12-1 动量矩-动量矩定理
- 格式:ppt
- 大小:1.22 MB
- 文档页数:28
第12章 动量矩定理通过上一章的学习我们知道动量是表征物体机械运动的物理量。
但是在某些情况下,一个物体的动量不足以反映它的运动特征。
例如,开普勒在研究行星运动时发现,行星在轨道上各点的速度不同,因而动量也不同,但它的动量的大小与它到太阳中心的距离之乘积—称为行星对太阳中心的动量矩,总是保持为常量,可见,在这里,行星对太阳中心的动量矩比行星的动量更能反映行星运动的特征。
在另一些情况下,物体的动量则完全不能表征它的运动。
例如,设刚体绕着通过质心C 的z 轴转动。
因为不论刚体转动快慢如何,质心速度C v总是等于零,所以刚体的动量也总是零。
但是,刚体上各质点的动量大小与其到z 轴的距离的乘积之和—即刚体对z 轴的动量矩却不等于零。
可见,在这里,不能用动量而必须用动量矩来表征刚体的运动。
§12-1 质点动量矩定理例2.人造地球卫星本来在位于离地面600km h =的圆形轨道上,如图所示,为使其进入410km r =的另一圆形轨道,须开动火箭,使卫星在A 点的速度于很短时间内增加0.646km/s ,然后令其沿椭圆轨道自由飞行到达远地点B ,再进入新的圆形轨道。
问:(1)卫星在椭圆轨道的远地点B 处时的速度是多少?(2)为使卫星沿新的圆形轨道运行,当它到达远地点B 时,应如何调整其速度?大气阻力及其它星球的影响不计。
地球半径6370km R =。
图12-5解:首先求出卫星在第一个圆形轨道上的速度,可由质点动力学方程求出。
卫星运行时只受地球引力的作用,即22()R F mg R x =+ 式中x 是卫星与地面的距离。
当卫星沿第一圆形轨道运动时,有222()()v R m mgR h R h =++ 即22()gR v R h =+ (b )将6370km R =,600km h =,9.8m/s g =代入上式,得卫星在第一个圆形轨道上运动的速度17.553km/s v = 所以卫星在椭圆轨道上的A 点的速度为7.5530.6468.199km/s A v =+=卫星在椭圆轨道上运动时,仍然只受地球引力作用,而该引力始终指向地心O ,对地以O 的矩等于零,所以卫星对地心O 的动量矩应保持为常量。
动量矩定理的三个公式动量矩定理是物理学中的重要概念,它有三个关键公式。
这三个公式在解决许多物理问题时,那可是相当有用的。
咱们先来聊聊第一个公式:对某定点 O,质点的动量矩 L 等于质点对该点的位置矢量 r 与质点的动量 p 的矢量积,即 L = r × p 。
这个公式看似有点复杂,其实你仔细琢磨琢磨,也不难理解。
比如说,你想象一下,有个小球在光滑的平面上滚动。
这个小球的速度很快,质量也不小。
那它的动量就比较大。
如果这个小球距离某个固定的点比较远,那它相对于这个点的动量矩就会更大。
再来说说第二个公式:质点所受的合力 F 对某定点 O 的力矩 M 等于质点对该点 O 的动量矩随时间的变化率,即 M = dL/dt 。
这个公式能帮助我们理解物体在受到外力作用时,它的转动状态是怎么变化的。
就像我们骑自行车的时候,我们蹬脚踏板的力就相当于一个外力。
这个力产生的力矩会让自行车的轮子转动起来,并且改变轮子的转动速度和方向。
最后是第三个公式:质点系对某定点 O 的动量矩 L 等于质点系中各质点对该点动量矩的矢量和,即L = ∑(ri × pi)。
这三个公式在实际应用中可是大显身手。
记得有一次,我在学校的物理实验室里,看到同学们在做一个关于转动惯量的实验。
实验台上有一个可以绕着中心轴旋转的圆盘,圆盘上有不同位置的小孔,可以通过改变小孔的位置来改变圆盘的质量分布。
同学们在圆盘上施加一个恒定的力矩,然后观察圆盘的转动情况。
他们通过测量圆盘的角速度和角加速度,来验证动量矩定理的公式。
当时有个同学怎么都弄不明白为什么改变圆盘的质量分布会影响它的转动状态。
我就用动量矩定理的公式给他解释。
我说,你看啊,质量分布变了,相当于质点的位置变了,那对中心点的动量矩也就跟着变了。
合力矩不变的情况下,动量矩的变化率就不一样了,所以转动状态就不同啦。
这同学听了之后,恍然大悟,那种因为搞懂一个难题而露出的兴奋表情,我到现在都还记得。
12-1、图示三角形薄板,质量为m ,a 、h 已知,求薄板对z 轴的转动惯量z J 。
12-2、如图所示,质量为m 的偏心轮在水平面上作平面运动。
轮子轴心为A ,质心为C ,AC = e ;轮子半径为R ,对轴心A 的转动惯量为A J ;C ,A ,B 三点在同一铅直线上。
1)当轮子只滚不滑时,若A v 已知,求轮子的动量和对地面上B 点的动量矩。
2)当轮子又滚又滑时,若A v ,ω已知,求轮子的动量和对地面上B 点的动量矩。
题12-2图12-3、如图所示,求下列两种情况的动量矩O L :(a) 质量为m ,半径为R 的均质薄圆盘绕水平轴O (垂直纸面)转动的角速度为ω; (b) 质量为m ,长为l 的均质细直杆绕O 轴转动的角速度为ω。
12-4、如图:(a )所示刚体由均质圆环与直秆焊接而成,两者质量均为m ,求绕O 轴的转动惯量;(b )所示均质圆盘质量为1m ,绳子无重且不可伸长.与圆盘之间无相对滑动,物块A 、B 质量均为2m ,求系统对O 轴的动量矩。
(a )(b12-5、某质点对于某定点O 的动量矩矢量表达式为:226(86)(4)t t t =++--O L i j k ,式中为t 时间,i, j, k 分别为x 、y 、z 轴向的单位矢量,求此质点上作用力对O 点的力矩的大小。
12-6、均质杆AB ,长L ;质量m ,在已知力A F ,B F (A B F F ≠)作用下,在铅垂面内作平面运动,若对端点B ,中点C 的转动惯量分别为B J ,C J ,求图示瞬时杆AB 的角加速度。
12-7、两根质量均为8kg的均质细杆固连成T字形,可绕通过O点的水平轴转动,当OAω=。
求该瞬时轴承O处的约束反力。
处于水平位置时,T形杆具有角速度4rad/s12-8、均质圆轮A质量为1m,半径为1r,以角速度ω绕杆OA的A端转动,此时将轮放置在m的另一均质圆轮B上,其半径为2r,如图所示。
轮B原为静止,但可绕其中心轴质量为2自由转动。