北方工业大学考研信号与系统第五章资料
- 格式:ppt
- 大小:2.56 MB
- 文档页数:8
第1章信号与系统的概述1.1 学习要求(1)了解信号与系统的基本概念与定义,会画信号的波形;(2)了解常用基本信号的时域描述方法、特点与性质,并会灵活应用性质;(3)深刻理解信号的时域分解、运算的方法,会求解;(4)深刻理解线性是不变系统的定义与性质,会应用性质求解系统1.2 本章重点(1)基本的连续时间信号的时域描述和时域特性;(2)单位冲激信号的定义、性质与应用;(3)信号的时域运算及其综合应用;(4)线性时不变系统的性质与应用。
1.3 本章的知识结构1.4 本章的内容摘要1.4.1信息、消息和信号的概念所谓信息,是指存在于客观世界的一种事物形象,一般泛指消息、情报、指令、数据和信号等有关周围环境的知识。
消息是指用来表达信息的某种客观对象,如电报中的电文、电话中的声音、电视中的图像和雷达探测的目标距离等等都是消息。
所谓信号,是指消息的表现形式,是带有信息的某种物理量,如电信号、光信号和声信号等等。
信号代表着消息,消息中又含有信息,因此信号可以看作是信息的载体。
1.4.2信号的分类以信号所具有的时间函数特性来加以分类,可以将信号分为确定信号与随机信号、连续时间信号与离散时间信号、周期信号与非周期信号、能量信号与功率信号、实信号与复信号等等。
1.4.3 常用信号 (1)正弦型信号)cos()(ϕω+=t A t f (1-3)(2)指数信号st Ae t f =)( (1-8)(3)矩形脉冲⎪⎩⎪⎨⎧><=2/02/1)(ττt t t f(4)三角脉冲⎪⎩⎪⎨⎧>≤-=2/02/21)(τττt t tt f (1-18)(5)抽样信号ttt sin )Sa(=(1-19)性质:(1))Sa()Sa(t t =-,偶函数 (2)1)Sa(,0==t t ,即1)Sa(lim 0=→t t(3)π,0)Sa(n t t ±==, 3,2,1=n (4)⎰∞=02πd sin t t t ,⎰∞∞-=πd sin t tt(5)0)Sa(lim =±∞→t t该函数的另一表示式是辛格函数,其表示式为ttsi t c ππn )(sin =(1-20) (6) 斜变信号⎩⎨⎧≥<=000)(t t t t f (1-24)(7)单位阶跃信号⎩⎨⎧><=0100)(t t t u 或⎩⎨⎧><=-0100)(000t t t t u如果矩形脉冲对于纵坐标左右对称,则可用)(t G T)2()2()(Tt u T t u t G T --+=下标T 表示其矩形脉冲宽度。
连续时间系统的付里叶分析§5.1引言第一章信号与系统的基本定义和分类第二章连续时间系统的时域分析第三章离散时间系统的时域分析第四章连续时间信号的付里叶分析第五章连续时间系统的付里叶分析,注意一点:它仍然是连续时间,但第四章是对信号,而第五章是对系统。
x(t),系统的单位冲激响应h(t),求y(t)?第一种方法:y(t)与x(t)的微分方程如:第二种方法:如下图:x(t)y(t)dtdy(t)a dt y(t)d =++22τττd t h x t y t y t h t x )()()()()()(-==*⎰∞∞-*h(t)=y(t)x(t)y(t)h(t)X(jω)H(jω)Y(jω)= X(jω) H(jω)第三种方法:付里叶变换分析法x(t)*h(t)X(jω)H(jω)∴Y(jω)=X(jω)H(jω)1、把积分运算变成了代数运算2、对于实际问题给予频率域的物理解释。
例如:歌唱家、唱出的美妙歌曲。
又如:电视图像。
5.2连续时间系统的频率响应H(j ω)一、H(j ω)的引出和定义我们从三个不同的角度引出H(j ω)的三种定义方法1.H(j ω)是系统对复指数信号响应的复函数。
假如x(t)=则y(t)=x(t)*h(t)=t j eωtj e ω⎰∞∞)(τh ()ττωd e t j -H(j ω)本身是复数所以,有模有角,因此它将对输出产生幅度和相位的变化2、H(j ω)是h(t)的付里叶变换式h(t)H(j ω)H(j ω)代表了系统本身固有的性质。
3、H(j ω)是系统的零状态响应Y(j ω)和激励信号付里叶变换X(j ω)之比。
)()()()()()(ωωj X j Y s H s H s X s Y =∴=上述第一H(jω)的实验测量方法。
第二个定义方法反映了系统本身频率域和时间域相互关系。
第三个定义方法是本章用付代变换法分析系统的关键式。
、H(j ω)的计算1、从微分方程入手:例:方程两边进行付氏变换为:(j ω)Y(j ω)+4(j ω)Y(j ω)+3Y(j ω)=j ωX(j ω)+2X(j ω)[(j ω)+4(j ω)+3]Y(j ω)=[j ω+2]X(j ω)∴H(j ω)==∴h(t)=[]u(t))(2)()(3)(4)(22t x dt t dx t y dt t dy dt t y d +=++22)()(ωωj X j Y 1213213)4)22+++=+++j ωj ω (j (j j ωωωt t e e 32121--+、从电路的频域模型入手用R,L,C 的频域模型代替时域模型,然后设计出H (j ω)R i +-u)(t i L +-)(t u L Li u R =IL j j U dt di L u L ωω==)(R R →时域频域Lj L ω→时域频域)(t i C +-)(t u C C)()()(ωωωj U Cj j IC dtdu Ct i C CC ==Cj C ω1→时域频域)(ωj E Cj ω1R)(2ωj V )(t e R 例:C)(2t v1、H(j ω)一定是零状态响应。
信号与系统-作业习题Signals and Systems课程编码:学时数:80学分数:5适用专业:电子信息工程、通信工程专业一.课程教学目标:信号与系统课程是电子学、信息技术、通信、自动化、计算机、信号处理、雷达、测量、系统工程等专业的重要技术基础课。
它继《电路分析基础》之后,集中研究确定信号经线性时不变系统进行传输、处理的基本理论、基本分析方法和工程应用。
本课程目的是为后续众多专业课程,如:模拟电子电路,数字电路,数字信号处理,通信原理,自动控制原理,计算机网络等奠定基础。
二.教学内容基本要求及学时分配本课程在信号分析方面要求学生掌握信号分析的基本理论和方法,包括:连续周期信号的付里叶级数,连续非周期信号的付里叶变换、连续信号的拉普拉斯变换、离散信号(序列)的z变换等。
在性系统分析方面,要求学生掌握系统的各种描述方法,包括:连续系统微分方程的建立、离散系统差分方程的建立,系统的转换算子及转移函数的计算。
在分析方法应用方面,则主要涉及卷积积分、卷积和以及付里叶级数、付里叶变换、拉普拉斯变换、z变换等方法求解线性系统;应用线性系统的稳定性判定条件对连续系统和离散系统进行稳定性分析;用模拟图、信流图概念对系统进行模拟以及状态方程的建立、由输入-输出方程求状态方程;连续系统状态方程的复频域和时域解法;离散系统状态方程的解以及由状态方程作系统的模拟等内容。
本课程的教学重点和难点主要集中在信号在正交函数空间的分解及线性时不变系统的特征函数这两个最基本的概念的展开上。
重点和难点内容包括两个卷积(卷积积分与卷积和)、五个线性变换(傅里叶级数变换,傅里叶积分变换,拉普拉斯变换,Z变换和傅里叶Z 变换)。
学习本课程前应先修《高等数学》,《线性代数》,《积分变换》,《复变函数》,《电路分析基础》等课程。
以本课程为基础的后续课程主要有《模拟电子线路》,《数字电路》,《通信电路》,《数字信号处理》,《通信系统》,《信号检测》,《计算机网络》等等。