完,乙组同学小时可以打扫完,如果甲、乙合做,多少小时能打扫完整个教室?3 . 学校食堂4月份烧煤8 t,5月份比4月份节约了2 t,节约了百分之几?4 . “九月份用水比八月份节约了”.找出这句话的等量关系式是.5 . 公园里杨树棵数相当于柳树棵树的百分之九十六,写出这个百分数,杨树多还是柳树多?6 . 一批零件共有2520个,李师傅6小时加工了全部的,以这样的速度,还需几小时才能全部做完?7 . 学校今年计划全年用水200吨,去年比今年多用水25%,今年比去年计划节约用水百分之几?今年用水量和去年用水量之比是多少?8 . 根据图意列式。
(只列式不计算)列式:_______________________________9 . 小红看一本书,第一天看了全书的,第二天看了全书的,这时还剩68页没看,这本书一共有多少页?10 . 某县要在沙漠里造一片护林带,已经造了,正好是180平方千米。
这片护林带的面积是多少平方千米?(用算术方法解)11 . 汽车往返甲、乙两地.去的时候平均每小时行50千米,返回的时候平均每小时行60千米,汽车往返两地平均每小时行多少千米?参考答案一、解答题1、2、3、4、5、6、7、8、9、10、11、。
小升初数学分数的应用典型题训练三
例造纸厂原来存有一批纸张,卖掉总量的后2/3,又生产出吨5又3/5,这时纸张的库存量是原来库存量的4/5.造纸厂原来存有纸张多少吨?
解:设造纸厂原来存有纸张x吨。
x-2/3x+又3/5=4/5x
x=12。
答:造纸厂原来存有纸张12吨。
1.一块石英表,先涨价1/10,先降价1/10,这时售价为99元,这块石英表原价多少元?
2.商场新进了一批冰箱,按照获利1/5定价,然后打九折出售,实际每台冰箱还可以获得120元的利润。
这种冰箱每台进价多少元?
3.超市运来一批可乐,第一周卖出全部的2/5.第二周的销售量比第一周多1/4,两周后还剩下8箱可乐未出售。
这批可乐共有多少箱?
答案
1.设这块石英表原价x元。
x×(1+1/10)×(1-1/10)=492.
x=50。
答:这块石英表原价50元。
2.设这种冰箱每台进价x元。
(1+1/5)×9/10+=120+x,
x=1500。
答:这种冰箱每台进价1500元。
3.设这批可乐共有x箱。
2/5x+2/5x×(1+1/4)=x-8,
x=80。
答:这批可乐共有80箱。
小升初数学专项练习 分数应用题(无答案)
在我们之前学习分数应用题的时候,我们知道学习分数应用题最关键的是要找准( ): (1)单位“1”已知,用( )法;单位“1”未知,用( )法。
(2)部分量、总量、对应分率之间关系是:
1、甲数比乙数少
8
3,则乙数比甲数多
()
()。
2、有两根长度为M 米的钢管,第一根用去10
3米,第二根用去
10
3M 米。
哪一根剩下的部分长一些?
3、甲、乙两数的和是180,甲数的4
1与乙数的
5
1相等,甲、乙两数各是多少?
4、将一批苹果装箱,如果装42箱,还剩下这批苹果的70%,如果装85箱,还剩1540个苹果,这批苹果共有多少个?
5、一个装有彩球的口袋,红球占总数量的12
5,后来又放进18个红球,这时红球占现在总量的
3
2,现在
共有彩球多少个?
6、某中学理科班原有学生248人,其中女生占3115,后来去文科班几名女生,这样女生人数占现在理科班
总人数的15
7,问去文科班几名女生?
7、一只猴子摘了一堆桃子,第一天吃了这堆桃子的7
1,第二天吃了余下桃子的
6
1,第三天吃了余下桃子
的
5
1,第四天吃了余下桃子的
4
1,第五天吃了余下桃子的3
1,第六天吃了余下桃子的2
1,这时还剩下12
个桃子,那么第一天和第二天所吃桃子的总数是多少? 8、由于浮力作用,金放在水中称量,其重量减轻了
19
1;银放在水中称量,其重量减轻了
10
1。
有一重500
克的金银合金,放在水中称量,其重量减轻了32克,这块合金中含金多少克?
9、甲、乙两根绳子共长22米,甲绳截去5
1后,乙绳和甲绳的长度比是 3:2,甲、乙两根绳子原来各长多
少米?
试一试9:两根铁丝一共长33米,第一根铁丝用去3
2,第二根铁丝用去12米,第二根铁丝剩下的长度是
第一根剩下长度的2
1。
两根铁丝原来各长多少米?
10、四个工程队合修一条路。
第一队修的是另外三个队总数的2
1,第二队修的是另外三个队总数的3
1,第
三队修的是另外三个队总数的4
1,第四队修了104米,这条路长多少米?
试一试10:某校选出男教师的
11
1和女教师12名参加合唱比赛,剩下的男教师人数是剩下的女教师人数的
2倍,已知学校共有男、女教师156名。
男教师有多少名?
11、学校锅炉房里原来存在有大小里两堆煤,共重48吨,现给小堆煤加上8吨,从大堆煤里用去4
1,两
堆煤的重量正好相等,求大、小两堆煤原来各多少吨?
12、小林与小丽都在集邮。
小林先选拿出自己邮票数的3
1给小丽,小丽再从自己现有的邮票数总张数中拿
出5
1给小林,这时两人各有邮票24张,原来各有邮票多少张?
13、一个三层书架共放书a 本,如果把第二层书的3
1搬到第一层,把第三层书的
4
1搬到第二层,三层书的
数量相等,每个书架上各有几本书?
14、甲、乙两人各有糖果若干个,甲把自己的
3
1给了乙,乙数了数总数后,也把自己现有糖果的
3
1给了甲。
这时甲、乙的糖果数相等。
问原来甲的糖果数是乙的几分之几?
15、李叔叔从甲地到乙地需坐汽车,从乙地到丙地需坐火车,原来从甲地到丙地需250元车费,由于汽车
票上涨10
1,火车票上涨
5
1,结果从甲地到丙地共花了280元,汽车票现在多少元?
16、六(1)班今天缺勤人数是出勤人数的8
1,后又有4人请病假,于是缺勤人数是出勤人数的25%。
这个
班共有多少人?
17、小明放一群鸭子,岸上的只数是水中的4
3,从水中上岸9只后,水中的只数与岸上的只数同样多,这
群鸭子有多少只?
18、有一棵树上落了一群鸟,第一次飞走的只数是余下的5
2,第二次又飞走了28只,两次共飞走的只数
比原来只数的14
9少2只,你能求出这棵树上原来有多少只鸟吗?
19、两袋米,第一袋比第二袋少12千克,若从第一袋中取出4千克放入第二袋中,这时第一袋的米正好是第二袋的9
4,求原来两袋大米各有多少千克?
20、在一批旅客中,有
4
3的人懂法语,
5
4的人懂英语,两种语言都懂的占
20
13,另有10人这两种语言都
不懂。
这批旅客共有多少人?
21、六年级有102名同学,选出男同学的9
1和3名同学去参加数学竞赛,剩下的女同学是男同学人数的
16
15。
六年级男、女同学个有多少名?
22、甲、乙、丙三个书架,共放书1300本,甲书架的本数是乙书架的6
5,是丙书架的
21
20,这三个书架分
别放书多少本?
23、王先生、李先生、赵先生、杨先生四个人比年龄,王先生的年龄是另外三人年龄和的2
1,李先生的年
龄是另外三人年龄和的3
1,赵先生的年龄是其他三人年龄和的4
1,杨先生26岁,你知道王先生多少岁?
24、一瓶酒精,第一次倒出3
1,然后倒回瓶中40克,第二次再倒出瓶中酒精的9
5,第三次倒出180克,瓶
中还剩下60克,原来瓶中多少克的酒精?
25、有2只桶装油44千克,若第一桶倒出5
1,第二桶里倒进2.8千克,则2只桶内油相等,原来每只桶
各装油多少千克?
26、今有桃95个,分给甲、乙两班学生,甲班分到的桃有
9
2是坏的,其余皆好;乙班分到的桃有
16
3是坏
的,其余皆好。
其余皆好。
问甲、乙两班分到的好桃共有多少个?
27、甲、乙、丙三人共捐款22000元,三人用存款各买了一台相同的电视机,甲用了自己钱数的16
9,乙
用了自己钱数的2
1,丙用了自己钱数的
10
9,三人原来各有存款多少元?
28、有一个圆柱形水池,用一根长10米的竹竿竖直地插入池中,在竹竿与水面的交接处用刀刻上记号后取出,然后将竹竿倒过来,依照上述方法再做一次。
如果两个记号间的距离是整个竹竿长度的5
1,那么,
水池中水深多少米?。