材料力学第六章静不定
- 格式:ppt
- 大小:1.39 MB
- 文档页数:47
第 1 页/共 10 页(2000)八、水平曲拐ABC 为圆截面杆,在C 段上方有一铅垂杆DK ,发明时DK 杆短了△。
曲拐AB 和BC 段的抗扭刚度和抗弯刚度皆为GI P 和EI 。
且GI P =45EI 。
杆DK 抗拉刚度为EA ,且EA=225EIa 。
试求:(1)在AB 段杆的B 端加多大扭矩,才可使C 点刚好与D 点相接触? (2)若C 、D 两点相接触后,用铰链将C 、D 两点连在一起,在逐渐撤除所加扭矩,求DK 杆内的轴力和固定端处A 截面上的内力。
(15分)(2001)五、已知钢架受力如图,试求: A 处的约束反力。
(12分)(2002)七、圆截面杆AB、BC的直径、材料均相同,已知:p、a,E=2.5G,且CD杆的EA=2EI/5a2,试求:CD杆的内力。
(12分)(2003)五、圆截面平面曲拐OAB与直杆CD直径、材料均相同。
已知P、L,且=0.8EI,EA=0.4EI/L2,求O端的约束反力。
(20分)GIp第3 页/共10 页(2004)三、已知平面曲拐ABC和DF梁的抗弯刚度为EI、抗扭刚度为GI和CD杆p=2EAL2。
试求CD杆的内力。
(20分)的抗拉刚度为EA,设EI=4GIP(2023年年)二、结构受力如图所示,已知平面钢架ABCD的抗弯刚度为EI,EF 杆的抗拉刚度为EA,设3EI=EAL2。
试求E、F两点的相对位移。
(20分)第5 页/共10 页(2023年年)八、已知平面钢架EI为常数,试问:若在C处下端增强一刚度为K=3EI/A3(单位:N/M)的弹性支座后,该钢架的承载能力(强度)将提高多少倍?(20分)第 7 页/共 10 页(2023年年)七、求BC 杆的内力,设2/EA EI a 。
(20分)(08.3)(2023年年)三、平面直角曲拐ABC和CD杆均为圆截面,材料相同,已知:3EI=GIp,第9 页/共10 页3EI=EAL2,试求CD杆的内力。
第15单元第六章 弯曲变形§6-1 引言应用:梁的刚度问题,静不定梁,压杆稳定挠曲轴:变弯后的梁轴(当外力位于梁对称面内时,挠曲线为平面曲线)。
挠度()y x : 横截面形心的位移 转角()θx :横截面绕中性轴的转角挠曲轴方程:()y y x = (挠曲轴的解析表达式)()tg dy dxy x θ=='()θθ≈='tg y x(通常θ<︒1=0.01745弧度)§6-2 梁变形基本方程目的:求()y x ,()()[]θx y x =' 途径:建立微分方程求解 一、挠曲轴微分方程1.中性层曲率表示的弯曲变形公式()1ρ=M x EI(其中M 可以通过弯矩方程表示为x 的函数,ρ为曲率半径,它可由'y 和''y 表示) 2.由数学()11232ρ=±''+'y y3.挠曲轴微分方程()()±''+'=y y M x EI1232(1) 4.方程简化,挠曲轴近似微分方程 小变形,()'≈<y θ0.0175(弧度)'<<y 21112+'≈y ((1)式分母等于1)正负号确定——确定坐标系:y 向上''>y 0(从数学) ''<y 0M >0(本书规定) M <⇒选正号()∴''=y M x EI二、积分法计算梁的变形()θ='=+⎰y M x EI dx C()y M x EIdx Cx D =++⎰⎰C 、D 为积分常数,它由位移边界与连续条件确定。
三、位移边界与连续条件边界条件:固定端 y A A ==00,θ 固定铰,活动铰 0,0==F E y y 自由端:无位移边界条件 连续条件 y y C C C C 左右左右===00θθy y y y B BG G G G 左右左右左右===θθ例1:()M x M =0,()''=y x M EI 0()()θ='=+y x M EI x C 0()y x M EIx Cx D =++022由()()y D y C 00000=='==()()∴==y x M EIxx M EIx022θ例2:求挠曲轴微分方程AB 段: BC 段''=y M EI x l 10 ''=-⎛⎝ ⎫⎭⎪y M EI x l201y M EI x lC xD =++03116 y M EI x l x C x D =-⎛⎝ ⎫⎭⎪++0322262边界和连续条件()y 100= ()y l 20=y l y l 1222⎛⎝ ⎫⎭⎪=⎛⎝ ⎫⎭⎪(连续条件)'⎛⎝ ⎫⎭⎪='⎛⎝ ⎫⎭⎪y l y l 1222 (光滑条件)四个方程定4个常数()()y x M x lEI x l 1022244=- ()()y x M x l EIl2024=-例3:1.画剪力弯矩图2.列挠曲线的位移和连续条件3.画挠曲线大致形状(注明凹凸性与拐点) 位移与连续条件 A :()y 100= B:()()()()a y a y a y a y 2121'='=,C:()()020232==a y a y ,()()a y a y 2232'=' D:无挠曲线大致形状的画法 (1)根据弯矩图定凹凸性, +→⋃-→⋂,(2)弯矩图过零点处为拐点 (3)支座限定支座处的位移§6-3 计算梁位移的奇异函数法奇异函数法仍属积分法。
第六章 简单超静定问题 习题解[习题6-1] 试作图示等直杆的轴力图解:把B 支座去掉,代之以约束反力B R (↓)。
设2F 作用点为C , F 作用点为D ,则:B BD R N = F R N B CD += F R N B AC 3+=变形谐调条件为:0=∆l02=⋅+⋅+⋅EA aN EA a N EA a N BD CD AC 02=++BD CD AC N N N03)(2=++++F R F R R B B B45FR B -=(实际方向与假设方向相反,即:↑) 故:45FN BD-= 445F F F N CD -=+-=47345FF F N AC=+-= 轴力图如图所示。
[习题6-2] 图示支架承受荷载kN F 10=,1,2,3各杆由同一种材料制成,其横截面面积分别为21100mm A =,22150mm A =,23200mm A =。
试求各杆的轴力。
解:以节点A 为研究对象,其受力图如图所示。
∑=0X030cos 30cos 01032=-+-N N N0332132=-+-N N N 0332132=+-N N N (1)∑=0Y030sin 30sin 0103=-+F N N2013=+N N (2)变形谐调条件:设A 节点的水平位移为x δ,竖向位移为y δ,则由变形协调图(b )可知:00130cos 30sin x y l δδ+=∆x l δ=∆200330cos 30sin x y l δδ-=∆03130cos 2x l l δ=∆-∆2313l l l ∆=∆-∆设l l l ==31,则l l 232=223311233EA l N EA lN EA l N ⋅⋅=- 22331123A N A N A N =- 15023200100231⨯=-N N N23122N N N =-21322N N N -= (3)(1)、(2)、(3)联立解得:kN N 45.81=;kN N 68.22=;kN N 54.111=(方向如图所示,为压力,故应写作:kN N 54.111-=)。
第六章习题6—1用积分法求以下各梁的转角方程、挠曲线方程以及指定的转角和挠度。
已知抗弯刚度EI为常数。
6-2、用积分法求以下各梁的转角方程、挠曲线方程以及指定的转角和挠度。
已知抗弯刚度EI为常数。
6-3、用叠加法求图示各梁中指定截面的挠度和转角。
已知梁的抗弯刚读EI为常数。
6-4阶梯形悬臂梁如图所示,AC段的惯性矩为CB段的二倍。
用积分法求B端的转角以及挠度。
6-5一齿轮轴受力如图所示。
已知:a=100mm,b=200mm,c=150mm,l=300mm;材料的弹性模量E=210Pa;轴在轴承处的许用转角[]=0.005rad。
近似的设全轴的直径均为d=60mm,试校核轴的刚度。
回答:6-6一跨度为4m的简支梁,受均布载荷q=10Kn/m,集中载荷P=20Kn,梁由两个槽钢组成。
设材料的许用应力[]=160Ma,梁的许用挠度[]=。
试选择槽钢的号码,并校核其刚度。
梁的自重忽略不计。
m壁厚=4mm,单位长度重量6-7两端简支的输气管道,外径D=114m。
q=106N/m,材料的弹性模量E=210Gpa。
设管道的许用挠度试确定管道的最大跨度。
6-845a号工字钢的简支梁,跨长l=10m,材料的弹性模量E-210Gpa。
若梁的最大挠度不得超过,求梁所能承受的布满全梁的最大均布载荷q。
6-9一直角拐如图所示,AB段横截面为圆形,BC段为矩形,A段固定,B段为滑动轴承。
C端作用一集中力P=60N。
有关尺寸如图所示。
材料的弹性模量E=210Gpa,剪切弹性模量G=0.4E。
试求C端的挠度。
提示:由于A端固定,B端为滑动轴承,所以BC杆可饶AB杆的轴线转动。
C端挠度由二部分组成;(1)把BC杆当作悬臂梁,受集中力P作用于C端产生的挠度,;(2)AB杆受扭转在C锻又产生了挠度,。
最后,可得C端的挠度6-10、以弹性元件作为测力装置的实验如图所示,通过测量BC梁中点的挠度来确定卡头A处作用的力P,已知,梁截面宽b=60mm,高h=40mm,材料的弹性模量E=210Gpa。
第十三章静不定问题分析§13-1 静不定结构概述1.定义用静力学平衡方程无法确定全部约束力和内力的结构或结构系统,统称为静不定结构或系统,也称为超静定结构或系统。
2.静定、静不定结构(系统)无多余联系的几何不变的承载结构系统,其全部支承反力与内力都可由静力平衡条件求得,此系统称为静定结构或系统。
静定结构除了变形外,没有可运动的自由度(图12-1(a、b))如解除简支梁的右端铰支座,或解除悬臂梁固端对转动约束,使之成为铰支座,则此时的梁变成了图12.1(c)的可动机构,是几何可变系不能承受横向载荷。
在无多余联系的几何不变的静定系统上增加约束或联系,称为多余约束,并因而产生多余约束反力,则这样的有多余约束的系统,仅利用静力平衡条件无法求得其反力和内力,称为静不定(或超静定)系统,如图12-2。
外静不定:静不定结构的外部支座反力不能全由静力平衡方程求出的情况,常称为外静不定结构(图12-2b,d)内静不定:静不定结构内部约束(或联系)形成的内力不能单由静力平衡方程求出的情况称为内静不定结构(图12-2a,c)。
对于内、外静不定兼而有之的结构,有时称为混合静不定结构。
3.静不定次数的确定1)根据结构约束性质可确定内、外约束力总数,内、外约束力总数与独立静力平衡方程总数之差即为静不定结构的静不定次数。
2)外静不定的判断:根据结构与受力性质,确定其是空间或是平面承载结构,即可确定全部约束的个数。
根据作用力的类型,可确定独立平衡方程数,二者之差为静不定次数。
如图12-3(b),外载荷为平面力系,则为三次外静不定静,而图12-3(c)为空间力系,则为六次外静不定。
3)内静不定次数确定桁架:直杆用铰相连接,载荷只作用于结点,杆只受拉压力的杆系,其基本几何不变系由三杆组成(图12-4a)。
图12-4(b)仍由基本不变系扩展而成,仍是静定系,而(c)由于在基本系中增加了一约束杆,因而为一次超静定。
刚架:杆以刚结点相连接,各杆可以承受拉、压、弯曲和扭转,这样的杆系为刚架(图12-5)。