准确度和精密度
- 格式:pdf
- 大小:64.28 KB
- 文档页数:6
准确度与精确度的概念的区别有关准确度与精确度的概念的区别准确度与精密度是在科学、工程学、工业及统计学等范畴上一个重要概念。
一个结果必须要同时符合准确与精密这两个条件,才可算是精准。
以下是小编精心整理的有关准确度与精确度的概念的区别,仅供参考,欢迎大家阅读!1、准确度与精确度的概念的区别:准确度是指测定值与真实值符合的程度,表测定的正确性。
而精确值是指用相同方法对同一试样进行多次测定,各测定值彼此接近的程度。
即各次测定结果之间越接近,结果的精密度越高表现了测定的重复性和再现性。
但两者之间又有密切关系。
准确度高的前提是精密度高;但精密度高不一定准确度高;精密度不高,准确度肯定不可靠,只有准确度和精密度都好的测量值才最可靠。
2、准确度:测定结果与真实值或参考值接近的程度,表示分析方法测量的正确性,一般以回收率(%)表示。
3、精密度:指用该法经多次取样测定同一个均匀样品,各测定值彼此接近的程度。
精密度一般以标准偏差(S)或者(RSD)表示。
4、杂质限量:药物中所含杂质的最大允许量,通常用百分之几或者百万分之几来表示。
5、药品标准:国家对药品质量规格及检验方法所作的技术规定,是药品生产,供应,使用,检验和管理部门共同遵循的依据法律。
6、空白试验:指实验中不加供试品,或以等量的容积代替供试液,或试验中不加有关试剂,按供试品溶液同样的方法和步骤操作。
7、阴性对照:为了考察制剂中其他药味对欲鉴别药味薄层色谱的干扰。
8、线性考察的目的:(1)确定关系是否为线性关系:(2)确定线性关系的范围:(3)看直线是否过原点以确定用一点法测还是两点法测量。
9、薄层色谱鉴别对照物有哪几种:对照品,对照药材,阴性对照。
10、举例说明一般杂质和特殊杂质含义?答:一般杂质:指在自然界中分布较广泛,在药材的采集,收购,加工以及制剂的生产或储存过程中容易容易引入的杂质,如:酸,碱,水分,氯化物,硫酸盐,铁盐,重金属,砷盐等。
特殊杂质:指的是个别中药制剂中所含有的杂质,是在制备或储存过程第一文库网中,因制备工艺的`特殊性或药物本身性质的特殊性而引入的一类杂质。
灵敏度精密度准确度精确度概念区分灵敏度、精密度、准确度和精确度是物理实验教学中经常用到的,然而又是很容易混淆的几个概念。
这几个概念,有的是尽对仪器而言的,有的即使对仪器又是对测量而言的。
本文拟就从仪器和测量两方面对此予以简述。
1、仪器的灵敏度、精确度和准确度:1.1仪器的灵敏度:灵敏度是指仪器测量最小被测量的能力,又称最低检测线,一般用最小测量值/满量程*%(Sensitivity)是指某方法对单位浓度或单位量待测物质变化所致的响应量变化程度,它可以用仪器的响应量或其他指示量与对应的待测物质的浓度或量之比来描述。
如天平的灵敏度,每个毫克数就越小,即使天平指针从平衡位置偏转到刻度盘一分度所需的最大质量就越小。
又如多用电表表盘上标的数字“20kΩ/V”就是表示灵敏度的。
它的物理意义是,在电表两端加1V电压时,使指针满偏所要求电表的总内阻Rv (表头内阻与附加电压之和)为20kΩ。
这个数字越大,灵敏度越高。
这是因为U=IgRv,即Rv/U=1/Ig,显然当Rv/U越大,说明满偏电流Ig越小,即该电表所能测量的最小电流越小,灵敏度便越高。
仪器的灵敏度也不是越高越好,因为灵敏度过高,测量时的稳定性就越差,甚至不易测量,即准确度就差。
故在保证测量准确性的前提下,灵敏度也不易要求过高。
灵敏度一般是对天平和电气仪表等而言,对直尺、卡尺、螺旋测微器则无所谓。
1.2仪器的精密度:仪器的精密度,又称精度,一般是指仪器的最小分度值。
如米尺的最小分度为1mm,其精密度就是1mm,水银温度计的最小分度为0.2℃,其精度就是0.2℃。
仪器的最小分度值越小,其精度就越高,灵敏度也就越高。
比如最小分度为0.1℃的温度计就比最小分度为0.2℃的温度计灵敏度和精密度都高。
在正常使用情况下,仪器的精度高,准确度也就高,这表明仪器的精度是一定准确度的前提,有什么样的准确度,也就要求有什么样的精度相适应。
这正是人们常用精度来描述一起准确度的原因。
采制化系列课程之精密度与准确度精密度和准确度是科学中常用的两个概念,用于描述实验测量结果的质量和可靠性。
精密度指的是测量结果的重复性,即同一个实验或测量在相同条件下重复多次所得的结果之间的一致程度。
准确度则是指测量结果与真实值(或准确值)之间的接近程度,即测量结果的偏差。
在科学研究中,精密度与准确度是两个相互关联但又有所区别的概念。
精密度往往与观察仪器的测量能力有关。
如果一个实验仪器或测量方法的精密度较高,那么在相同条件下进行多次实验或测量时,结果之间的差异较小,即测量值的重复性较好。
反之,如果仪器或方法的精密度较低,那么多次实验或测量结果之间的差异较大,即测量值的重复性较差。
准确度则与测量结果与真实值之间的偏差有关。
一个准确的实验或测量结果应该与真实值接近,即测量结果的偏差应该较小。
如果一个实验或测量结果的准确度很高,那么该结果对于描述真实情况或推断科学规律的能力较强。
反之,如果实验或测量结果的准确度较低,那么该结果对于描述真实情况或推断科学规律的能力较弱。
在实际科学研究中,精密度和准确度往往是通过统计学方法来评估和描述的。
其中,精密度通常使用标准差或方差等指标来度量,准确度通常使用偏差、误差或相关系数等指标来度量。
为了提高实验测量结果的精密度和准确度,科学家们通常会采取一系列措施,比如使用更精密的仪器、提高操作技能、增加样本量等。
此外,还可以通过校准仪器、进行重复实验、进行数据分析等方法来评估和提高测量结果的精密度和准确度。
总之,精密度和准确度是科学研究中非常重要的概念,它们用于评估实验测量结果的质量和可靠性。
一个好的实验测量结果应该既具有较高的精密度,即结果重复性好,也具有较高的准确度,即结果与真实值接近。
通过合理的测量方法和数据分析,科学家们可以提高实验测量结果的精密度和准确度,从而有效地推动科学研究的发展和进步。
准确度和精密度:
1.准确度:
测定结果与真值接近的程度,用误差衡量;绝对误差:
测量值与真值间的差值,用E表示E=X-X T;相对误差:
绝对误差占真值的百分比,用E r表示:
E r=E/X T=X-X T /X T×100%。
2.精密度:
平行测定结果相互靠近的程度,用偏差衡量。
偏差:
测量值与平均值的差值,用d表示;
①平均偏差:
各单个偏差绝对值的平均值:
②相对平均偏差:
平均偏差与测量平均值的比值:
③标准偏差:
④相对标准偏差:
3.准确度与精密度的关系
精密度好是准确度好的前提;
精密度好不一定准确度高;
提高分析结果准确度方法:
选择恰当分析方法(灵敏度与准确度);减小测量误差(误差要求与取样量);
减小偶然误差(多次测量,至少3次以上)消除系统误差对照实验:
标准方法;
标准样品;
标准加入;
空白实验;
校准仪器;
校正分析结果。
准确度与精密度一 准确度与误差1、准确度:是指测得值与真实值之间相符合的程度。
准确度的高低常以误差的大小来衡量,即误差越小,准确度越高,误差越大,准确度越低。
2、真实度:物质中各组分的真实含量。
它是客观存在的,但不可能准确知道,只有在消除系统误差之后,并且测定次数趋于无穷大时,所得算术平均值才代表真实值。
市售标准物质,它给出的标准值可视为真实值,可用它来校正仪器和评价分析方法等。
3、误差的表示方法——绝对误差和相对误差 绝对误差=测得值(X )- 真实值(T ) 绝对误差(E )=测得值(X )- 真实值(T )相对误差(RE )由于测定值可能大于真实值,也可能小于真实值,所以绝对、相对误差有正负之分。
二 精密度与偏差1、精密度:指在相同条件下N 次重复测定结果彼此相符合的程度。
精密度大小用偏差表示,偏差越小,精密度越高。
=绝对误差 ×100%真实值(T )2、绝对偏差和相对偏差:它只能用来衡量单项测定结果对平均值偏离程度。
绝对偏差:只单次测定值与平均值的偏差。
绝对偏差(d )=X i -X相对偏差=绝对偏差和相对偏差都有正负之分,单次测定的偏差之和等于零。
3、算术平均偏差:指单次值与平均值的偏差(绝对值)之和,除以测定次数。
它表示多次测定数据整体的精密度。
代表任一数值的偏差。
算术平均偏差(d )相对平均偏差=算术平均偏差和相对平均偏差不计正负。
4、标准偏差:它是更可靠的精密度表示法,可将单次测量的较大偏差和测量次数对精密度的影响反映出来。
标准偏差S=例:分析铁矿中铁含量,得如下数据:37.45% ,37.50% ,37.30% ,37.25%X i -X×100%X=(i=1.2.3······n )n d×100% X计算此结果的平均值、平均偏差和标准偏差。
解:X=各次测量偏差分别是:d1=+0.11% ,d2=-0.14% ,d3=+0.16% ,d4=-0.04% ,d5=0.09%d= =S==三 准确度与精密度的关系第一组测定结果:精密度很高,但平均值与标准值相差很大。
精密度和准确度的计算公式在我们的学习和生活中,精密度和准确度可是两个非常重要的概念,特别是在涉及到各种测量和实验的时候。
那这俩到底是啥,又有着怎样的计算公式呢?别着急,咱们慢慢唠。
先来说说精密度。
精密度呢,简单说就是多次测量结果之间的接近程度。
比如说,你测量一个物体的长度,测了好几次,这几次测量结果相互之间很接近,那说明精密度高;要是每次测的结果都相差挺大,那精密度就低啦。
精密度的计算公式通常用相对标准偏差(RSD)来表示。
相对标准偏差的公式是:RSD = (标准偏差 / 平均值)× 100% 。
标准偏差的计算有点复杂,不过咱们别怕。
假设我们有一组测量值 x₁,x₂,x₃,……,xₙ ,先求出这组数据的平均值x,然后用每个测量值减去平均值,得到的差值平方后相加,再除以测量次数减1 ,最后开根号,这就得到了标准偏差。
我记得有一次在实验室里,同学们一起测量一个小金属块的质量。
大家都特别认真,小心翼翼地操作天平。
我测了五次,结果分别是10.2 克、10.3 克、10.1 克、10.2 克和 10.3 克。
算下来平均值是 10.2 克,经过一番计算,标准偏差是 0.08 克,相对标准偏差就是(0.08 / 10.2)× 100% ≈ 0.78% ,这说明我的测量精密度还不错哦。
再讲讲准确度。
准确度呢,指的是测量结果与真实值之间的接近程度。
要是测量结果很接近真实值,那准确度就高;反之,准确度就低。
准确度的计算公式一般用误差来表示。
误差 = 测量值 - 真实值。
如果误差小,说明准确度高;误差大,准确度就低。
给您举个例子,还是在那个实验室里,老师告诉我们这个小金属块的真实质量是 10.0 克。
我之前测量的平均值是 10.2 克,那误差就是10.2 - 10.0 = 0.2 克。
这就说明我的测量结果准确度还有待提高。
在实际应用中,精密度和准确度往往是相辅相成的。
只有精密度高,准确度才有保障;而准确度高,也能反映出测量方法的可靠性。
精密度和准确度的概念精密度和准确度的概念,听起来是不是有点深奥?但这两个词在生活中常常用到,大家都知道,量东西的时候,想要让结果既靠谱又一致,真是个技术活儿。
精密度,简单来说,就是多次测量的结果有多接近。
想象一下,你在打保龄球,每次投球都能把球投到同一个地方,这就是精密度。
而准确度呢,就是你能否把球投到瓶子的。
换句话说,精密度像是你的手艺,而准确度则是目标的对不对。
让我们看看生活中的例子吧。
比如说,去外面吃饭,点了一盘红烧肉。
老板每次给你上的分量如果都是一模一样的,那就是精密度。
可如果你每次都希望那块肉能多一点肥,少一点瘦,那就涉及到准确度了。
其实啊,这两者是有联系的,但又不完全相同。
有时候你可以非常精密,但却不准确。
就像你每次都能把红烧肉放在同一个位置,结果那个位置偏离了你想要的口味,尴尬吧?再想象一下,如果你是个数学老师,考试时给学生们出题。
每次出题都能保持一致性,这就是精密度。
如果题目能准确反映学生的水平,那才是准确度。
可有些老师就喜欢出一些奇怪的题目,学生们一头雾水,结果就算出得再好,也没能考到真正的水平,真是让人哭笑不得。
分数高了,但有没有真正学到东西呢?说到这里,大家可能会想,那我们生活中怎么才能做到既精密又准确呢?方法不外乎就是多练习和及时调整。
你可以通过不断测量,逐渐找到那个“黄金位置”。
就像我们平时开车,开始的时候总是打打偏,慢慢地,手感来了,车子就能稳稳地停在车位上,不会东倒西歪的。
生活中,很多事情都是如此,不断地尝试和修正,才会让我们的精密度和准确度都提高。
再比如,做饭的时候,调味料的用量就是精密度。
每次放多少盐、多少糖,最好都能记得清清楚楚。
可是,你的味道要是始终不对,那就得考虑准确度了。
做饭就像是在进行一场化学实验,随时得关注“反应”的变化,不能一味追求标准配方,有时候得根据自己的口味来调整。
试想一下,大家都爱吃的外卖,哪个老板不希望每次都能让顾客满意呢?生活中,追求精密度和准确度的过程中,我们也能体会到许多乐趣。
灵敏度精密度准确度精确度概念区分灵敏度、精密度、准确度和精确度是物理实验教学中经常用到的,然而又是很容易混淆的几个概念。
这几个概念,有的是尽对仪器而言的,有的即使对仪器又是对测量而言的。
本文拟就从仪器和测量两方面对此予以简述。
1、仪器的灵敏度、精确度和准确度:1.1仪器的灵敏度:灵敏度是指仪器测量最小被测量的能力。
所测的最小量越小,该仪器的灵敏度就越高。
如天平的灵敏度,每个毫克数就越小,即使天平指针从平衡位置偏转到刻度盘一分度所需的最大质量就越小。
又如多用电表表盘上标的数字“20kΩ/V”就是表示灵敏度的。
它的物理意义是,在电表两端加1V电压时,使指针满偏所要求电表的总内阻Rv(表头内阻与附加电压之和)为20kΩ。
这个数字越大,灵敏度越高。
这是因为U=IgRv,即Rv/U=1/Ig,显然当Rv/U越大,说明满偏电流Ig越小,即该电表所能测量的最小电流越小,灵敏度便越高。
仪器的灵敏度也不是越高越好,因为灵敏度过高,测量时的稳定性就越差,甚至不易测量,即准确度就差。
故在保证测量准确性的前提下,灵敏度也不易要求过高。
灵敏度一般是对天平和电气仪表等而言,对直尺、卡尺、螺旋测微器则无所谓。
1.2仪器的精密度:仪器的精密度,又称精度,一般是指仪器的最小分度值。
如米尺的最小分度为1mm,其精密度就是1mm,水银温度计的最小分度为0.2℃,其精度就是0.2℃。
仪器的最小分度值越小,其精度就越高,灵敏度也就越高。
比如最小分度为0.1℃的温度计就比最小分度为0.2℃的温度计灵敏度和精密度都高。
在正常使用情况下,仪器的精度高,准确度也就高,这表明仪器的精度是一定准确度的前提,有什么样的准确度,也就要求有什么样的精度相适应。
这正是人们常用精度来描述一起准确度的原因。
但是,仪器的精度并不能完全反映出其准确度。
例如一台一定规格的电压表,其内部的附加电压变质,使其实际准确度下降了,但精度却不变。
可见精度与准确度是有区别的。
一般仪器都存在精度问题。
灵敏度精密度准确度精确度概念区分Last revised by LE LE in 2021灵敏度精密度准确度精确度概念区分灵敏度、精密度、准确度和精确度是物理实验教学中经常用到的,然而又是很容易混淆的几个概念。
这几个概念,有的是尽对仪器而言的,有的即使对仪器又是对测量而言的。
本文拟就从仪器和测量两方面对此予以简述。
1、仪器的灵敏度、精确度和准确度:1.1仪器的灵敏度:灵敏度是指仪器测量最小被测量的能力。
所测的最小量越小,该仪器的灵敏度就越高。
如天平的灵敏度,每个毫克数就越小,即使天平指针从平衡位置偏转到刻度盘一分度所需的最大质量就越小。
又如多用电表表盘上标的数字“20kΩ/V”就是表示灵敏度的。
它的物理意义是,在电表两端加1V电压时,使指针满偏所要求电表的总内阻Rv(表头内阻与附加电压之和)为20kΩ。
这个数字越大,灵敏度越高。
这是因为U=IgRv,即Rv/U=1/Ig,显然当Rv/U越大,说明满偏电流Ig越小,即该电表所能测量的最小电流越小,灵敏度便越高。
仪器的灵敏度也不是越高越好,因为灵敏度过高,测量时的稳定性就越差,甚至不易测量,即准确度就差。
故在保证测量准确性的前提下,灵敏度也不易要求过高。
灵敏度一般是对天平和电气仪表等而言,对直尺、卡尺、螺旋测微器则无所谓。
1.2仪器的精密度:仪器的精密度,又称精度,一般是指仪器的最小分度值。
如米尺的最小分度为1mm,其精密度就是1mm,水银温度计的最小分度为0.2℃,其精度就是0.2℃。
仪器的最小分度值越小,其精度就越高,灵敏度也就越高。
比如最小分度为0.1℃的温度计就比最小分度为0.2℃的温度计灵敏度和精密度都高。
在正常使用情况下,仪器的精度高,准确度也就高,这表明仪器的精度是一定准确度的前提,有什么样的准确度,也就要求有什么样的精度相适应。
这正是人们常用精度来描述一起准确度的原因。
但是,仪器的精度并不能完全反映出其准确度。
例如一台一定规格的电压表,其内部的附加电压变质,使其实际准确度下降了,但精度却不变。