第一代无细胞百日咳疫苗毒性国家参考品制备工艺的研究
- 格式:pdf
- 大小:26.44 KB
- 文档页数:3
破伤风类毒素的发展历史及进展摘要:破伤风是一种严重危害人民生命健康的疾病,当今仍然是一个世界性的难题,在广大贫困落后的第三世界的国家和地区更为严重。
本文主要介绍破伤风类毒素的发展历史以及应用和研究进展。
关键词:破伤风;类毒素;研究;应用一些经变性或经化学修饰而失去原有毒性而仍保留其免疫原性的毒素。
某些细菌外毒素可用甲醛等处理后脱毒的制品,毒性虽消失,但免疫原性不变,故仍然具有刺激人体产生抗毒素,以起到机体从此对某疾病具有自动免疫的作用。
它们广泛地应用于预防某些传染病。
如向人体注射白喉类毒素后可以预防白喉。
其他的还有破伤风类毒素、葡萄球菌类毒素、霍乱类毒素等。
亦可把它们注射到动物体内用于制备抗毒素。
细菌的外毒素经甲醛处理后,失去毒性而仍保留其免疫原性,能刺激机体产生保护性免疫的制剂。
常用的甲醛溶液的浓度是0.3~0.4%。
它可使细菌外毒素的电荷发生改变,封闭其自由氨基,产生甲烯化合物(CH2=N-)。
其他基团(如吲哚异吡唑环)与侧链的关系亦可改变,成为类毒素。
常用的类毒素有白喉类毒素,破伤风类毒素。
另外,若在类毒素中加入适量的磷酸铝或氢氧化铝,即成吸附精制类毒素。
该类制剂在体内吸收较慢,能较长时间刺激机体,使机体产生高滴度抗体,增强免疫效果。
类毒素也可与死疫苗混合制成联合疫苗。
如百白破三联疫苗,就是由百日咳死菌苗、白喉类毒素、破伤风类毒素混合制成的。
主要用于儿童,注射后可同时预防儿童易发的白喉、百日咳、破伤风三种疾病。
类毒素在预防由外毒素引起的传染病中起重要作用,可用于人和动物的免疫接种,使其通过人工自动免疫获得抗病能力;还可用来免疫动物,再从动物血液中提取含抗毒素的血清,将此抗血清注入人体后,可使人体通过被动免疫的方式,立即获得相应的特异性免疫力。
1破伤风类毒素的发展历史破伤风是一种严重危害人民生命健康的疾病,当今仍然是一个世界性的难题,在广大贫困落后的第三世界的国家和地区更为严重。
据估计,全世界每年有几十万至一百万的死亡病例,死于破伤风的80%为新生儿[1、2]。
百日咳疫苗的生产与质量控制百日咳疫苗是儿童接种疫苗中的一种,其主要作用是预防百日咳这种高传染性的呼吸道疾病。
由于儿童免疫系统尚未完全发育,因此百日咳对儿童的危害极大。
为此,各国政府对儿童进行百日咳疫苗的接种已成为常规实践。
然而,疫苗的生产和质量控制却是影响其效果和安全性的重要因素,本文将对这两个方面进行介绍。
一、百日咳疫苗的生产百日咳疫苗的生产是一个比较复杂的过程,其中包括病毒分离、病毒培养、灭活处理、疫苗提取、疫苗纯化、疫苗配方和疫苗灌装等步骤。
每个步骤都有其独特的要求和挑战,下面我们逐一进行介绍。
1. 病毒分离病毒分离是百日咳疫苗生产的第一步,其目的是从患者体内分离出百日咳病毒。
病毒分离可以采用细胞培养法或动物接种法。
这个过程需要在高洁净的条件下进行,以避免污染和混杂。
2. 病毒培养病毒培养是将病毒在充足的培养基中增殖,以获取足够的病毒量。
病毒在细胞培养物中的增殖需要遵循一定的生长曲线,同时还需要考虑到病毒队列的免疫原性和毒力等因素。
3. 灭活处理由于百日咳病毒具有强烈的毒力,因此必须在疫苗生产之前对其进行灭活处理。
灭活处理一般采用化学或热灭活方法,严格遵循灭活条件和灭活效果的要求。
4. 疫苗提取和纯化疫苗提取是将灭活的百日咳病毒分离出来,并加工成疫苗。
疫苗提取需要使用一系列的分离和加工技术,来确保疫苗的纯度和免疫原性。
5. 疫苗配方和灌装疫苗配方是将制好的疫苗和一定配方的其他成分混合,这些成分包括抗生素、稳定剂和助剂等,以达到预期疫苗的效果。
疫苗灌装是将已经配好的疫苗注入疫苗瓶中,并根据不同疫苗分装不同的规格。
二、百日咳疫苗的质量控制尽管各个疫苗厂家都对百日咳疫苗的制造过程进行了严格的质量控制,但是在生产和分装过程中,仍然存在着一些质量问题。
下面我们简要介绍一下百日咳疫苗的主要质量问题。
1. 疫苗批号和有效期疫苗的批号和有效期是百日咳疫苗质量的重要指标,必须要在包装上有明确标明。
如果批号或有效期有误,可能会导致给儿童接种有害的疫苗,影响儿童的健康。
生物制品命名规程Requirements for Terminology of Biologics1生物制品的定义生物制品是应用普通的或以基因工程、细胞工程、蛋白质工程、发酵工程等生物技术获得的微生物、细胞及各种动物和人源的组织和液体等生物材料制备,用于人类疾病预防、治疗和诊断的药品。
目前,我国人用生物制品包括细菌类疫苗(含类毒素)、病毒类疫苗、抗毒素及免疫血清、血液制品、细胞因子、体内及体外诊断制品以及其他活性制剂(包括毒素、抗原、变态反应原、单克隆抗体、重组DNA产品、抗原-抗体复合物、免疫调节剂、微生态制剂等)。
2生物制品的种类根据各种制品的组成及用途分类如下。
2.l疫苗(Vaccines)2.l.l细菌类疫苗(Bacterial Vaccines)由有关细菌、螺旋体或其衍生物制成的减毒活疫苗、灭活疫苗、重组DNA疫苗、亚单位疫苗等,如卡介苗、伤寒Vi多糖疫苗、破伤风疫苗(类毒素)等。
2.1.2病毒类疫苗(Viral Vaccines)由病毒、衣原体、立克次体或其衍生物制成的减毒活疫苗、灭活疫苗、重组DNA疫苗、亚单位疫苗等,如麻疹减毒活疫苗、重组(CHO细胞)乙型肝炎疫苗等。
2.l.3联合疫苗(Combined Vaccines)由二种或二种以上疫苗抗原原液配制成的具有多种免疫原性的灭活疫苗或活疫苗,如百日咳、白喉、破伤风联合疫苗(DTP),麻疹、流行性腮腺炎、风疹联合疫苗(MMR)等。
2. 2抗毒素及免疫血清(Antitoxin and Antisera)由特定抗原免疫动物所得血浆制成的抗毒素或免疫血清,如破伤风抗毒素、抗狂犬病血清等,用于治疗或被动免疫预防。
2.3血液制品(Blood Products)由健康人的血浆或特异免疫人血浆分离、提纯或由重组DNA技术制成的血浆蛋白组分或血细胞组分制品,如人血白蛋白、人免疫球蛋白、人凝血因子(天然或重组的)、红细胞浓缩物等,用于诊断、治疗或被动免疫预防。
国家药监局重点实验室专栏[重点实验室简介]国家药品监督管理局生物制品质量研究与评价重点实验室是国家药监局2019年首批认定的重点实验室ꎬ依托单位为中国食品药品检定研究院生物制品检定所ꎮ生物制品检定所主要开展应用基础研究ꎬ方向包括:治疗类生物技术产品㊁预防类菌苗/疫苗及其创新性产品和一些重要的体内外诊断试剂(血液筛查)的质量控制和质量评价研究ꎻ建立符合国际规范的质量检定用标准物质㊁生产与检定用菌种库和细胞库等ꎮ通过提供疫苗及生物技术产品等国家标准物质㊁建立标准的检验技术㊁研究与制定完善的药品质量标准ꎬ生物制品检定所在我国药品质量控制㊁创新性药品研究与产业化发展中起到不可或缺的技术支撑作用ꎮ生物制品质量研究与评价重点实验室具备完善的生物制品检验检测体系ꎬ检测技术范围与检测能力在国内相同领域是唯一的也是最全面的ꎬ共获得的CNAS实验室资质认定的项目222项ꎮ2013年生物制品检定所被评估认定成为WHO生物制品标准化和评价合作中心ꎬ2017年通过WHO生物制品标准化和评价合作中心再认定ꎮ通过广泛的国际药交流(WHO㊁英国NIBSC㊁美国药学会㊁美国FDA和人用药物注册技术要求国际协调会议ICH等)ꎬ重点实验室不仅引进国外先进的药品质量监管理念和技术ꎬ还将我国的一些优势技术运用于国际标准品和国际药品质量标准的建立中ꎬ在相关领域的国际标准制定中发挥重要作用ꎮ实验室主任:徐苗ꎬ女ꎬ医学博士ꎬ研究员ꎬ博士生导师ꎬ中国食品药品检定研究院生物制品检定所所长ꎮ主要从事疫苗等生物制品质量控制与评价的研究和管理工作ꎮ先后主持国家级课题4项ꎬ参与省部级以上课题6项ꎬ以第一或通信作者在«Naturalprotocols»«EmergingMicrobes&Infections»等杂志上发表论文80余篇ꎬ编写专著5部ꎬ获授权专利6项ꎬ其中3项已经完成转化ꎬ先后获得中华预防医学会科学技术一等奖㊁中国防痨协会科学技术奖一等奖㊁中国药学会科学技术奖二等奖㊁北京市科学技术二等奖等多个奖项ꎮ获国家市场监管总局抗击新冠疫情先进个人㊁中国药学会以岭生物青年生物奖等ꎮ㊀基金项目:国家重点研发计划(No.2021YFC2302404)作者简介:吴小红ꎬ女ꎬ硕士ꎬ副研究员ꎬ研究方向:新型冠状病毒mRNA疫苗及狂犬病疫苗质量控制ꎬE-mail:wuxiaohong@nifdc.org.cn通信作者:刘欣玉ꎬ男ꎬ博士ꎬ研究员ꎬ研究方向:疫苗质量控制ꎬTel:010-53851780ꎬE-mail:liuxinyu@nifdc.org.cn中和抗体检测应用于新型冠状病毒mRNA疫苗效力分析吴小红ꎬ赵丹华ꎬ所玥ꎬ彭沁华ꎬ王红玉ꎬ刘欣玉ꎬ李玉华(中国食品药品检定研究院虫媒病毒疫苗室ꎬ国家药品监督管理局生物制品质量研究与评价重点实验室ꎬ北京102629)摘要:目的㊀通过对新型冠状病毒(2019novelcoronavirusꎬ2019-nCoV)mRNA疫苗(新冠mRNA疫苗)免疫小鼠后产生的中和抗体进行检测ꎬ探索中和抗体检测法应用于mRNA疫苗体内效力评价的可行性ꎮ方法㊀采用6~8周BALB/c小鼠进行后肢肌肉免疫ꎬ检测不同免疫剂量和不同免疫程序的中和抗体滴度ꎮ并对8家企业生产的新冠mRNA疫苗免疫的小鼠血清进行中和抗体和IgG抗体检测ꎮ结果㊀2㊁5㊁10μg不同剂量mRNA疫苗按照不同免疫程序免疫小鼠后中和抗体检测结果显示ꎬ抗体阳转率均为100%ꎬ中和抗体反应有明显的剂量-效应关系ꎮ2针间隔14d加强免疫组抗体滴度显著高于间隔7d加强免疫组及1针组(F=57.13ꎬP<0.001)ꎮ2μg剂量间隔7d加强免疫和间隔14d加强免疫产生的中和抗体几何平均滴度(geometricmeantiterꎬGMT)分别为218和468ꎬ差异有统计学意义(t=3.40ꎬP=0.003)ꎻ5μg剂量间隔7d加强免疫和间隔14d加强免疫产生的中和抗体GMT分别为499和1436ꎬ差异有统计学意义(t=3.62ꎬP=0.002)ꎻ10μg剂量间隔7d加强免疫和间隔14d加强免疫产生的中和抗体GMT分别为608和1909ꎬ差异有统计学意义(t=3.23ꎬP=0.005)ꎮ国内8家企业生产的新冠mRNA疫苗免疫小鼠后均可产生高滴度的IgG抗体(104.5~107.5)和中和抗体(102.6~104.8)ꎬ效力测定结果均符合企业质量标准ꎮ各企业生产的mRNA疫苗的中和抗体滴度结果差异有统计学意义(F=70.03ꎬP<0.001)ꎮ结论㊀小鼠免疫后中和抗体检测可用于mRNA疫苗的体内效力评价ꎮ关键词:新型冠状病毒ꎻmRNA疫苗ꎻ中和抗体ꎻIgG抗体ꎻ效力中图分类号:R917㊀文献标志码:A㊀文章编号:2095-5375(2023)11-0896-006doi:10.13506/j.cnki.jpr.2023.11.009StudyonthepotencyofmRNACOVID-19vaccineinvivousingneutralizingantibodyassayWUXiaohongꎬZHAODanhuaꎬSUOYueꎬPENGQinhuaꎬWANGHongyuꎬLIUXinyuꎬLIYuhua(NMPAKeyLaboratoryforQualityControlandEvaluationofBiologicalProductsꎬDivisionofArbovirusVaccineꎬNationalInstitutesforFoodandDrugControlꎬBeijing102629ꎬChina)Abstract:Objective㊀ToevaluatethepotencyofmRNACOVID-19vaccineinvivobyneutralizingantibodyassayaf ̄termiceimmunizationꎬandestablishamethodforevaluatingtheefficacyofthevaccine.Methods㊀BALB/cmiceat6~8weekswereimmunizedwithmRNACOVID-19vaccineandtheneutralizingantibodytitersofdifferentimmunedosageanddifferentvaccinationschedulesweredetected.Thevariantvaccinesproducedbydifferentmanufactureswereimmunizedatintervalsof7dor14dꎬandserumsampleswascollectedat7daftertheseconddoseofimmunization.2019novelcoronavir ̄us(2019-nCoV)neutralizingantibodytiterandIgGantibodytiterweredetectedbypseudovirusneutralizationtestanden ̄zymelinkedimmunosorbentassayseparately.Results㊀Theresultsofneutralizingantibodyatdifferentimmunedosageof2ꎬ5ꎬ10μgmRNAvaccineshowedthattheseropositiverateofantibodyinmicewas100%andtheneutralizingantibodyreac ̄tionhadanobviousdose-effectcorrelation.Theneutralizationantibodytiterofthe14-dayintervalgroupwassignificantlyhigherthanthatofthe7-dayintervalgroupandonedosegroup(F=57.13ꎬP<0.001).Thegeometricmeantiters(GMT)ofneutralizingantibodyinducedby2μgdosageintervalof7-dayand14-daywere218and468ꎬrespectivelyꎬwithsignifi ̄cantdifference(t=3.40ꎬP=0.003)ꎻTheGMTofneutralizingantibodyinducedby5μgdosageintervalof7-dayand14-daywere499and1436ꎬrespectivelyꎬwithsignificantdifference(t=3.62ꎬP=0.002)ꎻTheGMTofneutralizingantibodiesinducedby10μgdosageintervalof7-dayand14-daywere608and1909respectivelyꎬwithsignificantdifference(t=3.23ꎬP=0.005).HighlevelsofIgGantibody(104.5~107.5)andneutralizingantibody(102.6~104.8)couldbedetectedafterimmunizingmicewiththeCOVID-19mRNAvaccineꎬpotencyofthevaccineswereallmetwiththerequirementswithgoodlotconsistenceꎬthereweresignificantdifferenceintheantibodytitersamongthevariousvaccineproducedbydifferentman ̄ufacturers(F=70.03ꎬP<0.001).Conclusion㊀TheneutralizingantibodytestofthemiceafterimmunizationcanbeusedtoevaluatethepotencyofCOID-19mRNAvaccineinvivo.Keywords:2019novelcoronavirusꎻmRNAvaccineꎻNeutralizingantibodyꎻIgGantibodyꎻPotency㊀㊀新型冠状病毒感染(coronavirusdisease2019ꎬCOVID-19)的流行对人类健康造成了严重影响ꎮ疫苗接种已被证实对严重疾病㊁降低住院率和死亡率非常有效[1-2]ꎮ其中mRNA疫苗由于具有能够同时诱导体液免疫和细胞免疫㊁研发和生产周期短㊁容易实现量产等优势ꎬ成为国际上主要采用的COVID-19疫苗研发技术ꎮ随着新型冠状病毒(2019-nCoV)变异株的不断出现ꎬ单价变异株疫苗及多价变异株疫苗可作为加强免疫以及异源序贯免疫来应对病毒变异造成的感染威胁[3]ꎮ新冠mRNA疫苗的效力评价目前尚无国际标准ꎬ欧洲及世界卫生组织(WHO)专家多推荐体外活性研究作为该疫苗效力评价的主要方法[4-6]ꎮ鉴于mRNA疫苗为创新技术疫苗ꎬ缺乏系统的疫苗质量研究经验ꎬ我国现阶段采用体内和体外双效力指标进行评价[7]ꎬ体内效力的评价可利用动物免疫后检测中和抗体和/或总抗体的方法来进行[8]ꎮ本研究对新冠mRNA疫苗不同免疫剂量和不同免疫程序诱导的中和抗体反应进行初步研究ꎬ并对新冠变异株mRNA疫苗及二价mRNA疫苗免疫小鼠后的抗体阳性率和抗体水平进行体内效力分析ꎬ从而评价mRNA疫苗的质量ꎮ1㊀材料与方法1.1㊀实验动物㊀SPF级BALB/c小鼠ꎬ6~8周龄ꎬ体重18~22gꎬ雌雄不限ꎬ由中国食品药品检定研究院动物所提供ꎬ实验动物生产许可证号:SCXK(京)2022-0002ꎬ使用许可证号:SYXK(京)2022-0014ꎬ动物实验伦理批准文号:中检动(福)第2022(B)008号ꎮ1.2㊀主要试剂及仪器㊀10ˑPBS㊁TMB㊁终止液购自索莱宝公司ꎻHRP标记的羊抗小鼠IgG购自美国Jackson公司ꎻBSA购自美国Sigma公司ꎻDMEM㊁胎牛血清㊁胰酶㊁HEPES㊁双抗均购自美国Gibco公司ꎻ荧光素酶检测试剂购自美国普洛麦格Promega公司ꎻPromegaGloMax96微孔板化学发光检测仪(Glomaxnavigator)购自美国普洛麦格Promega公司ꎻ酶标仪(InfiniteM200)购自美国蒂肯公司ꎮ1.3㊀实验用疫苗㊁细胞㊁不同型别假病毒㊀实验用疫苗为国内企业生产的mRNA疫苗ꎬ编号V1~V9ꎮ其中V1为原型株疫苗ꎬV2~V7为二价2019-nCoV变异株mRNA疫苗(OmicronBA.4/5株和Delta株双价㊁OmicronBA.4/5株和Beta株双价㊁OmicronBA.2株和原型株双价以及OmicronXBB.1.5株和BQ.1.7株双价)ꎬV8~V9是2019-nCoV变异株mRNA疫苗(OmicronBA.1)ꎻVero细胞购自ATCCꎬ本室传代保存ꎻ假病毒原型株㊁Delta株㊁Beta株㊁O ̄micronBA.1㊁OmicronBA.2㊁OmicronBA.4/5㊁OmicronXBB.1.5购自北京云菱生物技术公司ꎻ不同株2019-nCoVS蛋白抗原分别购自北京义翘神州生物技术有限公司和北京百普赛斯公司ꎮ1.4㊀免疫剂量及免疫程序1.4.1㊀mRNA疫苗免疫剂量和免疫程序研究㊀将V1mRNA疫苗(原型株)配制成不同浓度后ꎬ按照不同的免疫程序分成A㊁B㊁C3组:A组程序为免疫1针ꎬ14d采血ꎻB组程序为间隔7d加强免疫1针后7d采血ꎻC组程序为间隔14d加强免疫1针后7d采血ꎮ每种免疫程序按照不同的免疫剂量分成3个小组ꎬ分别是每只小鼠注射2㊁5和10μgꎬ共计9组ꎬ每组10只小鼠ꎮ同时10只小鼠注射生理盐水作为阴性对照组ꎮ每只小鼠后肢肌肉注射100μL疫苗ꎬ眼球取血分离血清ꎬ-20ħ保存备用ꎮ用假病毒中和试验法检测抗2019-nCoV中和抗体ꎮ1.4.2㊀实验疫苗免疫和检测㊀mRNA变异株疫苗及二价疫苗均按照企业的免疫剂量和免疫程序进行免疫和采血ꎬ分离血清后于-20ħ保存ꎮ分别进行中和抗体和IgG结合抗体的检测ꎮ1.5㊀假病毒中和试验(PBNA法)㊀按照操作规程进行[9-10]ꎬ在96孔板上3倍系列稀释的血清100μLꎬ分别加入各型假病毒[用DMEM培养基稀释至1.3ˑ104半数组织培养感染剂量(TCID50)/mL]ꎬ每孔加入50μLꎬ同时设立病毒对照和细胞对照ꎮ37ħ5%CO2培养箱中和1hꎬ加入2ˑ105个/mL的Vero细胞悬液ꎬ每孔100μLꎬ37ħ5%CO2培养箱培养20~28h后ꎬ从细胞培养箱中取出96孔板ꎬ用多道移液器从每个上样孔中吸弃150μL上清ꎬ然后加入100μL荧光素酶检测试剂ꎬ室温避光反应2minꎮ反应结束后ꎬ用多道移液器将反应孔中的液体反复吹吸6~8次ꎬ使细胞充分裂解ꎬ从每孔中吸出100μL液体ꎬ加于对应96孔化学发光检测板中ꎬ置于化学发光检测仪中读取发光值ꎮ计算抑制率={1-[样品组的发光强度均值-空白对照CC(CellControlꎬCC)均值]/[阴性组的发光强度VC(VirusControlꎬVC)均值-空白对照值CC均值]}ˑ100%ꎮ根据中和抑制率结果ꎬ按照ReedMuench法计算中和抗体滴度半数效应剂量(50%maximaleffectiveconcentrationꎬEC50)ꎬEC50>30为抗体阳性ꎮ1.6㊀特异性抗2019-nCoVSpike蛋白IgG抗体检测㊀将2019-nCoV各株抗原分别用1ˑPBS稀释至2μg mL-1ꎬ取96孔板每孔加100μLꎬ(5ʃ3)ħ条件下包被过夜16hꎬPBST洗板3次ꎬ拍干后加入封闭液(2%BSA溶液)ꎬ100μL/孔ꎬ37ħ孵箱里封闭2hꎬ加入系列稀释后的待检测血清样本ꎬ37ħ孵箱里孵育后1hꎬPBST洗板3次ꎬ加入辣根过氧化物酶(HRP)标记的羊抗小鼠IgG抗体ꎬ每孔100μLꎬ37ħ孵育后1hꎬPBST洗板3次ꎬ加入底物TMB50μLꎬ室温避光显色3~5minꎬ加入1mol L-1硫酸溶液终止液终止ꎬ150μL/孔ꎬ在酶标仪上检测波长450nm/630nm的OD值ꎬ以阴性小鼠吸光度均值的2.1倍为cutoff值ꎮ血清A值大于cutoff值为抗体阳性ꎬ取阳性A值最大的血清稀释度为血清的IgG抗体滴度ꎮ1.7㊀统计学方法㊀使用GraphPadPrism8.0进行数据分析ꎬ相同免疫剂量不同免疫程序以及相同免疫程序不同免疫剂量间中和抗体滴度以及不同企业mRNA疫苗免疫后中和抗体之间比较采用单因素方差分析评估组间差异ꎬ中和抗体和IgG抗体之间差异采用t检验分析ꎬP<0.05表示差异有统计学意义ꎮ2㊀结果2.1㊀不同免疫剂量和不同免疫程序的抗体反应㊀针对原型株mRNA疫苗不同免疫剂量和免疫程序的中和抗体检测结果显示ꎬ2㊁5㊁10μgmRNA疫苗免疫小鼠后ꎬ1针免疫组和2针免疫组抗体阳性率均为100%ꎮ2㊁5㊁10μg首针免疫后14d或21d中和抗体反应具有明显的剂量-效应关系ꎮ相同免疫剂量㊁不同免疫程序结果显示ꎬ2针免疫组高于1针免疫组ꎬ其中2μg剂量组不同针次之间抗体滴度结果差异有统计学意义(F=20.64ꎬP<0.001)ꎻ5μg剂量组不同针次之间抗体滴度结果差异有统计学意义(F=18.27ꎬP<0.001)ꎻ10μg剂量组不同针次之间抗体滴度结果差异有统计学意义(F=11.37ꎬP<0.001)ꎮ2针免疫组中14d加强免疫组高于7d加强免疫组及1针组(F=57.13ꎬP<0.001)ꎮ其中2μg间隔7d加强免疫和间隔14d加强免疫组产生的中和抗体几何平均滴度(geometricmeantiterꎬGMT)分别为218和468ꎬ14d为7d的2.15倍ꎬ差异有统计学意义(t=3.40ꎬP=0.003)ꎻ5μg间隔7d加强免疫和间隔14d加强免疫产生的中和抗体GMT分别为499和1436ꎬ14d为7d的2.88倍ꎬ差异有统计学意义(t=3.62ꎬP=0.002)ꎻ10μg间隔7d加强免疫和间隔14d加强免疫产生的中和抗体GMT分别为608和1909ꎬ14d为7d的3.14倍ꎬ差异有统计学意义(t=3.23ꎬP=0.005)ꎮ相同免疫程序㊁不同免疫剂量诱导的抗体反应结果显示ꎬ1针免疫组不同剂量间相比(F=7.33ꎬP=0.003)ꎻ2针免疫组ꎬ间隔7d不同剂量间相比(F=6.40ꎬP=0.005)ꎻ2针免疫组ꎬ间隔14d不同剂量间相比(F=7.64ꎬP=0.002)ꎬ差异均有统计学意义ꎬ结果见表1ꎮ表1㊀V1疫苗不同免疫剂量和免疫程序的中和抗体滴度及阳性率剂量/μgGMT(95%CI)A组B组C组F值P值阳性率(%)260(46~73)218(167~629)468(263~674)20.64P<0.001100.05187(102~271)499(311~688)1436(759~2112)18.27P<0.001100.010349(52~646)608(269~948)1909(709~3109)11.37P<0.001100.0F值7.336.407.643.40a3.62b3.23cP值0.0030.0050.0020.003a0.002b0.005c阳性率(%)100.0100.0100.0///㊀注:GMT为几何平均滴度:95%CI:95%可信区间ꎻ/表示无统计ꎻabc2㊁5㊁10μg间隔7d和间隔14d中和抗体滴度分别进行t检验ꎮ2.2㊀8家企业生产的新冠变异株mRNA疫苗体内效力检测结果㊀8家企业生产的疫苗V2~V9按照企业的免疫剂量和免疫程序免疫BALB/c小鼠后ꎬ中和抗体及特异性IgG抗体检测结果见表2ꎮ表2㊀不同企业生产的mRNA疫苗抗体检测结果生产者免疫程序检测批数LgIgG(GMT)中和抗体EC50(GMT)(LgEC50)V37d2针免疫14d采血V47d2针免疫14d采血V514d2针免疫21d采血V614d2针免疫21d采血V714d2针免疫21d采血V814d2针免疫28d采血V914d2针免疫28d采血25.95.61202(3.1)N/A35.65.71268(3.1)N/A15.96.0410(2.6)966(3.0)26.05.7617(2.8)1456(3.2)36.05.7644(2.8)1671(3.2)46.96.6667(2.8)3935(3.6)14.54.81291(3.1)2080(3.3)24.74.91556(3.2)2353(3.4)34.74.81361(3.1)2582(3.4)44.64.91050(3.0)1931(3.3)16.06.11274(3.1)3812(3.6)26.15.81170(3.1)2798(3.4)36.05.81589(3.2)3097(3.5)46.06.01298(3.1)4074(3.6)15.04.87495(3.9)1427(3.2)25.15.06230(3.8)1257(3.1)35.35.29580(4.0)2806(3.4)17.1/24453(4.4)/27.5/27976(4.4)/37.5/26979(4.4)/15.6/65630(4.8)/25.6/40445(4.6)/35.6/25343(4.4)/F值或t值11.47a17.56b70.03cP值P<0.001aP<0.001bP<0.001c㊀注: / 代表该疫苗为单价疫苗ꎻ N/A 代表该组分未检测ꎻ 1㊁2㊁3㊁4 分别代表检测批数ꎮa代表组分1IgG结合抗体和中和抗体滴度t检验结果ꎻb代表组分2IgG结合抗体和中和抗体滴度t检验结果ꎻc代表各企业之间中和抗体滴度方差分析结果ꎮ组分1和组分2代表双价疫苗中的单价组分ꎬ如V7疫苗:组分1为德尔塔株ꎬ组分2为奥密克戎BA.4/5株ꎮ2.3㊀特异性IgG结合抗体和中和抗体结果分析㊀检测结果以对数转换后进行t检验ꎬ组份1IgG和EC50比较t=11.47ꎬP<0.001ꎻ组份2IgG和EC50比较t=17.56ꎬP<0.001ꎬ均显示中和抗体检测结果和IgG结合抗体检测差异有统计学意义ꎮPearson相关系数r分别为0.42和0.22ꎮ虽然两种方法抗体检测结果相关性较差ꎬ但均可以检测到高水平的抗体特异性反应ꎮ两种方法检测各企业3~4批疫苗ꎬIgG抗体结果批间变异系数在1.0%~7.6%ꎬ中和抗体结果批间变异系数在2.0%~7.9%ꎬ提示两种抗体检测方法均可以用于评价疫苗体内效价的批间一致性ꎮ各企业mRNA疫苗的中和抗体结果对数转换后进行组间方差分析ꎬ差异有统计学意义(F=70.03ꎬP<0.001)ꎮ3㊀讨论新冠mRNA疫苗临床前和临床研究中均证实疫苗的有效性与动物或人群保护力之间有一定的量效关系[11-14]ꎮ中和抗体是最重要的保护性抗体ꎬ与2019-nCoV感染者症状严重程度之间也有一定的相关性[15-16]ꎮ因此建立标准的中和抗体检测平台技术对COVID-19疫苗进行评价尤为重要[17]ꎮ本研究采用的假病毒中和方法经国内多家实验室联合验证[9ꎬ18]ꎬ抗体检测结果相对客观ꎬ与IgG结合抗体检测相比更能体现疫苗的免疫原性ꎮ尤其对于多价疫苗ꎬ假病毒中和抗体检测方法可实现对不同变异株抗体分别进行检测ꎬ能较好的反映出针对多价疫苗各毒株组份疫苗诱导的抗体中和活性ꎮ通过对1批mRNA原型株疫苗不同免疫剂量和不同免疫程序的分析ꎬ提示mRNA疫苗免疫小鼠后的中和抗体水平与免疫剂量和免疫程序有密切关系ꎮ本研究发现ꎬ同等剂量下(2㊁5㊁10μg)间隔7d与间隔14d2针免疫的抗体结果差异有统计学意义ꎬ对于mRNA疫苗来说ꎬ间隔7d的第2针加强免疫不是产生高滴度中和抗体的最适宜的程序ꎬ疫苗实际使用过程中第2针加强免疫的时间选择在21d或28d[11-12]ꎮ因此mRNA疫苗体内效力的评价应适当关注免疫程序的设计ꎮ研究结果显示mRNA变异株单价疫苗或二价疫苗中针对不同组分的IgG抗体滴度均在104.5~107.5间ꎬ符合各企业的质量标准(不低于103或104)ꎬ且各企业生产的疫苗IgG抗体结果批间一致性良好ꎬ变异系数在1.0%~7.6%之间ꎮ假病毒法检测中和抗体滴度在102.6~104.8之间ꎬ不同企业生产的疫苗免疫后中和抗体水平差异有统计学意义(F=70.03ꎬP<0.001)ꎬ与国产mRNA疫苗已公布的Ⅰ~Ⅱ期临床研究数据一致ꎬ不同企业新冠mRNA疫苗在人体内产生的中和抗体滴度有差异[12-15]ꎮ各企业不同批次中和抗体检测结果变异系数为2.0%~7.9%ꎮ因此中和抗体检测可用于不同企业mRNA疫苗效力的比较研究以及疫苗批间一致性的评价ꎮ辉瑞公司生产的BNT162b为30μg/剂ꎬ莫德纳公司mRNA-1273为100μg/剂ꎮ两款疫苗对2019-nCoV感染的保护效力分别达到了94.6%和94.1%ꎬ不同的人用剂量和免疫程序可产生相同的临床保护力[19-21]ꎮmRNA-1273Ⅲ期临床研究结果显示接种该疫苗后假病毒法检测中和抗体滴度半数抑制稀释(50%inhibitorydilutionꎬID50)为10㊁100和1000ꎬ测算疫苗保护效力分别为78%㊁91%和96%[22]ꎻ新冠灭活疫苗NVX-CoV2373中和抗体滴度ID50为50㊁100和7230(IU50 mL-1)ꎬ疫苗保护效力分别为75.7%㊁81.7%和96.8%[23]ꎮ本研究结果显示国产新冠mRNA疫苗小鼠免疫后中和抗体均达到较高水平ꎬ无论是1针免疫还是2针免疫EC50除个别企业因单价组分配比含量低ꎬ造成滴度偏低(V4)外ꎬ其余企业中和抗体滴度均在在1000以上甚至更高ꎬ提示国产新冠mRNA疫苗的体内效力结果已达到较高的标准要求ꎮ虽然本研究未利用上述新冠mRNA疫苗进一步开展攻毒保护力研究ꎬ但随着mRNA疫苗大量的临床研究数据以及真实世界的保护力数据公布ꎬ会对疫苗的效力评价标准提供更有效的数据支持ꎮ尽快建立效力评价用疫苗参考品和血清检测用标准物质ꎬ提高国产mRNA疫苗的质量评价水平是下一步研究方向ꎮ参考文献:[1]㊀EARLEKAꎬAMBROSINODMꎬFIORE-GARTLANDAꎬetal.EvidenceforantibodyasaprotectivecorrelateforCO ̄VID-19vaccines[J].Vaccineꎬ2021ꎬ39(32):4423-4428. [2]KHOURDSꎬCROMERDꎬREYNALDIRAꎬetal.Neu ̄tralizingantibodylevelsarehighlypredictiveofimmuneprotectionfromsymptomaticSARS-CoV-2infection[J].NatMedꎬ2021ꎬ27(7):1205-1211.[3]WorldHealthOrganization.Coronavirus(COVID-19)Dashboard[EB/OL].(2023-08-30).https://covid19.who.int(AccessedAug30ꎬ2023).[4]WHOTRSNʎ1039.WHOExpertCommitteeonBiologicalStandardization.Seventy-fourthreport[EB/0L].(2022-04-12).https://www.who.int/publications/i/item/9789240046870.[5]LIUMAꎬZHOUTꎬSHEETSRLꎬetal.WHOinformalconsultationonregulatoryconsiderationsforevaluationofthequalityꎬsafetyandefficacyofRNA-basedprophylacticvaccinesforinfectiousdiseases20-22April2021[J].EmergMicrobesInfectꎬ2022ꎬ11(1):384-391. [6]EuropeanMedicinesAgency.Conceptpaperonthedevel ̄opmentofaGuidelineontheQualityaspectsofmRNAvaccines[EB/OL].(2023-06-23).https://www.print ̄friendly.com/p/g/K3BwRq.[7]中国食品药品检定研究院.ʌWHO会议ɔ王军志院士㊁王佑春研究员参加WHO传染病预防性mRNA疫苗质量㊁安全及有效性评价法规考虑要点网络咨询会[EB/OL].(2021-05-11).https://www.nifdc.org.cn//nifdc/gjhz/gjjl/202105111550513416.html.[8]国家药品监督管理局.国家药监局药审中心关于发布«新型冠状病毒预防用疫苗研发技术指导原则(试行)»等5个指导原则的通告(2020年第21号)[EB/OL].(2020-08-14).https://www.nmpa.gov.cn/xxgk/ggtg/ypggtg/ypqtggtg/20200814230916157.html. [9]NIEJꎬLIQꎬWUJꎬetal.Establishmentandvalidationofapseudo-virusneutralizationassayforSARS-CoV-2[J].EmergMicrobesInfectꎬ2020ꎬ9(1):680-686.[10]NIEJꎬLIQꎬWUJꎬetal.QuantificationofSARS-CoV-2neutralizingantibodybyapseudo-typedvirus-basedassay[J].NatProtocꎬ2020ꎬ15(11):3699-3715.[11]LIJLꎬLIUQꎬLIUJꎬetal.DevelopmentofBivalentmRNAVaccinesagainstSARS-CoV-2Variants[J].Vac ̄cines(Basel)ꎬ2022ꎬ10(11):1807.[12]YANGRꎬDENGYꎬHUANGBYꎬetal.Acore-shellstructuredCOVID-19mRNAvaccinewithfavorablebio ̄distributionpatternandpromisingimmunity[J].SignalTransductTargetTherꎬ2021ꎬ6(1):213.[13]CHENGLꎬLIXFꎬDAIXHꎬetal.Safetyandimmunoge ̄nicityoftheSARS-CoV-2ARCoVmRNAvaccineinChineseadults:arandomizedꎬdouble-blindꎬplacebo-con ̄trolledꎬphase1trial[J].LancetMicrobeꎬ2022ꎬ3(3):e193-e202.[14]XUKꎬLEIWWꎬKANGBꎬetal.AnovelmRNAvaccineꎬSYS6006ꎬagainstSARS-CoV-2[J].FrontImmunolꎬ2023(13):1051576.[15]GARCIA-BELTRANWFꎬLAMECꎬASTUDILLOMGꎬetal.COVID-19-neutralizingantibodiespredictdiseaseseverityandsurvival[J].Cellꎬ2021ꎬ184(2):476-488. [16]KHOURYDSꎬCROMERDꎬREYNALDIAꎬetal.Neu ̄tralizingantibodylevelsarehighlypredictiveofimmuneprotectionfromsymptomaticSARS-CoV-2infection[J].NatMedꎬ2021ꎬ27(7):1205-1211.[17]WANGYC.StandardizedneutralisingantibodyassaysareneededforevaluatingCOVID-19vaccines[J].EBioMedi ̄cineꎬ2021(73):103677.[18]GUANLDꎬYUYLꎬWUXHꎬetal.ThefirstChinesena ̄tionalstandardsforSARS-CoV-2neutralizingantibody[J].Vaccineꎬ2021ꎬ39(28):3724-3730.[19]POLACKFPꎬTHOMASSJꎬKITCHINNꎬetal.SafetyandEfficacyoftheBNT162b2mRNACovid-19Vaccine[J].NEnglJMedꎬ2020ꎬ383(27):2603-2615.[20]SKOWRONSKIDMꎬDESERRESG.SafetyandefficacyoftheBNT162b2mRNAcovid-19vaccine[J].NEnglJMedꎬ2021ꎬ384(16):1576-1577.[21]BADENLRꎬELSAHLYHMꎬESSINKBꎬetal.EfficacyandsafetyofthemRNA-1273SARS-CoV-2vaccine[J].NEnglJMedꎬ2021ꎬ384(5):403-416.[22]GILBERTPBꎬMONTEFIRRIDCꎬMCDERMOTTABꎬetal.ImmunecorrelatesanalysisofthemRNA-1273CO ̄VID-19vaccineefficacyclinicaltrial[J].Scienceꎬ2022ꎬ375(6576):43-50.[23]FONGYꎬHUANGYꎬBENKESERDꎬetal.Immunecorre ̄latesanalysisofthePREVENT-19COVID-19vaccineefficacyclinicaltrial[J].NatCommunꎬ2023ꎬ14(1):331.(收稿日期:2023-10-13)(上接第883页)[15]WUYBꎬPENGMCꎬZHANGCꎬetal.Quantitativedeter ̄minationofmulti-classbioactiveconstituentsforqualityassessmentoftenAnoectochilusꎬfourGoodyeraandoneLudisiaspeciesinChina[J].ChinHerbMedꎬ2020ꎬ12(4):430-439.[16]DUXMꎬIRINONꎬFURUSHONꎬetal.PharmacologicallyactivecompoundsintheAnoectochilusandGoodyeraspecies[J].JNatMedꎬ2008ꎬ62(2):132-148.[17]DUXMꎬSUNNYꎬCHENYꎬetal.Hepatoprotectiveali ̄phaticglycosidesfromthreeGoodyeraspecies[J].BiolPharmBullꎬ2000ꎬ23(6):731-734.[18]张婉菁ꎬ刘量ꎬ胡荣ꎬ等.斑叶兰抗氧化活性组分研究及其乳膏的制备[J].中医药导报ꎬ2017ꎬ23(1):59-62. [19]朱平福ꎬ赵怡ꎬ金晶.斑叶兰抗炎作用的实验研究[J].中国民族民间医药ꎬ2010ꎬ19(4):35-36.[20]DAILYꎬYINQMꎬQIUJKꎬetal.GoodyschleAꎬanewbutenolidewithsignificantBchEinhibitoryactivityfromGoodyeraschlechtendaliana[J].NatProdResꎬ2021ꎬ35(23):4916-4921.[21]DUXMꎬSUNNYꎬTakizawaNꎬetal.Sedativeandanti ̄convulsantactivitiesofgoodyerinꎬaflavonolglycosidefromGoodyeraschlechtendaliana[J].PhytotherResꎬ2002ꎬ16(3):261-263.[22]党友超ꎬ黄哲ꎬ李蒙禹ꎬ等.黔产金线莲及其易混品(斑叶兰)的显微鉴定研究[J].贵阳中医学院学报ꎬ2018ꎬ40(4):30-34.[23]黄哲ꎬ党友超ꎬ王世清.黔产金线莲与其易混品斑叶兰的叶表皮显微特征研究[J].贵阳中医学院学报ꎬ2019ꎬ41(2):34-37.(收稿日期:2023-05-08)。
2782021, 37 (3)中国人兽共患病学报Chinese Journal of ZoonosesD0l :10.3969/j.issn.1002 —2694.2021.00.021・综述・人轮状病毒疫苗研究进展王 俊12,闻晓波12,冉旭华1 2摘要:轮状病毒(RV)是引起婴幼儿和幼龄动物腹泻的主要病原体,轮状病毒无特效药物进行治疗,只能通过疫苗免疫 预防,因此,轮状病毒疫苗的合理应用在降低全世界轮状病毒性腹泻的发病率和死亡率中显得尤为重要.但目前商品化的口服减毒活疫苗存在潜在的安全性问题以及在中低收入国家免疫效力不高的缺陷,需要研发更加安全、高效的疫苗来防控轮状病毒性腹泻.近年来,随着轮状病毒研究的不断深入,鉴定出了新的轮状病毒血清型,并且有4种轮状病毒疫苗通过世界卫生组织的使用资格预审,还有一些新型疫苗正处于研发阶段.本文根据各国学者的研究对轮状病毒疫苗研究进展做一综述,为进一步研究提供一定的参考.关键词:轮状病毒;轮状病毒疫苗;研究进展;口服减毒活疫苗;候选疫苗中图分类号:R373.2.R186 文献标识码:A 文章编号:1002 — 2694(2021 )03 — 0278 — 07Advances in the development of human rotavirus vaccinesWANG Jun 12,WEN Xiao-bo 1'2,RAN Xu-hua 1 2(1 .College of Animal Science and Veterinary Medicine , Heilongjlang Bay!Agricu11ural University , Daqing 1 633 1 9 , China ;2.College of Animal Science Technology , Hainan University , Haikou 570228 , China )Abstract : Rotavirus (RV) is a major pathogen causing diarrhea in infants , young children , and animals. There are no spe cific medicines , thus far , for treating diseases caused by R V infection. The rational administration of R V vaccines , therefore ,maybeanimportantwaytodecreasetheworldwidemorbidityand mortalityduetotheseverediarrheaassociatedwithvariousRV infections. However , the current commcrcial oral live attenuated vaccines have potential safety problems and confer poor immunity in low- and middle-income countries. 'Therefore , safer and more efficient vaccines must be developed to prevent and control disease associated with R V infection. In recent years , from further research on R V , various new serotypes of R Vstrains have emerged , thus indicating that the current commcrcial vaccines have failed to provide complete cross-protection a gainst infection due to new RV strains. To date, four RV vaccines have been prcqualficd by the World Health Organization (WHO) , and other new vaccines arc being developed or arc in clinical trials. This review summarizes the progress in RV vac cine development in some countries ; this information may guide the development of RV vaccine candidates.Keywords : Rotavirus ; vaccine ; research progress ; oral attenuated vaccine ; vaccine candidateSupported by the Natural Science Foundation Leading Project of Heilongjiang Province (No.LH2019C052) Corresponding author : Ran Xu-hua , Email : ****************轮状病毒(rotavirus, RV)属于呼肠孤病毒科、 轮状病毒属成员,是引起婴幼儿及幼龄动物轮状病毒性腹泻的主要病原体]1],临床症状为呕吐、腹泻、 脱水,严重的可造成死亡。
多肽疫苗生产及质控技术指导原则前言多肽疫苗是按照病原体抗原基因中已知或预测的某段抗原表位的氨基酸序列,通过化学合成技术制备的疫苗.传统疫苗一般由两种方式制备,一种为能诱发免疫力却不致病的减毒疫苗,例如黄热病、脊髓灰质炎和麻疹疫苗或卡介苗;另一种为灭活疫苗(例如百日咳杆菌、狂犬病毒、伤寒杆菌)。
多肽疫苗由于完全是合成的,不存在毒力回升或灭活不全的问题。
特别是一些还不能通过体外培养方式获得足够量的抗原的微生物病原体。
有些虽能进行体外培养,但这些病原体有潜在致病性和免疫病理作用等涉及安全性与有效性的问题.多肽作为体内引起效应细胞免疫应答形成的免疫原,将成为一种新型的疫苗,但还有很多理论和技术问题要继续研究,目前尚无多肽疫苗获准上市.因此,应采取适当可行的途径对这种潜能疫苗进行生产及质控,并在其生产过程中积累经验,为此,应加强咨询和论证,以便提出一个确保安全有效而又适合实际的申报资料.同时,对每个方案中各个阶段的操作过程、中间及最终产品的制备,务必制定标准操作规程和质控标准,并予严格实施。
一、多肽疫苗的化学合成首先应该确定天然抗原的氨基酸序列,选择和确定寻找有效肽段的方法,并寻找该肽段所针对的抗原决定簇。
其次应选择合适的合成方法。
合成中等大小的多肽也会涉及众多反应,每加入一个氨基酸需多次反应,在一个氨基酸的α氨基与另一个氨基酸的羧基缩合形成肽链之前,必须使其中一个形成高反应的活化状态,这个选择自然落到羧基上,合成因而从C到N端.如果A氨基酸的C端与B氨基酸的N端缩合产生2肽A-B,则A的N端及B的C端必须保护起来,才能转化成在A-B之间形成特异性肽的形式。
此外,氨基肽的侧链基团也能与活化羧基反应,因此也必须保护起来。
这些侧链保护基团必须能耐受除去α-氨基保护基团的条件,这样才能生成新的氨基基团使肽链得以继续延长。
合成结束后必须除去所有的保护性基团以得到所需的多肽。
多肽的合成循环包括了一系列的反应,每一循环生成一个新肽键。
药典会细菌制品专业委员会会议纪要根据国家食品药品监督管理局有关指示及药品标准提高行动计划,国家药典委员会于2007年6月27~29日在京召开了药典会细菌制品专业委员会会议,会议对部分细菌类制品企业注册标准的修订、部分治疗类细菌制品国家标准提高以及鼠布炭活疫苗国家标准修订进行了审定,并对2010年版《中国药典》三部设计纲要草案进行了审议。
参加会议的有国家食品药品监督管理局注册司生物制品处尹红章处长、卫良调研员,药典会相关专业委员会唐巧英、陈薇、王国治、谢贵林、程鹏飞、曾明、刘保奎委员,中国药品生物制品检定所专家李凤祥、张庶民、侯启明、何丽研究员,药典会生物制品标准处佘清处长及工作人员,以及相关的16个生产企业的代表参加了会议。
会议就有关内容进行了讨论和审定,形成以下会议纪要:部分细菌类制品企业注册标准的修订按照国家食品药品监督管理局食药监注函[2005]46号“关于预防性生物制品企业注册标准修订及申报的通知”要求和审核原则,我会对企业申报的注册标准及相关资料进行了初审,初审意见提交本次会议,经专家讨论和审定,对相关制品各企业注册标准中关于种子批管理和传代代次、关键工艺的参数、原液合并、半成品配方以及质量标准范围的确定等方面进行了明确和规范,各生产企业应根据会议要求对注册标准进行再次修订,并于2007年9月1日前将确认的标准报药典会生物制品标准处。
(专家审核意见见附件1)部分治疗类细菌制品国家标准提高的审定提交本次会议讨论的6个治疗类细菌制品系2000年版《中国生物制品规程》收载,但未在2005年版《中国药典》三部收载的品种,会议根据2003年到2004年三次专业委员会会议的修订要求,以及2005年版《中国药典》三部各论中标准内容和格式,对提交本次会议讨论的6个治疗类细菌制品标准的修订进行了审定,由于相关单位未按照先前召开的三次专业委员会提出的修订意见进行相应的试验和验证,未能提供充分的技术资料和数据,因此本次会议未能对标准的修订作出决定,对此专家认为,企业应按照本次会议的审核意见,尽快完成相应试验和验证工作,除单独规定外,应在2007年年底前将结果提交药典会生物制品标准处。
生物制品统一名称规程生物制品生产、检定用菌种、毒种管理规程生物制品国家标准品的制备和标定规程生物制品分批规程生物制品分装规程吸附百日咳菌苗、白喉、破伤风类毒素混合制剂制造及检定规程吸附百日咳菌苗、白喉类毒素混合制剂制造及检定规程钩端螺旋体菌苗制造及检定规程冻干皮注射用卡介苗制造及检定规程A群脑膜炎球菌多糖菌苗制造及检定规程冻干皮上划痕用鼠疫活菌苗制造及检定规程皮上划痕人用炭疽活菌苗制造及检定规程冻干皮上划痕人用布氏菌病活菌苗制造及检定规程治疗用布氏菌病菌苗制造及检定规程短棒状杆菌菌苗制造及检定规程流行性乙型脑炎灭活疫苗制造及检定规程冻干流行性乙型脑炎活疫苗制造及检定规程森林脑炎疫苗制造及检定规程人用浓缩狂犬病疫苗制造及检定规程冻干麻疹活疫苗制造及检定规格冻干流行性腮腺炎活疫苗制造及检定规程口服脊髓灰质炎活疫苗制造及检定规程血源乙型肝炎疫苗制造及检定规程冻干黄热活疫苗制造及检定规程吸附精制白喉类毒素制造及检定规程吸附精制破伤风类毒素制造及检定规程成人用吸附精制白喉类毒素制造及检定规程吸附精制白喉、破伤风二联类毒素制造及检定规程精制抗毒素制造及检定规程精制抗蛇毒血清制造及检定规程精制抗炭疽血清制造及检定规程精制抗狂犬病血清制造及检定规程原料血浆采集〔单采知浆术〕规程人胎盘血白蛋白制造及检定规程人血白蛋白〔低温乙醇法〕制造及检定规程人血丙种球蛋白制造及检定规程乙型肝炎免疫球蛋白制造及检定规程狂犬病免疫球蛋白制造及检定规程破伤风免疫球蛋白制造及检定规程冻干组织胺丙种球蛋白制造及检定规程冻干人凝血因子Ⅷ浓制剂制造及检定规程冻干人凝血酶原复合物制造及检定规程冻干人纤维蛋白原制造及检定规程冻干基因工程α1b干扰素制造及检定规程冻干基因工程α2a干扰素制造及检定规程冻干精制人白细胞干扰素制造及检定规程旧结核菌素制造及检定规程结核菌素纯蛋白衍化物〔TB-PPD〕制造及检定规程卡介菌纯蛋白衍化物〔BCG-PPD〕制造及检定规程布氏菌素制造及检定规程锡克试验毒素制造及检定规程生物制品无菌试验规程生物制品化学规定规程伤寒菌苗制造及检定规程伤寒、副伤寒甲二联菌苗制造及检定规程伤寒、副伤寒甲、乙三联菌苗制造及检定规程生物制品包装规程生物制品储存、运输规程生物制品生产用马匹检疫及管理规程实验动物和动物试验管理规程人二倍体细胞建株、检定及制备疫苗规程生物制品统一名称规程生物制品系指以微生物、寄生虫、动物毒素、生物组织作为起始材料,采用生物学工艺或别离纯化技术制备,并以生物学技术和分析技术控制中间产物和成品质量制成的生物活性制剂,包括菌苗,疫苗,毒素,类毒素,免疫血清,血液制品,免疫球蛋白,抗原,变态反响原,细胞因子,激素,酶,发酵产品,单克隆抗体,DNA重组产品,体外免疫诊断制品等。