第13章静电场中的导体和电介质
- 格式:doc
- 大小:1.23 MB
- 文档页数:37
静电场中的导体和电介质静电平衡时导体是个等势体,导体表面是等势面,大前提是整个导体都是一样的,不要因为单独说导体表面是个等势面就误以为导体表面和内部不是等势的。
(证明省略)由此公式得出:导体表面电荷密度大的地方场强大,面电荷密度小的地方场强小。
导体表面电荷分布规律①与导体形状有关②与附近有什么样的带电体有关。
定性分析来说,孤立导体面电荷密度与表面的曲率有关,但是并不是单一的函数关系。
拓展知识(尖端放电的原理以及应用;避雷针的原理)这是一个从带电体上吸取全部电荷的有效方法。
测量电量时,要在静电计上安装法拉第圆筒,并将带电体接触圆筒的内表面,就是为了吸取带电体的全部电量,使测量更准确。
库仑平方反比定律推出高斯定理,高斯定理推出静电平衡时电荷只能分布导体外表面。
所以可以由实验精确测定导体内部没有电荷,就证明了高斯定理的正确,进而就证明了库仑平方反比定律的正确。
所以说这是精确的,因为通过实验测定数据是一定会存在误差的,而通过实验测定导体内部没有电荷是不会存在误差的,所以是很精确的。
以上是库仑平方反比定律验证的发展历史。
见图2-1,导体壳内部没有电荷时,导体的电荷只是分布在外表面上,为了满足电荷守恒定理,见图2-1c,就要一边是正电荷,而另一边是负电荷,其实空腔内没有电场的说法是对于结果而言的,并不能看出本质,本质是外电场和感应电荷的电场在导体腔的内部总的场强为0。
使带电体不影响外界,则要求将带电体置于接地的金属壳或者金属网内,必须接地才能将金属壳或者金属网外表面感应电荷流入地下。
则外界不受带电体场强的作用,而本质上也是带电体的场强和内表面感应电荷的场强叠加作用使外界总场强为0。
孤立导体的电容:电容C与导体的尺寸和形状有关,与q,U无关,它的物理意义是使导体每升高单位电位所需要的电量。
电容器及其电容:对电容的理解要升高一个层次:电容是导体的一个基本属性,就好像水桶的容量一样,C=U/q。
然而导体A的附近有其他导体时,导体的电位不仅与自己的q 有关,还受到其他导体的影响。
§2 静电场中的导体和电介质§2-1 静电场中的导体1. 导体的静电平衡条件当电荷静止不动时,电场散布不随转变,该体系就达到了静电平衡。
在导体中存在自由电荷,它们在电场的作用下可以移动,从而改变电荷的散布……导体内自由电荷无宏观运动的状态。
导体的静电平衡的必要条件是其体内图2-1导体的静电平衡场强处处为零。
从静电平衡的条件动身可以取得以下几点推论:推论1)导体是等位体,导体表面是等位面:2)导体表面周围的场强处处与它的表面垂直:因为电力线处处与等位面正交,所以导体外的场强必与它的表面垂直。
(注意:本章所用的方式与第一章不同,而是假定这种平衡以达图2-2导体对等位面的控制作用到,以平衡条件动身结合静电场的普遍规律分析问题。
)2.电荷散布1) 体内无电荷,电荷只散布在导体的表面上:当带电导体处于静电平衡时,导体内部不存在净电荷(即电荷的体密度)电荷仅散布在导体的表面。
可以用高斯定理来证明:设导体内有净电荷,则可在导体内部作一闭合的曲面,将包围起来,依静电条件知S面上处处, 即由高斯定理必有q=02) 面电荷密度与场强的关系:当导体静电平衡时,导体表面周围空间的 与该处导体表面的面电荷密度 有如下关系:论证: 在电荷面密度为 的点取面元设 点为导体表面之外周围空间的点,面元。
充分小,可以为 上的面电荷密度 是均匀的,以为横截面作扁圆柱形高斯面(S ),上底面过P 点,把电荷q= 包围起来. 通太高斯面的电通量是:3) 表面曲率的影响、尖端放电导体电荷如何散布,定量分析研究较复杂,这不仅与这个导体的形状有关,还和它周围有何种带电体有关。
对孤立导体,电荷的散布有以下定性的规律:图2-3导体表面场强与电荷面密度曲率较大的地方(凸出而尖锐处),电荷密度e 较大;曲率较小的地方(较平坦处)电荷密度e 较小;曲率为负的地方(凹进去向)电荷密度e 更小。
1) 端放电的利和弊3 导体壳(腔内无带电体情况)大体性质:当导体壳内无带电体时,在静电平衡当导体壳内无 带电体时,在静电平衡下:导体壳内表面上处处无电荷,电荷仅散布在外 表面;空腔内无带电场,空腔内电位处处相等。
静电场中的导体和电介质引言在物理学中,静电场是指当电荷处于静止状态时周围存在的电场。
导体和电介质是静电场中两种常见的物质类型。
理解导体和电介质在静电场中的行为对于理解静电现象和应用静电学原理具有重要意义。
本文将介绍导体和电介质在静电场中的特性和行为,包括导体的电荷分布和电场分布、导体内部电场为零的原因,以及电介质的电极化和电介质的介电常数。
导体导体的电荷分布在静电场中,导体具有特殊的电荷分布特性。
由于导体中的自由电子可以在导体内自由移动,一旦一个导体与其他带电体接触,自由电子将重新分布以达到平衡。
导体的外部表面电荷会分散在整个表面上,使得导体表面的电场强度为零。
这意味着在静电平衡条件下,导体表面任意一点的电势相等。
导体内部的电场分布特性在导体内部,电场强度为零。
这是由于自由电子可以在导体内自由移动,当导体中存在电场时,自由电子会沿着电场方向移动,直到达到平衡。
这种现象称为电荷迁移。
因此,导体内部的自由电子的运动将产生一个等量但相反方向的电场,导致导体内部的电场强度为零。
这也是为什么导体内部没有电场线存在的原因。
电介质电极化现象电介质是一种不易导电的物质,而其在静电场中的行为与导体有着显著不同。
当一个电介质暴露在静电场中时,电介质分子会发生电极化现象。
电极化是指电介质分子在电场作用下产生偶极矩。
在电场的作用下,电介质分子会发生形状变化,正负电荷分离,产生一个平均不为零的电偶极矩。
这种电极化现象可以分为两种类型:取向极化和感应极化。
取向极化是指电介质分子的取向方向在电场的作用下发生变化,而感应极化是指电场作用下导致电介质分子内部正负电荷的相对移动。
电介质的介电常数电介质的介电常数是描述电介质在电场中的响应特性的重要参数。
介电常数是一个比值,代表了电介质在电场力下的相对表现。
介电常数决定了电介质的极化程度和电场中的电场强度。
电介质的介电常数大于1,意味着电介质对电场的屏蔽效果更明显。
在实际应用中,通过选择合适的电介质和调整电场强度,可以改变静电场的分布和效果,用于电容器、绝缘材料等相关领域。
第13章 静电场中的导体和电介质13.1一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为204q E r πε=.当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为04c q U r πε=.13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl . 设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为 ⎰⋅=ΦSdD d 012d d d 2S S S rlDπ=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,可得电位移为 D = λ/2πr , 其方向垂直中心轴向外.电场强度为 E = D/ε0εr = λ/2πε0εr r , 方向也垂直中心轴向外.13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少? [解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离图13.3球为b .球心的电势是所有电荷产生的电势叠加,大小为000111444o q q Q q U r a b πεπεπε-+=++13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q =3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少? (2)A 板电势为多少? [解答](1)设A 的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为σ1S 和q 2 = σ2S ,q 1 = 在B 、C 板上分别感应异号电荷-q 1和-q 2,由电荷守恒得方程q = q 1 + q 2 = σ1S + σ2S . ① A 、B 间的场强为 E 1 = σ1/ε0, A 、C 间的场强为 E 2 = σ2/ε0.设A 板与B 板的电势差和A 板与C 板的的电势差相等,设为ΔU ,则ΔU = E 1d 1 = E 2d 2, ②即 σ1d 1 = σ2d 2. ③解联立方程①和③得σ1 = qd 2/S (d 1 + d 2),所以 q 1 = σ1S = qd 2/(d 1+d 2) = 2×10-8(C);q 2 = q - q 1 = 1×10-8(C).B 、C 板上的电荷分别为q B = -q 1 = -2×10-8(C); q C = -q 2 = -1×10-8(C). (2)两板电势差为ΔU = E 1d 1 = σ1d 1/ε0 = qd 1d 2/ε0S (d 1+d 2), 由于 k = 9×109 = 1/4πε0, 所以 ε0 = 10-9/36π,因此 ΔU = 144π = 452.4(V). 由于B 板和C 板的电势为零,所以U A = ΔU = 452.4(V).13.5 一无限大均匀带电平面A ,带电量为q ,在它的附近放一块与A 平行的金属导体板B ,板B 有一定的厚度,如图所示.则在板B 的两个表面1和2上的感应电荷分别为多少?[解答]由于板B 原来不带电,两边感应出电荷后,由电荷守恒得 0. ①q 1 + q 2 = 虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S ,则面电荷密度分别为σ1 = q 1/S 、σ2 = q 2/S 、σ = q/S ,图13.42 图13.5它们产生的场强大小分别为E 1 = σ1/ε0、E 2 = σ2/ε0、E = σ/ε0.在B 板内部任取一点P ,其场强为零,其中1面产生的场强向右,2面和A 板产生的场强向左,取向右的方向为正,可得E 1 - E 2 – E = 0,即 σ1 - σ2 – σ = 0,或者说 q 1 - q 2 + q = 0. ② 解得电量分别为q 2 = q /2,q 1 = -q 2 = -q /2.13.6 两平行金属板带有等异号电荷,若两板的电势差为120V ,两板间相距为 1.2mm ,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?[解答]由于左板接地,所以σ1 = 0. 由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面,所以σ4 = 0. 由于两板带等量异号的电荷,所以 σ2 = -σ3.两板之间的场强为E = σ3/ε0,而 E = U/d , 所以面电荷密度分别为σ3 = ε0E = ε0U/d = 8.84×10-7(C·m -2),σ2 = -σ3 = -8.84×10-7(C·m -2).13.7一球形电容器,内外球壳半径分别为R 1和R 2,球壳与地面及其他物体相距很远.将内球用细导线接地.试证:球面间电容可用公式202214R C R R πε=-表示. (提示:可看作两个球电容器的并联,且地球半径R >>R 2)[一:并联电容法.在外球外面再接一个半径为R 3壳,外壳也接地.内球壳和外球壳之间是容为 104C πε=壳之间也是一个电容器,电容为2023141/1/C R R πε=-.外球壳是一极,由于内球壳和大外球壳都接地,共用一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为12120022144R R C C C R R R πεπε=+=+-图13.6202214R R R πε=-.方法二:电容定义法.假设外壳带正电为q ,则内壳将感应电荷q`.内球的电势是两个电荷产生的叠加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为0201`044q q R R πεπε+=,因此感应电荷为12`R q q R =-.根据高斯定理可得两球壳之间的场强为122002`44R q q E r R r πεπε==-,负号表示场强方向由外球壳指向内球壳.取外球壳指向内球壳的一条电力线,两球壳之间的电势差为1122d d R R R R U E r=⋅=⎰⎰E l121202()d 4R R R qr R rπε=-⎰1212021202()11()44R q R R q R R R R πεπε-=-=球面间的电容为202214R q C U R R πε==-.13.8球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为12012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-.当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.9设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.[解答]假设在两介质的介面插入一薄导体,可知两个电容器串联,电容分别为 ε1S/d 1和C 2 = ε2S/d 2. C 1 = 总电容的倒数为122112*********d d d d C C C S S S εεεεεε+=+=+=,总电容为122112SC d d εεεε=+.13.10 圆柱形电容器是由半径为R 1的导线和与它同轴的内半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:(1)两极的电势差U ;(2)介质中的电场强度E 、电位移D ; (3)电容C ,它是真空时电容的多少倍? [解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为 ⎰⋅=ΦS d S D d12d d d 2S S S rlDπ=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,高斯面包围的自由电荷为 q = λl ,根据介质中的高斯定理 Φd = q , 可得电位为 D = λ/2πr , 方向垂直中心轴向外.电场强度为 E = D/ε = λ/2πεr , 方向也垂直中心轴向外.取一条电力线为积分路径,电势差为21d d d 2R LLRU E r r r λπε=⋅==⎰⎰⎰E l21ln 2R R λπε=.电容为212ln(/)q l C U R R πε==.在真空时的电容为00212ln(/)l q C U R R πε==,所以倍数为C/C 0 = ε/ε0.13.11在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布;(2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为 Dr S D SSd 24d d π==⋅=Φ⎰⎰S D高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2, 方向沿着径向.用矢量表示为D = Q 0r /4πr 3.电场强度为E = D /ε0εr = Q 0r /4πε0εr r 3, 方向沿着径向.由于 D = ε0E + P ,所以 P = D - ε0E =031(1)4rQ r επ-r .在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以 D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0.(2)在介质层内靠近金属球处,自由电荷Q 0产生的场为E 0 = Q 0r /4πε0r 3;极化电荷q 1`产生的场强为E` = q 1`r /4πε0r 3;总场强为 E = Q 0r /4πε0εr r 3. 由于 E = E 0 + E `,解得极化电荷为`101(1)rq Q ε=-,介质层内表面的极化电荷面密度为``01122111(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为``21q q =-,面密度为``02222221(1)44r Q q R R σπεπ==-.13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为W 1:W 2 = C 2:C 1 = 2:1.两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为W 1:W 2 = C 1:C 2 = 1:2.13.13一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?[解答]平行板电容器的电容为C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ; 另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为C = C 1 + C 2 = (1 + εr )ε0S /2d ,静电能为W = CU 2/2 = (1 + εr )ε0SU 2/4d .13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能; (3)极板上的自由电荷面密度.[解答](1)如前所述,两电容器并联的电容为C = (1 + εr )ε0S /2d .(2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U .当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为 W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d .(3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ; 介质中的一半的电容为 C 2 = ε0εr S /2d . 设两半的所带自由电荷分别为Q 1和Q 2,则Q 1 + Q 2 = Q . ①由于C = Q/U ,所以U = Q 1/C 1 = Q 2/C 2. ②解联立方程得01112211/C U C Q Q C C C C ==++,真空中一半电容器的自由电荷面密度为00112122/2(1/)(1)r C U U Q S C C S d εσε===++.同理,介质中一半电容器的自由电荷面密度为0021222(/1)(1)r r C U UC C S d εεσε==++.13.15平行板电容器极板面积为200cm 2,板间距离为 1.0mm ,电容器内有一块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少? [解答]平行板电容器的电容为C 0 = ε0εr S/d ,静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为C = ε0S/d .(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为ΔW = W - W 0 = (C - C 0)U 2/2 = (1 - εr )ε0SU 2/2d = -3.18×10-5(J). (2)充电后所带电量为 Q = C 0U , 保持电量不变抽出玻璃板,静电能为W = Q 2/2C ,电能器能量变化为2000(1)2C C U W W W C ∆=-=-20(1)2r r SU dεεε=-= 1.59×10-4(J).13.16设圆柱形电容器的内、外圆筒半径分别为a 、b .试证明电容器能量的一半储存在半径R[解答]设圆柱形电容器电荷线密度为λ,场强为 E = λ/2πε0r , 能量密度为 w = ε0E 2/2, 体积元为 d V = 2πrl d r , 能量元为 d W = w d V .在半径a 到R 的圆柱体储存的能量为20d d 2V V W w V E Vε==⎰⎰2200d ln 44Ral l R r r a λλπεπε==⎰. 当R = b 时,能量为210ln4l b W a λπε=;当R =22200ln48l l b W a λλπεπε==,所以W 2 = W 1/2,即电容器能量的一半储存在半径R13.17 两个同轴的圆柱面,长度均为l ,半径分别为a 、b ,柱面之间充满介电常量为ε的电介质(忽略边缘效应).当这两个导体带有等量异号电荷(±Q )时,求:(1)在半径为r (a < r < b )、厚度为d r 、长度为l 的圆柱薄壳中任一点处,电场能量体密度是多少?整个薄壳层中总能量是多少?(2)电介质中总能量是多少(由积分算出)?(3)由电容器能量公式推算出圆柱形电容器的电容公式?[解答](1)圆柱形内柱面的电荷线密度为 λ = Q/l , 根据介质是高斯定理,可知电位移为D = λ/2πr = Q /2πrl ,场强为 E = D/ε = Q /2πεrl , 能量密度为w = D ·E /2 = DE /2 = Q 2/8π2εr 2l 2.薄壳的体积为d V = 2πrl d r , 能量为 d W = w d V = Q 2d r /4πεlr .(2)电介质中总能量为22d d ln44bV aQ Q bW W r lr l a πεπε===⎰⎰. (3)由公式W = Q 2/2C 得电容为222ln(/)Q l C W b a πε==.13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多大?如果两端加上1000V 电压,是否会被击穿?[解答]当两个电容串联时,由公式211212111C C C C C C C +=+=,得1212120PFC C C C C ==+.加上U = 1000V 的电压后,带电量为Q = CU ,第一个电容器两端的电压为U 1 = Q/C 1 = CU/C 1 = 600(V); 第二个电容器两端的电压为U 2 = Q/C 2 = CU/C 2 = 400(V).由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.。
思考题13-1 尖端放电的物理实质是什么?答: 尖端放电的物理实质,是尖端处的强电场致使附近的空气分子电离,电离所产生的带电粒子在电场的作用下急剧运动和相互碰撞,碰撞又使更多的空气分子电离,并非尖端所带的电荷直接释放到空间去。
13-2 将一个带电+q 半径为R B 的大导体球B 移近一个半径为R A 而不带电的小导体球A ,试判断下列说法是否正确?并说明理由。
(1) B 球电势高于A 球。
答: 正确。
不带电的导体球A 在带电+q 的导体球B 的电场中,将有感应电荷分布于表面。
另外,定性画出电场线,在静电场的电力线方向上电势逐点降低,又由图看出电场线自导体球B 指向导体球A ,故B 球电势高于A 球。
(2) 以无限远为电势零点,A 球的电势: V A < 0答: 不正确。
若以无穷远处为电势零点V ∞=0,从图可知A 球的电力线伸向无穷远处。
所以,V A >0。
13-3 怎样能使导体净电荷为零 ,而其电势不为零?答:将不带电的绝缘导体(与地绝缘并与其它任何带电体绝缘)置于某电场中,则该导体有∑=0q 而导体的电势V ≠0。
图13-37 均匀带电球体的电场能13-4 怎样理解静电平衡时导体内部各点的场强为零?答: 必须注意以下两点:(1) 这里的“点”是指导体内的宏观点,即无限小体积元。
对于微观点,例如导体中某电子或某原子核附近的一个几何点,场强一般不为零;(2) 静电平衡的这一条件,只有在导体内部的电荷除静电场力以外不受其他力(如“化学力”)的情况下才能成立。
13-5 怎样理解导体表面附近的场强与表面上对应点的电荷面密度成正比?答: 不应产生这样的误解:导体表面附近一点的场强,只是由该点的一个面电荷元S ∆σ产生的。
实际上这个场强是导体表面上全部电荷所贡献的合场强。
如果场中不止一个导体,则这个场强应是所有导体表面上的全部电荷的总贡献。
13-6 为什么不能使一个物体无限制地带电?答: 所谓一个物体带电,就是指它因失去电子而有多余的净的正电荷或因获得电子而有多余的负的净电荷。
思考题13-1 尖端放电的物理实质是什么?答: 尖端放电的物理实质,是尖端处的强电场致使附近的空气分子电离,电离所产生的带电粒子在电场的作用下急剧运动和相互碰撞,碰撞又使更多的空气分子电离,并非尖端所带的电荷直接释放到空间去。
13-2 将一个带电+q 半径为R B 的大导体球B 移近一个半径为R A 而不带电的小导体球A ,试判断下列说法是否正确?并说明理由。
(1) B 球电势高于A 球。
答: 正确。
不带电的导体球A 在带电+q 的导体球B 的电场中,将有感应电荷分布于表面。
另外,定性画出电场线,在静电场的电力线方向上电势逐点降低,又由图看出电场线自导体球B 指向导体球A ,故B 球电势高于A 球。
(2) 以无限远为电势零点,A 球的电势: V A < 0答: 不正确。
若以无穷远处为电势零点V ∞=0,从图可知A 球的电力线伸向无穷远处。
所以,V A >0。
13-3 怎样能使导体净电荷为零 ,而其电势不为零?答:将不带电的绝缘导体(与地绝缘并与其它任何带电体绝缘)置于某电场中,则该导体有∑=0q 而导体的电势V ≠0。
图13-37 均匀带电球体的电场能13-4 怎样理解静电平衡时导体内部各点的场强为零?答:必须注意以下两点:(1)这里的“点”是指导体内的宏观点,即无限小体积元。
对于微观点,例如导体中某电子或某原子核附近的一个几何点,场强一般不为零;(2)静电平衡的这一条件,只有在导体内部的电荷除静电场力以外不受其他力(如“化学力”)的情况下才能成立。
13-5 怎样理解导体表面附近的场强与表面上对应点的电荷面密度成正比?答:不应产生这样的误解:导体表面附近一点的场强,只是由该点的一个面电荷元S∆σ产生的。
实际上这个场强是导体表面上全部电荷所贡献的合场强。
如果场中不止一个导体,则这个场强应是所有导体表面上的全部电荷的总贡献。
13-6为什么不能使一个物体无限制地带电?答:所谓一个物体带电,就是指它因失去电子而有多余的净的正电荷或因获得电子而有多余的负的净电荷。
当物体带电时,在其周围空间产生电场,其电场强度随物体带电量的增加而增大。
带电体附近的大气中总是存在着少量游离的电子和离子,这些游离的电子和离子在其强电场作用下,获得足够的能量,使它们和中性分子碰撞时产生碰撞电离,从而不断产生新的电子和离子,这种电子和离子的形成过程如雪崩一样地发展下去,导致带电物体附近的大气被击穿。
在带电体带电的作用下,碰撞电离产生的、与带电体电荷异号的电荷来到带电体上,使带电体的电量减少。
所以一个物体不能无限制地带电。
如尖端放电现象。
13-7 感应电荷的大小和分布怎样确定?答:当施感电荷Q接近于一导体时,导体上出现等量异号的感应电荷±q´。
其分布一方面与导体的表面形状有关,另一方面与施感电荷Q有关,导体靠近Q的一端,将出现与Q异号的感应电荷q´。
而一般情况下q´并不等于Q,q´的大小及其在导体上的分布情况由静电平衡条件决定,最终总是使得±q´与施感电荷Q在导体内任一点产生的合电场强度为零,只有在一些特殊情视下,q´的大小才会与Q相等。
13-8 怎样理解导体壳外电荷对壳内的影响?答:封闭导体壳不论接地与否,其内部的电场均不受壳外电荷的影响,对此不能产生误解,以为由于壳的存在,壳外电荷不在壳内产生电场。
实际上,壳外电荷也要在壳内激发电场,只是由于这个场与壳外表面的感应电荷在壳内激发的场的合场强为零,才造成壳内电场不受壳外电荷影响这一结果。
13-9 怎样理解导体壳内电荷对壳外的影响?答:对一个不接地的中性导体壳,壳外无带电体,但壳外空间仍然可能有场,这个场是壳内电荷间接引起的。
例如壳内有一正电荷q,则壳内、外壁的感应电荷将分别为-q和+q。
外壁电荷将发出电场线,所以壳外空间有场。
但是不要以为由于壳的存在,壳内电荷q 不在壳外空间激发场。
实际上壳内电荷q和内壁感应电荷-q都要在壳外空间激发场,只不过其合场强为零,才使得壳外空间的场只是由外壁感应电荷+q所决定。
而且应当注意,无论壳内电荷分布如何,它和内壁感应电荷在壳外空间激发的合场强始终为零。
壳外空间的场只与壳内电荷的总电量有关,而与它们的分布无关。
13-10 在静电场中的电介质、导体表现出有何不同的特征?答:静电场中的导体的主要特征是表面有感应电荷,内部场强处处为零,表面为等势面,导体为等势体。
而电介质的主要特征是在电场中被极化产生极化电荷,介质内部场强不为零,方向与外加电场方向一致,一般说介质表面不是等势面。
13-11 电介质的极化现象与导体的静电感应现象有什么区别?答: 导体的静电感应现象从微观上看,是金属中有大量自由电子,它们在电场的作用下可以在导体内作宏观移动,电子的移动使导体中的电荷重新分布,结果在导体表面出现感应电荷。
感应电荷产生的电场与外电场的方向相反,因此随着感应电荷的堆积,导体中的合场强逐渐减小,达到静电平衡时,感应电荷产生的电场与外加电场相互抵消,导体中的合场强为零,导体中自由电子的宏观移动也停止。
电介质的极化现象从微观上看,分子中的电子与原子核的结合相当紧密,电子处于束缚状态。
把电介质引入静电场时,电子与原子核之间,只能作一微观的相对位移,或者它们之间的连线稍微改变方向(有时两种情况都发生),结果在沿场强方向的两个表面出现极化电荷。
极化电荷所产生的电场只是部分地抵消外加电场,达到稳定时,电介质内部的电场强度不为零。
13-12 怎样理解电势能与电场能答: 电势能是带电体之间或带电体与电场之间的相互作用能,随电势能零点的选取而改变,其正负取决于相互作用性质。
由于电势能在所求点A 处的值等于将电荷从无限远(电势能零点处)移至A 处外力反抗电场力作的功,外力作的功的正负与电势能正负一致。
也可由相互作用判断,如是排斥作用,则是正值,如是吸引作用,则是负值。
电场能是电场物质所包含的固有能量,与势能零点的选取无关。
电势能是电场能的一部分,也表示电场能随位置改变的变化。
在有一些情况,如电容器中,由于电场只存在于电容器内部,电容储能QU CU C Q W 21212122=== 既是电场能,又是电势能。
13-13 怎样使导体有过剩的正(或负)电荷,而其电势为零?答:将不带电的导体置于负电荷(或正电荷)的电场中,再将该导体接地,然后撤除接地线。
则该导体有正电荷(或负电荷),并且电势为零。
13-14 怎样使导体有过剩的负电荷,而其电势为正?答:将一带少量负电荷-q的导体置于另一正电荷Q(Q>>q)的电场中,由于Q>>q ,带负电荷的导体并未明显改变原电场,这时该导体有过剩的负电荷,而其电势为正。
13-15 电介质在外电场中极化后,两端出现等量异号电荷,若把它截成两半后分开,再撤去外电场,问这两个半截的电介质上是否带电?为什么?答:不带电因为从电介质极化的微观机制看有两类:①非极性分子在外电场中沿电场方向产生感应电偶极矩;②极性分子在外电场中其固有电偶极矩在该电场作用下沿着外电场方向取向。
其在外电场中极化的宏观效果是一样的,在电介质的表面上出现的电荷是束缚电荷,这种电荷不象导体中的自由电荷那样能用传导的方法引走。
当电介质被裁成两段后撤去电场,极化的电介质又恢复原状,仍各保持中性。
13章习题13-1半径分别为1.0cm与2.0cm的两个球形导体,各带电量1.0×10-8C,两球心间相距很远,若用导线将两球相连,求:(1)每个球所带电量;(2)每球的电势。
解:两球相距很远,可视为孤立导体,互不影响,球上电荷均匀分布。
设两球半径分别为r1和r2,导线连接后的带电量分别为q1和q2,而q1+q2= 2q,则两球电势分别是10114r q V πε=, 20224r q V πε=两球相连后电势相等,V 1=V 2,则有21212211r r q q r q r q ++==212r r q += 即21112r r qr q +=C 106769-⨯=. C 1033.13292122-⨯=+=r r qr q 两球电势101214r q V V πε==V 10063⨯=.13-2 A 、B 、C 是三块平行金属板,面积均为200cm 2,A 、B 相距4.0mm ,A 、C 相距2.0mm ,B 、C 两板都接地,如图13-38所示。
设A 板带正电3.0×10-7C ,不计边缘效应,求B 板和C 板上的感应电荷,以及A 板的电势。
解: A 板带正电,B 、C 两板接地,且两板在A 板附近,所以A 板上的正电荷电量为q ,分布在左右两表面,设B 板感应电荷为-q 1,C 板感应电荷为-q 2 ,则q 1+q 2=q ①由于AB 间和AC 间均可视为匀强电场图 13-38S q E AB 01ε= Sq E AC 02ε= 所以ACAB E E q q =21 ② 根据题意ACAC AB AB CA B A E d E d V V V V ⋅=⋅-=-得 21=AC AB E E ③ 由②③解得q 1=1.0×10-7C , q 2=2.0×10-7CB 板上感应电荷为 – q 1= –1.0×10-7CC 板上感应电荷为 – q 2= – 2.0×10-7CAB AB A d E V ⋅=AB d S q 01ε=41237102001085.8100.4100.1----⨯⨯⨯⨯⨯⨯=V 103.23⨯=13-3 两块无限大均匀带电导体平板相互平行放置,设四个表面的电荷面密度分别为图 13-391σ、2σ、3σ、4σ,如图13-39所示。
求证当静电平衡时,32σσ-=、41σσ=。
证明 垂直于板作柱状高斯面,如图所示,因为导体内场强为零,两板间场强垂直于板平面,所以有()⎰=⋅+=⋅S S 0d 0132σσS E所以 32σσ-=又左边导体板内场强 ()02/04321=---=εσσσσE考虑到032=+σσ于是有 41σσ=13-4如图13-40所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q 。
设无限远处为电势零点,试求:(1) 球壳内外表面上的电荷。
(2) 球心O 点处,由球壳内表面上电荷产生的电势。
(3) 球心O 点处的总电势。
解: (1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q 。
(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的图13-40 习题13-4图距离都是a ,所以由这些电荷在O 点产生的电势为 a q V q 04d επ=⎰-aq 04επ-= (3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和q Q q q O V V V V +-++= r q 04επ=a q 04επ-b q Q 04επ++ )111(40b a r q +-π=εbQ 04επ+ 13-5有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷。