工程力学 1动量矩定理
- 格式:ppt
- 大小:2.77 MB
- 文档页数:79
动量矩定理
动量定理的微分形式定义了粒子系统中第i个粒子到固定点O的动量矩,这是L = ri×mivi(ri是第i个粒子的矢量直径,mivi是第i个粒子的动量),即外力到O点的力矩为M,内力到O点的力矩为M.取上式两边的导数为关于时间,有。
考虑所有粒子的合成效应,这是作用在粒子上的外力和点O的力矩的矢量和。
它是内力到点O的力矩的矢量和。
但是,由于内力具有大小相等,方向相反和共线的特征,
动量矩定理用微分形式表示,它表明质点系统相对于时间的动量矩到某一点O 的导数等于质点系统受到动量矩的矢量和。
外力指向。
如果将两个侧面投影到直角坐标轴上,则存在:粒子系统的动量矩对固定轴的时间导数等于该轴上的力矩由粒子上的外力的代数和。
系统。
积分形式的动量定理的矩重写公式并积分。
如果LL和L分别表示粒子系统在时间t1和t2到达某一点O的动量矩。
Gi是在时间间隔(t2-t1)中作用在质量点i到点O上的外力的脉冲力矩。
它是动量矩定理,以积分形式表示。
它表明,在某个机械过程的时间间隔内,粒子系统到某个点的动量矩的变化等于在相同时间间隔内作用于粒子系统上的所有外力在同一时间点上的动量矩向量和。
对于刚体以角速度ω(惯性矩为Iz)绕固定轴z旋转的情况,可以将其投影到z 轴上,然后:
也就是说,在一定的时间间隔内,刚体对z轴动量矩的变化(Izω)等于在相同时间上作用于刚体对z轴动量矩的所有外力的代数和。
时间间隔。
质点是质点系统的特例,因此动量矩定理也适用于质点。
动量矩定理
动量矩定理是动力学普遍定理之一,它给出质点系的动量与质点系受机械作用的冲量之间的关系。
动量定理有微分形式和积分形式两种。
1)积分形式
设质点系中任一质点的质量为mi,受外力的合力和内力的合力作用,加速度为,沿曲线轨迹运动到Q点时的速度为(见图)。
根据牛顿第二定律,有:
将式(1)向轨迹的切线方向投影,得式
因
,
代入式(2)可得:。
上式可以改写为:
式中为质点i的动能;和分别为质点i上外力和内力的元功。
对于整个质点系则应为:
式中为质点系的总动能。
对式(4)进行积分,可得:
式中T1,为质点系在过程开始时的动能;T2为质点系在过程结束时的动能。
式(5)是以积分形式表示的质点系的动能定理,它表明:质点系的总
动能在某个力学过程中的改变量,等于质点系所受的诸外力和诸内力在此过程中所做功的总和。
2)微分形式
将式(4)两边除以dt,得:
式中为外力的功率;为内力的功率。
式(6)是以微分形式表示的质点系的动能定理,它表明;质点系的总动能随时间的变化率等于质点系所受诸外力和诸内力在单位时间内所作功的总和。
质点是质点系的一个特殊情况,故动能定理也适用于质点。
但是,对于质点和刚体,诸内力所做功的总和等于零,因为前者根本不受内力作用,而后者的内力则成对出现,其大小相等,方向相反,作用在同一直线上,且刚体上任两点的距离保持不变,故其内力作功总和等于零。
动量矩定理的三个公式动量矩定理是物理学中的重要概念,它有三个关键公式。
这三个公式在解决许多物理问题时,那可是相当有用的。
咱们先来聊聊第一个公式:对某定点 O,质点的动量矩 L 等于质点对该点的位置矢量 r 与质点的动量 p 的矢量积,即 L = r × p 。
这个公式看似有点复杂,其实你仔细琢磨琢磨,也不难理解。
比如说,你想象一下,有个小球在光滑的平面上滚动。
这个小球的速度很快,质量也不小。
那它的动量就比较大。
如果这个小球距离某个固定的点比较远,那它相对于这个点的动量矩就会更大。
再来说说第二个公式:质点所受的合力 F 对某定点 O 的力矩 M 等于质点对该点 O 的动量矩随时间的变化率,即 M = dL/dt 。
这个公式能帮助我们理解物体在受到外力作用时,它的转动状态是怎么变化的。
就像我们骑自行车的时候,我们蹬脚踏板的力就相当于一个外力。
这个力产生的力矩会让自行车的轮子转动起来,并且改变轮子的转动速度和方向。
最后是第三个公式:质点系对某定点 O 的动量矩 L 等于质点系中各质点对该点动量矩的矢量和,即L = ∑(ri × pi)。
这三个公式在实际应用中可是大显身手。
记得有一次,我在学校的物理实验室里,看到同学们在做一个关于转动惯量的实验。
实验台上有一个可以绕着中心轴旋转的圆盘,圆盘上有不同位置的小孔,可以通过改变小孔的位置来改变圆盘的质量分布。
同学们在圆盘上施加一个恒定的力矩,然后观察圆盘的转动情况。
他们通过测量圆盘的角速度和角加速度,来验证动量矩定理的公式。
当时有个同学怎么都弄不明白为什么改变圆盘的质量分布会影响它的转动状态。
我就用动量矩定理的公式给他解释。
我说,你看啊,质量分布变了,相当于质点的位置变了,那对中心点的动量矩也就跟着变了。
合力矩不变的情况下,动量矩的变化率就不一样了,所以转动状态就不同啦。
这同学听了之后,恍然大悟,那种因为搞懂一个难题而露出的兴奋表情,我到现在都还记得。
动量矩定理公式总结
动量矩定理是物理学中的重要概念,它描述了物体在受到外力作用时的运动状态变化。
在本文中,将介绍动量矩定理的概念和公式,并探讨其在物理学研究中的应用。
动量矩定理是指,物体在受到外力作用时,它的动量随时间的变化率等于作用在物体上的合外力矩。
换句话说,动量矩定理描述了物体受到外力矩作用时的转动运动状态变化。
动量矩定理的公式为:dL/dt = M,其中dL/dt表示物体动量的变化率,M表示作用在物体上的合外力矩。
这个公式可以用来计算物体运动时的动量变化情况,以及外力矩对运动状态的影响。
除了上述公式,动量矩定理还可以用向量形式表示。
具体而言,物体的角动量L等于它的动量p与位置向量r的叉积,即L = r × p。
在这种情况下,动量矩定理可以表示为dL/dt = M × r,其中M表示外力矩。
动量矩定理在物理学研究中有着广泛的应用。
例如,在机械工程中,动量矩定理可用于计算机械系统的运动状态,以及预测其运动轨迹。
在天体物理学中,动量矩定理可用于研究行星、恒星等天体的旋转运动状态。
总之,动量矩定理是物理学中的重要概念,它描述了物体在受到外力作用时的运动状态变化。
通过了解动量矩定理的概念和公式以及其在物理学研究中的应用,我们可以更好地理解物体的运动状态变化和物理规律。