高中数学空间角度与距离问题(有答案)
- 格式:docx
- 大小:469.52 KB
- 文档页数:13
题目高中数学复习专题讲座关于求空间距离的问题 高考要求空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离 重难点归纳1.空间中的距离主要指以下七种 (1)两点之间的距离 (2)点到直线的距离 (3)点到平面的距离 (4)两条平行线间的距离 (5)两条异面直线间的距离(6)平面的平行直线与平面之间的距离 (7)两个平行平面之间的距离七种距离都是指它们所在的两个点集之间所含两点的距离中最小的距离 七种距离之间有密切联系,有些可以相互转化,如两条平行线的距离可转化为求点到直线的距离,平行线面间的距离或平行平面间的距离都可转化成点到平面的距离在七种距离中,求点到平面的距离是重点,求两条异面直线间的距离是难点求点到平面的距离 (1)直接法,即直接由点作垂线,求垂线段的长 (2)转移法,转化成求另一点到该平面的距离 (3)体积法 (3)向量法求异面直线的距离 (1)定义法,即求公垂线段的长 (2)转化成求直线与平面的距离 (3)函数极值法,依据是两条异面直线的距离是分别在两条异面直线上两点间距离中最小的 2.用向量法求距离的公式:⑴异面直线,a b 之间的距离:||AB n d n ⋅= ,其中,,,n a n b A a B b ⊥⊥∈∈。
⑵直线a 与平面α之间的距离:||AB n d n ⋅= ,其中,A a B α∈∈。
n是平面α的法向量。
⑶两平行平面,αβ之间的距离:||AB n d n ⋅= ,其中,A B αβ∈∈。
n是平面α的法向量。
⑷点A 到平面α的距离:||AB n d n ⋅= ,其中B α∈,n是平面α的法向量。
另法:点000(,,),A x y z 平面0Ax By Cz D +++=则d =⑸点A 到直线a 的距离:d =B a ∈,a是直线a 的方向向量。
⑹两平行直线,a b 之间的距离:d =,A a B b ∈∈,a是a 的方向向量。
1.4.2用空间向量研究距离、夹角问题(第2课时)教学设计本小节内容选自《普通高中数学选择性必修第一册》人教A版(2019)第一章《空间向量与立体几何》的第四节《空间向量的应用》。
以下是本节的课时安排:1.4 空间向量的应用课时内容 1.4.1用空间向量研究直线、平面的位置关系 1.4.2用空间向量研究距离、夹角问题所在位置教材第26页教材第33页新教材内容分析在向量坐标化的基础上,将空间中线线、线面、面面的位置关系,转化为向量语言,进而运用向量的坐标表示,从而实现运用空间向量解决立体几何问题,为学生学习立体几何提供了新的方法和新的观点,为培养学生思维提供了更广阔的空间。
在向量坐标化的基础上,将空间中点到线、点到面、两条平行线及二平行平面角的距离问题,首先转化为向量语言,进而运用向量的坐标表示,从而实现运用空间向量解决空间距离问题,为学生学习立体几何提供了新的方法和新的观点,为培养学生思维提供了更广阔的空间。
核心素养培养通过直线的方向向量、平面的法向量的理解,培养数学抽象的核心素养;通过计算法向量判断直线与平面的位置关系,提升逻辑推理和数学运算的核心素养。
通过线线角、线面角、二面角的理解,培养数学抽象的核心素养;通过空间角、空间距离的计算,强化数学运算和逻辑推理的核心素养。
教学主线直线与平面平行、垂直通过前面的学习,学生已经掌握了空间向量的基本运算,在此基础上,可以研究空间向量在求距离、夹角的应用,体现了向量的优势。
1.理解两异面直线所成角与它们的方向向量之间的关系,会用向量方法求两异面直线所成角,培养数学抽象的核心素养.2.理解直线与平面所成角与直线方向向量和平面法向量夹角之间的关系,会用向量方法求直线与平面所成,强化数学运算的核心素养.3.理解二面角大小与两个面法向量夹角之间的关系,会用向量方法求二面角的大小,提升逻辑推理的核心素养。
重点:理解运用向量方法求空间角的原理难点:掌握运用空间向量求空间角的方法(一)新知导入地球绕太阳公转的轨道平面称为“黄道面”,黄道面与地球赤道面交角(二面角的平面角)为23°26'.黄道面与天球相交的大圆为“黄道”.黄道及其附近的南北宽9°以内的区域称为黄道带,太阳及大多数行星在天球上的位置常在黄道带内.黄道带内有十二个星座,称为“黄道十二宫”.从春分(节气)点起,每30°便是一宫,并冠以星座名,如白羊座、狮子座、双子座等等,这便是星座的由来.【问题】空间角包括哪些角?求解空间角常用的方法有哪些?【提示】线线角、线面角、二面角; 传统方法和向量法.(二)用空间向量研究夹角【探究1】根据前面数量积的学习,我们已经知道向量法求两条异面直线a ,b 的夹角的方法,思考:异面直线a ,b 的夹角为θ,方向向量分别为a ,b ,那么夹角θ与方向向量的夹角〈a ,b 〉之间有怎样的关系式?【提示】cos θ=|cos 〈a ,b 〉|.◆异面直线所成的角的向量表示式:若异面直线l 1,l 2所成的角为θ,其方向向量分别是u ,v ,则cos θ=|cos 〈u ,v 〉|=|u ·v ||u ||v |. 【思考】两直线夹角的公式为什么不是cos θ=a ·b|a |·|b |?【提示】由于两直线夹角的范围为[0,π2],两向量夹角的范围为[0,π],因此,两直线夹角的公式为cos θ=|a ·b |a |·|b ||,而不能直接用向量夹角公式求两直线的夹角.【做一做】(教材P38练习1改编)如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AA 1=2,AC =BC =1,则异面直线A 1B 与AC 所成角的余弦值是( )A.65B.64C.63D.66 【答案】D【解析】以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,可知A 1(1,0,2),B (0,1,0),A (1,0,0),C (0,0,0),则A 1B →=(-1,1,-2),AC →=(-1,0,0),∴cos 〈A 1B →,AC →〉=AC →·A 1B →|AC →|·|A 1B →|=11+1+4=66,即A 1B 与AC 所成角的余弦值是66.【探究2】如图,设直线AB 的方向向量为u ,AC ⊥平面α,垂足为C ,平面α的法向量为n ,思考:直线AB 与平面α所成的角是哪个角?这个角与向量的夹角〈u ,n 〉之间满足什么关系式?[提示] 直线AB 与平面α所成的角是∠ABC =θ,sin θ=|cos 〈u ,n 〉|.◆直线与平面所成的角的向量表示式:直线与平面相交,设直线与平面所成的角为θ,直线的方向向量为u ,平面的法向量为n ,则sin θ=|cos 〈u ,n 〉|=|u ·n ||u ||n |. 【思考】设平面α的斜线l 的方向向量为a ,平面α的法向量为n ,l 与α所成的角的公式为什么不是cos θ=a ·n|a ||n |? 【提示】(1)当a ,n 与α,l 的关系如下图所示时,l 与α所成的角与a ,n 所成的角互余.即sin θ=cos a ,n . (2)当a ,n 与α,l 的关系如下图所示时,l与α所成的角与两向量所成的角的补角互余.此时,sinθ=|cos a,n|.总之,若设直线与平面所成的角为θ,直线的方向向量与平面的法向量所成的角为φ,则有sinθ=|cosφ|.若直线的方向向量为a,平面α的法向量为n,则sinθ=|a·n||a|·|n|.【做一做】已知向量m,n分别是直线l与平面α的方向向量、法向量,若cos〈m,n〉=-3 2,则l与α所成的角为()A.30°B.60°C.150°D.120°【答案】B【解析】设l与α所成的角为θ,则sin θ=|cos〈m,n〉|=32,∴θ=60°,应选B.【探究3】如图,设平面α,β的法向量分别是n1和n2,平面α与平面β所成的夹角为θ,思考:角θ与向量的夹角〈n1,n2〉满足什么关系式?【提示】cos θ=|cos〈n1,n2〉|.◆(1)平面与平面的夹角的定义:平面α与平面β相交,形成四个二面角,我们把这四个二面角中不大于90°的二面角称为平面α与平面β的夹角.(2)平面与平面的夹角的向量表示式:设平面α,β的法向量分别是n1和n2,则平面α与平面β的夹角即为向量n 1和n 2的夹角或其补角.设平面α与平面β的夹角为θ,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|. 【说明】二面角的平面角也可转化为两直线的方向向量的夹角.在两个半平面内,各取一直线与棱垂直,当直线的方向向量的起点在棱上时,两方向向量的夹角即为二面角的平面角.【思考】两平面法向量的夹角就是两平面的夹角吗?【提示】不一定.两平面法向量的夹角可能等于两平面的夹角(当0≤n 1,n 2≤π2时),也有可能与两平面的夹角互为补角(当π2<n 1,n 2≤π时).其中n 1,n 2是两平面的法向量. 【做一做】平面α的法向量为(1,0,-1),平面β的法向量为(0,-1,1),则平面α与平面β的夹角为_______. 【答案】π3【解析】设u =(1,0,-1),v =(0,-1,1),α与β的夹角为θ,则cos θ=|cos 〈u ,v 〉|=⎪⎪⎪⎪⎪⎪-12×2=12,∴θ=π3.【超级概括】1.求两异面直线所成的角时,要注意其范围是(0,π2].2.求线面角的大小时,要注意所求直线的方向向量与平面的法向量夹角的余弦值的绝对值才是线面角的正弦值.3.求二面角的大小要特别注意需根据具体的图形来判断该二面角是锐角还是钝角.(三)典型例题 1.异面直线所成角例1.(2022·浙江高二期末)如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,3PD =,2PN ND =,底面ABCD 为直角梯形,90ADC ∠=︒,//AD BC ,22=3BC AD DC ==.(1)求证://PB 平面ACN ;(2)求异面直线PA 与CN 所成角的余弦值. 【解析】(1)连接,AC BD 相交于点E ,连接EN .//AD BC ,可得AED 与BCE 相似,则12ED AD BE BC == 又12ND PN =,则12ND AD PN BC ==,所以//EN PB 又PB ⊄平面ACN ,EN ⊂平面ACN ,所以//PB 平面ACN ;(2)由PD ⊥平面ABCD ,90ADC ∠=︒.以D 为原点,以,,DA DC DP 分别为,,x y z 轴建立空间直角坐标系,如图. 由3PD =,2PN ND =,22=3BC AD DC == 则()0,0,1N ,33,0,0,0,,022A C ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,()0,0,3P 则3,0,32AP ⎛⎫=-⎪⎝⎭,30,,12CN ⎛⎫=- ⎪⎝⎭所以465cos ,999144AP CN AP CN AP CN⋅===+⋅+465所以异面直线PA与CN【类题通法】利用空间向量求两异面直线所成角的步骤.(1)建立适当的空间直角坐标系.(2)求出两条异面直线的方向向量的坐标.(3)利用向量的夹角公式求出两直线方向向量的夹角.(4)结合异面直线所成角的范围得到两异面直线所成角.2.求两条异面直线所成的角的两个关注点.(1)余弦值非负:两条异面直线所成角的余弦值一定为非负值,而对应的方向向量的夹角可能为钝角.],故两直线方向向量夹角的余弦值为负时,应取其绝对值.(2)范围:异面直线所成角的范围是(0,π2【巩固练习1】(2022·贵州遵义市第五中学)在三棱锥P—ABC中,P A、PB、PC两两垂直,且P A=PB=PC,M、N分别为AC、AB的中点,则异面直线PN和BM所成角的余弦值为()A3B3C6D6【答案】B【解析】以点P为坐标原点,以PA,PB,PC方向为x轴,y轴,z轴的正方向建立如图所示的空间直角坐标系,令2PA =,则()0,0,0P ,()0,2,0B ,()1,0,0M ,()1,1,0N ,则(1,1,0)PN =,(1,2,1)BM =-,设异面直线PN 和BM 所成角为θ,则||3cos 6||||PN BM PN BM θ⋅==.故选B.2.直线与平面所成的角例2.(2022·江西省信丰中学)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,PAB△为正三角形,且侧面PAB ⊥底面ABCD ,M 为PD 的中点.(1)求证:PB ∥平面ACM ;(2)求直线BM 与平面PAD 所成角的大小;【解析】(1)证明:连接BD ,与AC 交于O ,则O 为BD 的中点,又M 分别为PD 的中点,∴BP OM ∥,∵BP ⊄平面ACM ,OM ⊂平面ACM ,∴BP ∥平面ACM.(2)解:设E 是AB 的中点,连接PE ,∵ABCD 是正方形,PAB △为正三角形,∴PE AB ⊥.又∵面PAB ⊥面ABCD ,交线为AB ,∴PE ⊥平面ABCD .以E 为原点,分别以EB ,EO ,EP 所在直线为x ,y ,z 轴,如图,建立空间直角坐标系E xyz -,则()0,0,0E ,()1,0,0B ,()1,0,0A -,(3P ,()1,2,0C ,()1,2,0D -,132M ⎛- ⎝⎭,∴(1,0,3PA =--,()0,2,0AD =,332BM ⎛=- ⎝⎭. 设平面PAD 的法向量为(),,n x y z =,则3020n PA x z n AD y ⎧⋅=--=⎪⎨⋅==⎪⎩,令1z =.则3x =-()3,0,1n =-.设直线BM 与平面PAD 所成角为α,∴33sin |cos ,|||||n BMn BM n BM α→→→→→→⋅=<>===,即直线BM 与平面PAD 3 故所求角大小为60°.【类题通法】求直线与平面的夹角的方法与步骤方法一:找直线在平面内的射影,充分利用面与面垂直的性质及解三角形知识可求得夹角(或夹角的某一三角函数值).方法二:用向量法求直线与平面的夹角可利用向量夹角公式或法向量. 利用法向量求直线与平面的夹角的基本步骤:【巩固练习2】(2022·青海海东市第一中学)如图,在三棱柱111ABC AB C -中,11222AC AA AB AC BC ====,160BAA ∠=︒.(1)证明:平面ABC ⊥平面11AA B B .(2)设P 是棱1CC 的中点,求AC 与平面11PA B 所成角的正弦值.【解析】(1)设2AB =.在四边形11AA B B 中,∵12AA AB =,160BAA ∠=︒,连接1A B ,∴由余弦定理得2221112cos6012A B AA AB AA AB =+-⋅︒=,即123A B =∵22211A B AB AA +=,∴1A B AB ⊥.又∵22211A B BC A C +=,∴1A B BC ⊥,AB BC B ⋂=,∴1A B ⊥平面ABC ,∵1A B ⊂平面11AA B B ,∴平面ABC ⊥平面11AA B B . (2)取AB 中点D ,连接CD ,∵AC BC =,∴CD AB ⊥, 由(1)易知CD ⊥平面11AA B B ,且3CD =如图,以B 为原点,分别以射线BA ,1BA 为x ,y 轴的正半轴,建立空间直角坐标系B -xyz ,则(2,0,0)A ,1(0,23,0)A ,3)C ,1(2,23,0)B -,1(1,23,3)C -,3,3)P .11(2,0,0)A B =-,1(0,3,3)A P =-,设平面11PA B 的法向量为(,,)n x y z =,则11100n A B n A P ⎧⋅=⎪⎨⋅=⎪⎩,得20330x z -=⎧⎪⎨-=⎪⎩,令1y =,则取(0,1,1)n =,(13)AC =-,||36cos,||||22AC n AC n AC n ⋅〈〉===AC 与平面11PA B 63.二面角【例3】在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 是矩形,1,,2AB AP AD E F ==分别是AP BC ,的中点.(1)求证://EF 平面PCD ; (2)求二面角C EF D --的余弦值.【解析】(1)证明:取DP 的中点G ,连接EG ,CG , 又E 是AP 的中点,所以EG AD ∥,且12EGAD . 因为四边形ABCD 是矩形,所以BC AD =且//BC AD ,所以12EG BC =,且//EG BC . 因为F 是BC 的中点,所以12CF BC =,所以EG CF =且//EG CF , 所以四边形EFCG 是平行四边形,故//EF CG .因为EF ⊄平面PCD ,CG ⊂平面PCD ,所以//EF 平面PCD .(2) 解:因为PA ⊥平面ABCD ,四边形ABCD 是矩形,所以AB ,AD ,AP 两两垂直,以点A 为坐标原点,直线AB ,AD ,AP 分别为x 轴,y 轴,z 轴建立空间直角坐标系(如图所示).设122AB AP AD ===,所以2AB AP ==,4AD BC ==. 因为E ,F 分别为AP ,BC 的中点,所以()2,4,0C ,()0,4,0D ,()0,0,1E ,()2,2,0F 所以()2,2,1EF =-,()2,2,0DF =-,()0,2,0CF =-.设平面CEF 的一个法向量为()111,,m x y z =,由0,0,m EF m CF ⎧⋅=⎨⋅=⎩即1111220,20.x y z y +-=⎧⎨-=⎩ 令11x =,则12z =,10y =,所以()1,0,2m =.设平面DEF 的一个法向量为()222,,n x y z =,由0,0,n EF n DF ⎧⋅=⎨⋅=⎩即22222220,220.x y z x y +-=⎧⎨-=⎩ 令21x =,则21y =,24z =,所以()1,1,4n =.所以9310cos ,10518m n m n m n ⋅===⋅⨯. 由图知二面角C EF D --为锐角,所以二面角C EF D --310.【类题通法】利用平面的法向量求二面角利用向量方法求二面角的大小时,多采用法向量法,即求出两个面的法向量,然后通过法向量的夹角来得到二面角的大小,但利用这种方法求解时,要注意结合图形观察分析,确定二面角是锐角还是钝角,不能将两个法向量的夹角与二面角的大小完全等同起来.提醒:若求二面角θ,求出cos 〈n 1,n 2〉后,观察图形,判断二面角为锐角还是钝角,若二面角为锐角,则cos θ=|cos 〈n 1,n 2〉|,若二面角为钝角,则cos θ=-|cos 〈n 1,n 2〉|.【巩固练习3】如图,在三棱台111ABC A B C -中,AB AC ⊥,4AB AC ==,1112A A A B ==,侧棱1A A ⊥平面ABC ,点D 是棱1CC 的中点.(1)证明:平面1BB C ⊥平面1AB C ; (2)求二面角C BD A --的正弦值.【解析】(1)证明:因为1A A ⊥平面ABC ,AC ⊂平面ABC ,所以1AA AC ⊥, 又AB AC ⊥,1AA AB A =,1AA ,AB平面11ABB A ,所以AC ⊥平面11ABB A .又1BB ⊂平面11ABB A ,所以1AC BB ⊥. 又因为2212222AB =+,()22142222BB =-+=22211AB AB BB =+,所以11AB BB ⊥.又1AB AC A =,1AB ,AC ⊂平面1AB C ,所以1BB ⊥平面1AB C ,因为1BB ⊂平面1BB C ,所以平面1BB C ⊥平面1AB C .(3) 解:以A 为坐标原点,AB ,AC ,1AA 的所在的直线分别为x ,y ,z 轴建立空间直角坐标系,如图所示.因为4AB AC ==,111112A A A B A C ===,所以()0,0,0A ,()4,0,0B ,()0,4,0C ,()10,2,2C ,()0,3,1D .设平面ABD 的一个法向量为()1111,,x n y z =,设平面CBD 的一个法向量为()2222,,n x y z =,且()4,0,0AB =,()0,3,1AD =,()4,4,0CB =-,()0,1,1CD =-,因为110,0,AB n AD n ⎧⋅=⎪⎨⋅=⎪⎩所以1110,30,x y z =⎧⎨+=⎩令11y =,则10x =,13z =-,所以()10,1,3n =-.又因为220,0.CB n CD n ⎧⋅=⎪⎨⋅=⎪⎩所以22220,0,x y y z -=⎧⎨-=⎩令21x =,则21y =,21z =,所以()21,1,1=n .所以121212130cos ,310n n n n n n ⋅===⋅设二面角C BD A --的大小为θ,则230195sin 115θ⎛⎫=--= ⎪ ⎪⎝⎭, 所以二面角C BD A --195(四)操作演练 素养提升1.已知直线l 1的方向向量s 1=(1,0,1)与直线l 2的方向向量s 2=(-1,2,-2),则l 1和l 2夹角的余弦值为( )A.24B.12C.22D.32 【答案】C【解析】因为s 1=(1,0,1),s 2=(-1,2,-2),所以cos 〈s 1,s 2〉=s 1·s 2|s 1||s 2|=-1-22×3=-22.又两直线夹角的取值范围为(0,π2],所以l 1和l 2夹角的余弦值为22.2.正方形ABCD 所在平面外有一点P ,PA ⊥平面ABCD .若PA =AB ,则平面PAB 与平面PCD 所成的夹角的大小为( )A .30°B .45°C .60°D .90°【答案】B【解析】建系如图,设AB =1,则A (0,0,0),B (0,1,0),P (0,0,1),D (1,0,0),C (1,1,0). 平面PAB 的法向量为n 1=(1,0,0).设平面PCD 的法向量n 2=(x ,y ,z ),则⎩⎪⎨⎪⎧n 2·PD →=0,n 2·CD →=0,得⎩⎨⎧x -z =0,y =0.令x =1,则z =1,∴n 2=(1,0,1),cos 〈n 1,n 2〉=12=22. ∴平面PAB 与平面PCD 所成的二面角的余弦值为22.∴此角的大小为45°. 3.在正方体ABCD A 1B 1C 1D 1中,E 、F 分别为AB 、C 1D 1的中点,则A 1B 1与平面A 1EF 夹角的正弦值为( ) A.62 B.63C.64D.2【答案】B【解析】建系如右图,设正方体棱长为1,则A 1(1,0,1),E (1,12,0),F (0,12,1),B 1(1,1,1).A 1B 1→=(0,1,0),A 1E →=(0,12,-1),A 1F →=(-1,12,0).设平面A 1EF 的一个法向量为n =(x ,y ,z ),则⎩⎨⎧n ·A 1E →=0n ·A 1F →=0,即⎩⎨⎧12y -z =0-x +y2=0.令y =2,则⎩⎪⎨⎪⎧x =1z =1.∴n =(1,2,1),cos 〈n ,A 1B 1→〉=26=63.设A 1B 1与平面A 1EF 的夹角为θ,则sin θ=|cos 〈n ,A 1B 1→〉|=63,即所求线面角的正弦值为63. 4. (双空题)已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则异面直线AE 与A 1C 1所成角的余弦值等于______,平面AEF 与平面ABC 的夹角的正切值等于________.【答案】3510 23【解析】如图,建立空间直角坐标系.设正方体的棱长为1,则A (1,0,0),A 1(1,0,1),C 1(0,1,1),E ⎝⎛⎭⎫1,1,13,F ⎝⎛⎭⎫0,1,23,所以AE →=⎝⎛⎭⎫0,1,13,A 1C 1→=(-1,1,0),EF →=⎝⎛⎭⎫-1,0,13,所以cos 〈AE →,A 1C 1→〉=AE →·A 1C 1→|AE →||A 1C 1→|=3510.所以异面直线AE 与A 1C 1所成角的余弦值等于3510.平面ABC 的法向量为n 1=(0,0,1),设平面AEF 的法向量为n 2=(x ,y ,z ).则⎩⎪⎨⎪⎧n 2·AE →=0,n 2·EF →=0,即⎩⎨⎧y +13z =0,-x +13z =0.取x =1,则y =-1,z =3.故n 2=(1,-1,3). 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=31111.所以平面AEF 与平面ABC 的夹角α满足cos α=31111,sin α=2211,所以tan α=23. 答案:1.C 2.B 3.B4.3510 23【设计意图】通过练习巩固本节所学知识,通过学生解决问题的能力,感悟其中蕴含的数学思想,增强学生的应用意识。
立体几何空间距离问题空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离.●难点磁场(★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点.求:(1)Q到BD的距离;(2)P到平面BQD的距离.P为RT△ABC所在平面α外一点,∠ACB=90°(如图)(1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角(2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离●案例探究[例1]把正方形ABCD沿对角线AC折起成直二面角,点E、F分别是AD、BC 的中点,点O 是原正方形的中心,求:(1)EF 的长;(2)折起后∠EOF 的大小.命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目.知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直.技巧与方法:建系方式有多种,其中以O 点为原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单.解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-42a , a ),F (42a , 42a ,0) 21||||,cos ,2||,2||8042)42)(42(420)0,42,42(),42,42,0()2(23,43)420()4242()042(||)1(22222-=>=<==-=⋅+-+⨯=⋅=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF∴∠EOF =120°[例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离.命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.错解分析:本题容易错误认为O 1B 是A 1C 与AB 1的距离,这主要是对异面直线定义不熟悉,异面直线的距离是与两条异面直线垂直相交的直线上垂足间的距离.技巧与方法:求异面直线的距离,有时较难作出它们的公垂线,故通常采用化归思想,转化为求线面距、面面距、或由最值法求得.解法一:如图,连结AC 1,在正方体AC 1中,∵A 1C 1∥AC ,∴A 1C 1∥平面AB 1C ,∴A 1C 1与平面AB 1C 间的距离等于异面直线A 1C 1与AB 1间的距离.连结B 1D 1、BD ,设B 1D 1∩A 1C 1=O 1,BD ∩AC =O ∵AC ⊥BD ,AC ⊥DD 1,∴AC ⊥平面BB 1D 1D∴平面AB 1C ⊥平面BB 1D 1D ,连结B 1O ,则平面AB 1C ∩平面BB 1D 1D =B 1O 作O 1G ⊥B 1O 于G ,则O 1G ⊥平面AB 1C∴O 1G 为直线A 1C 1与平面AB 1C 间的距离,即为异面直线A 1C 1与AB 1间的距离.在Rt △OO 1B 1中,∵O 1B 1=22,OO 1=1,∴OB 1=21121B O OO += 26∴O 1G =331111=⋅OB B O O O ,即异面直线A 1C 1与AB 1间距离为33.解法二:如图,在A 1C 上任取一点M ,作MN ⊥AB 1于N ,作MR ⊥A 1B 1于R ,连结RN ,∵平面A 1B 1C 1D 1⊥平面A 1ABB 1,∴MR ⊥平面A 1ABB 1,MR ⊥AB 1 ∵AB 1⊥RN ,设A 1R =x ,则RB 1=1-x ∵∠C 1A 1B 1=∠AB 1A 1=45°,∴MR =x ,RN =NB 1=)1(22x - 31)31(23)1(2122222+-=-+=+=x x x RN MR MN (0<x <1)∴当x =31时,MN 有最小值33即异面直线A 1C 1与AB 1距离为33.●锦囊妙计空间中的距离主要指以下七种: (1)两点之间的距离. (2)点到直线的距离. (3)点到平面的距离. (4)两条平行线间的距离. (5)两条异面直线间的距离.(6)平面的平行直线与平面之间的距离. (7)两个平行平面之间的距离.七种距离都是指它们所在的两个点集之间所含两点的距离中最小的距离.七种距离之间有密切联系,有些可以相互转化,如两条平行线的距离可转化为求点到直线的距离,平行线面间的距离或平行平面间的距离都可转化成点到平面的距离.在七种距离中,求点到平面的距离是重点,求两条异面直线间的距离是难点.求点到平面的距离:(1)直接法,即直接由点作垂线,求垂线段的长.(2)转移法,转化成求另一点到该平面的距离.(3)体积法.求异面直线的距离:(1)定义法,即求公垂线段的长.(2)转化成求直线与平面的距离.(3)函数极值法,依据是两条异面直线的距离是分别在两条异面直线上两点间距离中最小的.●歼灭难点训练 一、选择题1.(★★★★★)正方形ABCD 边长为2,E 、F 分别是AB 和CD 的中点,将正方形沿EF 折成直二面角(如图),M 为矩形AEFD 内一点,如果∠MBE =∠MBC ,MB 和平面BCF 所成角的正切值为21,那么点M 到直线EF 的距离为( )21 D. 23C. B.1 22A.2.(★★★★)三棱柱ABC —A 1B 1C 1中,AA 1=1,AB =4,BC =3,∠ABC =90°,设平面A 1BC 1与平面ABC 的交线为l ,则A 1C 1与l 的距离为( )A.10B.11C.2.6D.2.4二、填空题3.(★★★★)如左下图,空间四点A 、B 、C 、D 中,每两点所连线段的长都等于a ,动点P 在线段AB 上,动点Q 在线段CD 上,则P 与Q 的最短距离为_________.4.(★★★★)如右上图,ABCD与ABEF均是正方形,如果二面角E—AB—C 的度数为30°,那么EF与平面ABCD的距离为_________.三、解答题5.(★★★★★)在长方体ABCD—A1B1C1D1中,AB=4,BC=3,CC1=2,如图:(1)求证:平面A1BC1∥平面ACD1;(2)求(1)中两个平行平面间的距离;(3)求点B1到平面A1BC1的距离.6.(★★★★★)已知正四棱柱ABCD—A1B1C1D1,点E在棱D1D上,截面EAC∥D1B且面EAC与底面ABCD所成的角为45°,AB=a,求:(1)截面EAC的面积;(2)异面直线A1B1与AC之间的距离;(3)三棱锥B1—EAC的体积.7.(★★★★)如图,已知三棱柱A1B1C1—ABC的底面是边长为2的正三角形,侧棱A1A与AB、AC均成45°角,且A1E⊥B1B于E,A1F⊥CC1于F.(1)求点A到平面B1BCC1的距离;(2)当AA1多长时,点A1到平面ABC与平面B1BCC1的距离相等.8.(★★★★★)如图,在梯形ABCD 中,AD ∥BC ,∠ABC =2π,AB = 31AD =a ,∠ADC =arccos552,P A ⊥面ABCD 且P A =a .(1)求异面直线AD 与PC 间的距离;(2)在线段AD 上是否存在一点F ,使点A 到平面PCF 的距离为36.参考答案 难点磁场解:(1)在矩形ABCD 中,作AE ⊥BD ,E 为垂足 连结QE ,∵QA ⊥平面ABCD ,由三垂线定理得QE ⊥BE ∴QE 的长为Q 到BD 的距离 在矩形ABCD 中,AB =a ,AD =b , ∴AE =22ba ab +在Rt △QAE 中,QA =21P A =c∴QE =22222ba b a c ++∴Q 到BD 距离为22222ba b a c ++.(2)解法一:∵平面BQD 经过线段P A 的中点, ∴P 到平面BQD 的距离等于A 到平面BQD 的距离 在△AQE 中,作AH ⊥QE ,H 为垂足∵BD ⊥AE ,BD ⊥QE ,∴BD ⊥平面AQE ∴BD ⊥AH ∴AH ⊥平面BQE ,即AH 为A 到平面BQD 的距离.在Rt △AQE 中,∵AQ =c ,AE =22ba ab +∴AH =22222)(ba cb a abc ++∴P 到平面BD 的距离为22222)(ba cb a abc ++解法二:设点A 到平面QBD 的距离为h ,由 V A —BQD =V Q —ABD ,得31S △BQD ·h =31S △ABD ·AQ h =22222)(ba cb a abc S AQS BQDABD ++==⋅∆∆歼灭难点训练一、1.解析:过点M 作MM ′⊥EF ,则MM ′⊥平面BCF ∵∠MBE =∠MBC∴BM ′为∠EBC 为角平分线, ∴∠EBM ′=45°,BM ′=2,从而MN =22 答案:A2.解析:交线l 过B 与AC 平行,作CD ⊥l 于D ,连C 1D ,则C 1D 为A 1C 1与l 的距离,而CD 等于AC 上的高,即CD =512,Rt △C 1CD 中易求得C 1D =513=2.6 答案:C二、3.解析:以A 、B 、C 、D 为顶点的四边形为空间四边形,且为正四面体,取P 、Q 分别为AB 、CD 的中点,因为AQ =BQ =22a ,∴PQ ⊥AB ,同理可得PQ ⊥CD ,故线段PQ 的长为P 、Q 两点间的最短距离,在Rt △APQ 中,PQ =22)2()23(2222=-=-a a AP AQ a 答案:22a4.解析:显然∠F AD 是二面角E —AB —C 的平面角,∠F AD =30°,过F 作FG ⊥平面ABCD 于G ,则G 必在AD 上,由EF ∥平面ABCD .∴FG 为EF 与平面ABCD 的距离,即FG =2a . 答案:2a三、5.(1)证明:由于BC 1∥AD 1,则BC 1∥平面ACD 1 同理,A 1B ∥平面ACD 1,则平面A 1BC 1∥平面ACD 1(2)解:设两平行平面A 1BC 1与ACD 1间的距离为d ,则d 等于D 1到平面A 1BC 1的距离.易求A 1C 1=5,A 1B =25,BC 1=13,则cos A 1BC 1=652,则sin A 1BC 1=6561,则S 111C B A ∆=61,由于111111D C A B BC A D V V --=,则31S 11BC A ∆·d =)21(31111D C AD ⋅·BB 1,代入求得d =616112,即两平行平面间的距离为616112. (3)解:由于线段B 1D 1被平面A 1BC 1所平分,则B 1、D 1到平面A 1BC 1的距离相等,则由(2)知点B 1到平面A 1BC 1的距离等于616112. 6.解:(1)连结DB 交AC 于O ,连结EO , ∵底面ABCD 是正方形 ∴DO ⊥AC ,又ED ⊥面ABCD ∴EO ⊥AC ,即∠EOD =45° 又DO =22a ,AC =2a ,EO =︒45cos DO =a ,∴S △EAC =22a (2)∵A 1A ⊥底面ABCD ,∴A 1A ⊥AC ,又A 1A ⊥A 1B 1 ∴A 1A 是异面直线A 1B 1与AC 间的公垂线 又EO ∥BD 1,O 为BD 中点,∴D 1B =2EO =2a ∴D 1D =2a ,∴A 1B 1与AC 距离为2a(3)连结B 1D 交D 1B 于P ,交EO 于Q ,推证出B 1D ⊥面EAC ∴B 1Q 是三棱锥B 1—EAC 的高,得B 1Q =23a32422322311a a a V EAC B =⋅⋅=-7.解:(1)∵BB 1⊥A 1E ,CC 1⊥A 1F ,BB 1∥CC 1 ∴BB 1⊥平面A 1EF 即面A 1EF ⊥面BB 1C 1C 在Rt △A 1EB 1中, ∵∠A 1B 1E =45°,A 1B 1=a∴A 1E =22a ,同理A 1F =22a ,又EF =a ,∴A 1E =22a 同理A 1F =22a ,又EF =a∴△EA 1F 为等腰直角三角形,∠EA 1F =90°过A 1作A 1N ⊥EF ,则N 为EF 中点,且A 1N ⊥平面BCC 1B 1 即A 1N 为点A 1到平面BCC 1B 1的距离 ∴A 1N =221a =又∵AA 1∥面BCC 1B ,A 到平面BCC 1B 1的距离为2a ∴a =2,∴所求距离为2(2)设BC 、B 1C 1的中点分别为D 、D 1,连结AD 、DD 1和A 1D 1,则DD 1必过点N ,易证ADD 1A 1为平行四边形.∵B 1C 1⊥D 1D ,B 1C 1⊥A 1N ∴B 1C 1⊥平面ADD 1A 1 ∴BC ⊥平面ADD 1A 1得平面ABC ⊥平面ADD 1A 1,过A 1作A 1M ⊥平面ABC ,交AD 于M , 若A 1M =A 1N ,又∠A 1AM =∠A 1D 1N ,∠AMA 1=∠A 1ND 1=90° ∴△AMA 1≌△A 1ND 1,∴AA 1=A 1D 1=3,即当AA 1=3时满足条件. 8.解:(1)∵BC ∥AD ,BC ⊂面PBC ,∴AD ∥面PBC从而AD 与PC 间的距离就是直线AD 与平面PBC 间的距离. 过A 作AE ⊥PB ,又AE ⊥BC ∴AE ⊥平面PBC ,AE 为所求. 在等腰直角三角形P AB 中,P A =AB =a ∴AE =22a(2)作CM ∥AB ,由已知cos ADC =552 ∴tan ADC =21,即CM =21DM ∴ABCM 为正方形,AC =2a ,PC =3a过A 作AH ⊥PC ,在Rt △P AC 中,得AH =36 下面在AD 上找一点F ,使PC ⊥CF取MD 中点F ,△ACM 、△FCM 均为等腰直角三角形∴∠ACM +∠FCM =45°+45°=90°∴FC ⊥AC ,即FC ⊥PC ∴在AD 上存在满足条件的点F .[学法指导]立体几何中的策略思想及方法近年来,高考对立体几何的考查仍然注重于空间观点的建立和空间想象能力的培养.题目起点低,步步升高,给不同层次的学生有发挥能力的余地.大题综合性强,有几何组合体中深层次考查空间的线面关系.因此,高考复习应在抓好基本概念、定理、表述语言的基础上,以总结空间线面关系在几何体中的确定方法入手,突出数学思想方法在解题中的指导作用,并积极探寻解答各类立体几何问题的有效的策略思想及方法.一、领悟解题的基本策略思想高考改革稳中有变.运用基本数学思想如转化,类比,函数观点仍是考查中心,选择好典型例题,在基本数学思想指导下,归纳一套合乎一般思维规律的解题模式是受学生欢迎的,学生通过熟练运用,逐步内化为自己的经验,解决一般基本数学问题就会自然流畅.二、探寻立体几何图形中的基面立体几何图形必须借助面的衬托,点、线、面的位置关系才能显露地“立”起来.在具体的问题中,证明和计算经常依附于某种特殊的辅助平面即基面.这个辅助平面的获取正是解题的关键所在,通过对这个平面的截得,延展或构造,纲举目张,问题就迎刃而解了.三、重视模型在解题中的应用学生学习立体几何是从认识具体几何模型到抽象出空间点、线、面的关系,从而培养空间想象能力.而数学问题中许多图形和数量关系都与我们熟悉模型存在着某种联系.它引导我们以模型为依据,找出起关键作用的一些关系或数量,对比数学问题中题设条件,突出特性,设法对原图形补形,拼凑、构造、嵌入、转化为熟知的、形象的、直观的模型,利用其特征规律获取优解.。
一道求空间点到直线距离试题的七种解法王恩普(江苏省淮阴中学教育集团淮安市新淮高级中学ꎬ江苏淮安223001)摘㊀要:文章通过教材中一道例题的变式ꎬ从不同角度对其进行不同解法探究ꎬ提高学生的解题能力.关键词:教材ꎻ解法探究ꎻ点到直线距离中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)22-0043-03收稿日期:2023-05-05作者简介:王恩普ꎬ中学高级教师ꎬ从事中学数学教学研究.㊀㊀在 三新 背景下ꎬ教材显然是一线教师和学生的主阵地ꎬ教材的研究显得尤为重要ꎬ尤其是教材中的例题和习题ꎬ都是精编细选ꎬ深得很多命题者的青睐ꎬ因此有必要对一些典型的例习题进行深入探究.本文从不同的视角出发ꎬ对苏教版选择性必修第二册中的一道例题的解法进行了充分研究ꎬ而且在解法探究的过程中ꎬ也很自然地体现了基础性㊁综合性和创新性.1试题呈现题目㊀如图1ꎬ已知正方体ABCD-A1B1C1D1的棱长为1ꎬEꎬF分别是BC和CD的中点.求点E到直线B1D1的距离.图1㊀题目示意图这是苏教版选择性必修第二册6.3.4«空间距离的计算»例11的改编ꎬ考查空间几何中的点到直线的距离ꎬ此题的背景是正方体ꎬ坐标表示较为简单ꎬ但是从不同的视角出发ꎬ可以发现解法多样ꎬ各具特点ꎬ因此文章对本题的解法进行了深入研究ꎬ与读者共享.2解法探究如图2ꎬ以{DAңꎬDCңꎬDD1ң}为一组单位正交基底ꎬ建立空间直角坐标系D-xyzꎬ则E(12ꎬ1ꎬ0)ꎬD1(0ꎬ0ꎬ1)ꎬB1(1ꎬ1ꎬ1).图2㊀空间直角坐标系示意图解法1㊀(向量法)设在平面EB1D1内与直线B1D1垂直的向量为n=(xꎬyꎬz)ꎬ因为B1D1ң=(-1ꎬ-1ꎬ0)ꎬB1E=(-12ꎬ0ꎬ-1)ꎬ则由nʅB1D1ң可得x+y=0.㊀34由n与B1D1ңꎬB1Eң共面可知ꎬ存在实数mꎬpꎬ使得n=mB1D1ң+pB1Eң.则(xꎬyꎬz)=m(-1ꎬ-1ꎬ0)+p(-12ꎬ0ꎬ-1)=(-m-12pꎬ-mꎬ-p).即x=-m-12pꎬy=-mꎬz=-pꎬìîíïïïï则有x=y+12z.令x=1ꎬ则y=-1ꎬz=4.解得n=(1ꎬ-1ꎬ4).故点E到直线B1D1的距离为d=|EB1ң n|n=9/218=324.评注㊀解法1主要将空间向量共面定理与题目条件相结合ꎬ求出平面EB1D1内与直线B1D1垂直的向量ꎬ进而参照点到面的距离公式d=|EB1ң n|n即可求解.解法2㊀(向量法)连接EB1ꎬ则EB1ң=(12ꎬ0ꎬ1)ꎬ记θ=‹D1B1ңꎬEB1ң›ꎬ则有D1B1ң EB1ң=12ꎬ|D1B1ң|=2ꎬ|EB1ң|=52.则cosθ=D1B1ң EB1ң|D1B1ң| |EB1ң|=1010ꎬsinθ=31010.故点E到直线B1D1的距离为d=|EB1|ң sinθ=52ˑ31010=324.评注㊀解法2分两步ꎬ首先求出定点与直线上任一点所对应的向量以及直线的方向向量ꎬ进而求出向量的夹角(或其余弦值)ꎬ然后求出其正弦值ꎬ利用d=|EB1|ңsinθ即可解决.解法3㊀(向量法)由题知EB1ң=(12ꎬ0ꎬ1)ꎬED1ң=(-12ꎬ-1ꎬ1).设平面EB1D1的一个法向量为n1=(x1ꎬy1ꎬz1)ꎬ由EB1ңn1=0ꎬED1ң n1=0ꎬ{得12x1+z1=0ꎬ-12x1-y1+z1=0.ìîíïïïï令x1=2ꎬ得z1=-1ꎬy1=-2.所以n1=(2ꎬ-2ꎬ-1).设与n1ꎬD1B1ң都垂直的一个向量为n2=(x2ꎬy2ꎬz2)ꎬ由n1 n2=0ꎬD1B1ңn2=0ꎬ{得2x2-2y2-z2=0ꎬx2+y2=0.{令x2=1ꎬ得y2=-1ꎬz2=4.可得n2=(1ꎬ-1ꎬ4).故点E到直线B1D1的距离即为d=|EB1ңn2|n2=9/218=324.评注㊀解法3仍然是通过求直线B1D1的法向量来解决ꎬ为了求出直线B1D1的法向量ꎬ首先需要求出平面EB1D1的法向量ꎬ然后求出与n1ꎬD1B1ң都垂直的向量即为直线B1D1的法向量.图3㊀解法4示意图解法4㊀(求空间向量的模)如图3ꎬ在平面EB1D1内过点E作直线B1D1的垂线ꎬ垂足为点Hꎬ由平面向量基本定理ꎬ知EHң=λEB1ң+μED1ң.又HꎬB1ꎬD1三点共线ꎬ则有λ+μ=1.44即EHң=λEB1ң+(1-λ)ED1ң.而EB1ң=(12ꎬ0ꎬ1)ꎬED1ң=(-12ꎬ-1ꎬ1)ꎬ则EHң=(λ-12ꎬλ-1ꎬ1).又B1D1ң=(-1ꎬ-1ꎬ0)ꎬEHңʅB1D1ңꎬ可得λ=34.则EHң=(14ꎬ-14ꎬ1).即有d=|EHң|=324.评注㊀解法4主要借助于平面向量基本定理ꎬ把直线外的定点与垂足构成的向量EHң用定点和直线上任意两点构成的两个向量EB1ңꎬED1ң线性表示ꎬ再借助于垂直关系求出EHңꎬ其模即为所求距离.解法5㊀(投影向量法)由题易知EB1ң=(12ꎬ0ꎬ1)ꎬB1D1ң=(-1ꎬ-1ꎬ0).则与B1D1ң共线的单位向量为e=(-22ꎬ-22ꎬ0).由投影向量ꎬ知d=EB1ң2-(EB1ң e)2㊀=324.评注㊀解法5来源于人教版教材ꎬ借助于投影向量的概念ꎬ问题解决过程简洁ꎬ易操作.解法6㊀(解三角形法)由题知EB1=52ꎬED1=32ꎬB1D1=2ꎬ问题转化成求әEB1D1边B1D1上的高.由余弦定理ꎬ知cosøED1B1=ED21+B1D21-EB212ED1 B1D1=22.即øED1B1=π4.此时d=ED1 sinπ4=324.评注㊀解法6把空间的点到线的距离转化为平面三角形中的高ꎬ只需要求出三角形的三边长ꎬ借助于三角函数知识即可解决ꎬ从而体现了转化与化归思想.解法7㊀(两点距离公式)如图3ꎬ在平面EB1D1内过点E作直线B1D1的垂线ꎬ垂足为点Hꎬ由题可设H(xꎬxꎬ1)ꎬ则EHң=(x-12ꎬx-1ꎬ1)ꎬB1D1ң=(-1ꎬ-1ꎬ0).㊀由EHңʅB1D1ңꎬ知-(x-12)-(x-1)=0.即有x=34ꎬ则H(34ꎬ34ꎬ1).故点E到直线B1D1的距离为d=|EHң|=(12-34)2+(1-34)2+(0-1)2=324.评注㊀解法7的本质就是设出垂足的坐标ꎬ通过向量的数量积表示出垂直关系ꎬ从而求出垂足的坐标ꎬ然后利用空间两点距离公式即可求解.3教学启示在新高考形势下ꎬ对学生的考查应该是全方面的ꎬ所以对于问题的解决ꎬ不能仅限于得出结果ꎬ更重要的是要在解题中提升学生的能力ꎬ并能引导学生打破常规进行独立思考和判断ꎬ提出解决问题的方案ꎬ主动从不同的角度进行探究ꎬ融合所学知识ꎬ在数学学习过程中培养学生的思维品质ꎬ提高学生分析问题㊁解决问题的能力[1].参考文献:[1]中华人民共和国教育部.普通高中数学课程标准(2017年版2020年修订)[M].北京:人民教育出版社ꎬ2020.[责任编辑:李㊀璟]54。
1.4.2 用空间向量研究距离、夹角问题【学习目标】课程标准学科素养 1. 理解线线、线面、面面夹角的概念.(难点) 2.会用向量法求线线、线面、面面夹角.(重点) 3.理解点到平面、线面、面面距离的概念.(难点) 4.会用向量法求点面、线面、面面距离.(重点)1、直观想象2、数学运算3、空间想象【自主学习】1. 空间距离的求法(1)点M 到面的距离||cos d MN θ=(如图)就是斜线段MN 在法向量n 方向上的正投影.由||||cos ||n NM n NM n d θ⋅=⋅⋅=⋅得距离公式:||||n NM d n ⋅=(2)线面距离、面面距离都是求一点到平面的距离;(3)异面直线的距离:求出与二直线都垂直的法向量n 和连接两异面直线上两点的向量NM ,再代上面距离公式.2.空间三种角的向量求法空间角包括线线角、线面角、二面角,这三种角的定义确定了它们相应的取值范围,结合它们的取值范围可以用向量法进行求解.角的分类 向量求法范围 异面直线所成的角设两异面直线所成的角为θ,它们的方向向量分别为a ,b ,则cos θ=|cos 〈a ,b 〉|=|a ·b ||a ||b | ⎝ ⎛⎦⎥⎤0,π2 直线与平面所成的角设直线l 与平面α所成的角为θ,l 的方向向量为a ,平面α的法向量为n ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |⎣⎢⎡⎦⎥⎤0,π2 二面角设二面角α-l -β为θ,平面α,β的法向量分别为n 1,n 2,则|cos θ|=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|[0,π]_ a_ nNMHθ【小试牛刀】1.判断正错(1)两条异面直线所成的角与两直线的方向向量所成的角相等.()(2)直线与平面所成的角等于直线与该平面法向量夹角的余角.()(3)二面角的大小就是该二面角两个面的法向量的夹角.()(4)若二面角两个面的法向量的夹角为120°,则该二面角的大小等于60°或120°.() 2.已知A(3,2,1)、B(1,0,4),则线段AB的中点坐标和长度分别是,.【经典例题】题型一利用空间向量求距离例1 (线面距离)设A(2,3,1),B(4,1,2),C(6,3,7),D(-5,-4,8),求D到平面ABC 的距离.[跟踪训练] 1 如图,在长方体ABCD—A1B1C1D1,中,AD=AA1=1,AB=2,点E在棱AB上移动.当E为AB的中点时,求点E到面ACD1的距离;例2(线线距离)如图,已知四边形ABCD、EADM和MDCF都是边长为a的正方形,点P、Q分别是ED和AC的中点求:(1)P点到平面EFB的距离;(2)异面直线PM与FQ的距离[跟踪训练] 2(面面距离)已知正方体ABCD—A1B1C1D1的棱长为1,求平面AB1C与平面A1C1D间的距离.QFMEDCBAP题型二利用空间向量求夹角例3 (线线角)如图所示,在正方体ABCD-A1B1C1D1中,已知M,N 分别是BD和AD的中点,则B1M与D1N所成角的余弦值为()A.3010 B.3015 C.3030 D.1515[跟踪训练] 3 如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB上的动点.若异面直线AD1与EC所成角为60°,试确定此时动点E的位置.例4(线面角)已知正三棱柱ABCA1B1C1的底面边长为a,侧棱长为2a,M为A1B1的中点,求BC1与平面AMC1所成角的正弦值.[跟踪训练] 4如图所示,在直四棱柱ABCD-A1B1C1D1中,AD∥BC,∥BAD=90°,AB=3,BC=1,AD=AA1=3.(1)证明:AC∥B1D;(2)求直线B1C1与平面ACD1所成角的正弦值.例5 (面面角)如图所示,在几何体S -ABCD 中,AD ∥平面SCD ,BC ∥平面SCD ,AD =DC =2,BC =1,又SD =2,∥SDC =120°,求平面SAD 与平面SAB 所成的锐二面角的余弦值.[跟踪训练] 5 如图所示,正三棱柱ABC—A 1B 1C 1的所有棱长都为2,D 为CC 1的中点,求二面角AA 1DB 的余弦值.【当堂达标】1.已知向量m ,n 分别是直线l 的方向向量和平面α的法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为( )A .30°B .60°C .120°D .150°2.已知二面角α-l -β的两个半平面α与β的法向量分别为a ,b ,若〈a ,b 〉=π3,则二面角α-l -β的大小为( )A.π3B.2π3 C.π3或2π3D.π6或π33.正方体ABCD -A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为( )A.23B.33C.23D.634.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为( ) A .45°B .135°C .45°或135°D .90°5.在长方体ABCD -A 1B 1C 1D 1中,已知DA =DC =4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值为________.6.如图,三棱柱中,已知A BCD 是边长为1的正方形,四边形B B A A '' 是矩形,。
第一章 1.4.2 空间中的距离问题A 级——基础过关练1.若O 为坐标原点,OA →=(1,1,-2),OB →=(3,2,8),OC →=(0,1,0),则线段AB 的中点P 到点C 的距离为( )A .1652B .214C .53D .532【答案】D 【解析】由题意OP →=12((OA →+OB →()=⎝⎛⎭⎫2,32,3,PC →=OC →-OP →=⎝⎛⎭⎫-2,-12,-3,|PC →|=4+14+9=532. 2.(2021年太原月考)已知在正三棱锥P -ABC 中,三条侧棱两两互相垂直,侧棱长为a ,则点P 到平面ABC 的距离为( )A .aB .22a C .33a D .3a【答案】C 【解析】由题意得P A ,PB ,PC 两两垂直,且P A =PB =PC =a ,建立空间直角坐标系如图所示,则P (0,0,0),A (a,0,0),B (0,a,0),C (0,0,a ),于是P A →=(a,0,0),AB →=(-a ,a,0),AC →=(-a,0,a ),设平面ABC 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,即⎩⎪⎨⎪⎧-ax +ay =0,-ax +az =0,令x =1,则y =z =1,所以平面ABC 的一个法向量n =(1,1,1),所以点P 到平面ABC 的距离d =|P A →·n ||n |=a 3=33a .3.已知平面α过点A (1,-1,2),和α垂直的一个向量为n =(-3,0,4),则P (3,5,0)到α的距离为( )A .145B .2C .3D .125【答案】A 【解析】因为P A →=(-2,-6,2),所以P A →·n =(-2,-6,2)·(-3,0,4)=14,|n |=-32+42=5.所以点P 到平面α的距离为|P A →·n ||n |=145.4.如图,在正方体ABCD -A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( )A .1个B .2个C .3个D .4个【答案】D 【解析】建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB |=3,则A (3,0,0),B (3,3,0),C (0,3,0),D (0,0,0),A 1(3,0,3),B 1(3,3,3),C 1(0,3,3),D 1(0,0,3),所以BD 1→=(-3,-3,3),设P (x ,y ,z ),因为BP →=13BD 1→=(-1,-1,1),所以DP →=DB →+(-1,-1,1)=(2,2,1).所以|P A |=|PC |=|PB 1|=12+22+12=6,|PD |=|P A 1|=|PC 1|=22+22+12=3,|PB |=3,|PD 1|=22+22+22=2 3.故P 到各顶点的距离的不同取值有6,3,3,23,共4个.5.(2021年张掖质检)如图,在正三棱柱ABC -A 1B 1C 1中,若AB =AA 1=4,点D 是AA 1的中点,则点A 1到平面DBC 1的距离是________.【答案】2 【解析】以AC 为y 轴,以AA 1为z 轴,建立如图所示的空间直角坐标系,因为正三棱柱ABC -A 1B 1C 1中,AB =AA 1=4,点D 是AA 1的中点,所以B (23,2,0),C 1(0,4,4),D (0,0,2),A 1(0,0,4),所以DB →=(23,2,-2),DC 1→=(0,4,2),DA 1→=(0,0,2),设平面BDC 1的法向量n =(x ,y ,z ),因为n ·DB →=0,n ·DC 1→=0,所以⎩⎨⎧23x +2y -2z =0,4y +2z =0,取x =3,所以n =(3,-1,2),所以点A 1到平面DBC 1的距离d =|n ·DA 1→||n |=|0+0+4|3+1+4= 2.6.在空间直角坐标系Oxyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),则点P 到平面OAB 的距离d 等于________.【答案】2 【解析】点P 到平面OAB 的距离d =|OP →·n ||n |=|-1,3,2·2,-2,1|22+-22+12=63=2. 7.(2021年衡水模拟)已知直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,AC =AA 1=22,AB =2,M 为BB 1的中点,则点B 1与平面ACM 的距离为__________.【答案】1 【解析】因为AB =2,AC =22,∠ABC =90°,所以BC =AC 2-AB 2=8-4=2,建立空间直角坐标系如图,则A (2,0,0),B (0,0,0),C (0,2,0),B 1(0,0,22),M (0,0,2),所以AC →=(-2,2,0),AM →=(-2,0,2),B 1M →=(0,0,-2(),设n =(x ,y ,z )是平面ACM 的一个法向量,则⎩⎪⎨⎪⎧n ·AC →=0,n ·AM →=0,所以⎩⎨⎧ -2x +2y =0,-2x +2z =0,即⎩⎨⎧y =x ,z =2x ,令x =1,则y =1,z =2,所以平面ACM 的一个法向量n =(1,1,2),所以B 1与平面ACM 的距离d =|B 1M →·n ||n |=|0×1+0×1+-2×2|12+12+22=1.8.在长方体ABCD -A 1B 1C 1D 1中,已知AA 1=9,BC =63,N 为BC 的中点,则直线D 1C 1到平面A 1B 1N 的距离是__________.【答案】9 【解析】如图,建立空间直角坐标系,设CD =a ,则D 1(0,0,9),A 1(63,0,9),B 1(63,a,9),N (33,a,0),所以D 1A 1→=(63,0,0),A 1B 1→=(0,a,0),B 1N →=(-33,0,-9).设平面A 1B 1N 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·A 1B 1→=0,n ·B 1N →=0,即⎩⎨⎧ay =0,-33x -9z =0,取x =3,则y =0,z =-3,所以平面A 1B 1N 的一个法向量为(3,0,-3).所以点D 1到平面A 1B 1N 的距离d =|D 1A 1→·n ||n |=18323=9.又因为D 1C 1∥平面A 1B 1N ,所以直线D 1C 1与平面A 1B 1N 的距离仍是9.9.如图,BD ⊥平面ABC ,AE ∥BD ,AB =BC =CA =BD =2AE =2,F 为CD 中点. (1)求证:EF ⊥平面BCD ; (2)求点A 到平面CDE 的距离.(1)证明:如图,取BC 中点G 点,连接AG ,FG .因为F ,G 分别为DC ,BC 中点, 所以FG ∥BD 且FG =12BD .又AE ∥BD 且AE =12BD ,所以AE ∥FG 且AE =FG ,所以四边形EFGA 为平行四边形,则EF ∥AG . 因为BD ⊥平面ABC ,所以BD ⊥AG . 因为G 为BC 中点,且AC =AB , 所以AG ⊥BC .又因为BD ∩BC =B ,所以AG ⊥平面BCD . 所以EF ⊥平面BCD .(2)解:如图,取AB 的中点O 和DE 的中点H ,分别以OC →,OB →,OH →所在直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系,则C (3,0,0),D (0,1,2),E (0,-1,1),A (0,-1,0),CD →=(-3,1,2),ED →=(0,2,1).设平面CDE 的法向量n 1=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 1·CD →=-3x +y +2z =0,n 1·ED →=2y +z =0,取n 1=(3,-1,2),AE →=(0,0,1), 点A 到平面CDE 的距离d =|AE →·n 1||n 1|=22.10.如图,在平行四边形ABCD 中,AB =4,BC =22,∠ABC =45°,E 是CD 边的中点,将△DAE 沿AE 折起,使点D 到达点P 的位置,且PB =2 6.(1)求证:平面P AE ⊥平面ABCE ; (2)求点E 到平面P AB 的距离.(1)证明:∵在平行四边形ABCD 中,AB =4,BC =22,∠ABC =45°, E 是CD 边的中点,将△DAE 沿AE 折起, 使点D 到达点P 的位置,且PB =26, ∴AE =222+22-2×22×2×cos(45°=2.∴AE 2+ED 2=AD 2.∴∠AED =90°.∴AE ⊥AB . ∵AB 2+P A 2=PB 2,∴AB ⊥P A . ∵AE ∩P A =A ,∴AB ⊥平面P AE .∵AB ⊂平面ABCE ,∴平面P AE ⊥平面ABCE .(2)解:∵AE =2,DE =2,P A =22, ∴P A 2=AE 2+PE 2.∴AE ⊥PE . ∵AB ⊥平面P AE ,AB ∥CE ,∴CE ⊥平面P AE .∴EA ,EC ,EP 两两垂直.以E 为原点,EA ,EC ,EP 为x 轴、y 轴、z 轴,建立空间直角坐标系, 则E (0,0,0),A (2,0,0),B (2,4,0),P (0,0,2),PE →=(0,0,-2),P A →=(2,0,-2),PB →=(2,4,-2). 设平面P AB 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·P A →=2x -2z =0,n ·PB →=2x +4y -2z =0,取x =1,得n =(1,0,1),∴点E 到平面P AB 的距离d =|PE →·n ||n |=22= 2.B 级——能力提升练11.在棱长为1的正方体ABCD -A 1B 1C 1D 1的面A 1B 1C 1D 1上取一点E ,使∠EAB =∠EAD =60°,则线段AE 的长为( )A .52B .62C .2D .3【答案】C 【解析】建立如图所示的空间直角坐标系,则A (0,0,0),B (1,0,0),D (0,1,0),设E (x ,y,1),故cos ∠EAB =AE →·AB →|AE →||AB →|=x x 2+y 2+1=12,cos ∠EAD =AE →·AD →|AE →||AD →|=y x 2+y 2+1=12(.于是x =y =22,故|AE →(|=12+12+1= 2. 12.如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥底面ABCD ,P A =AB =2,|AD →|=1,E 是棱PB 的中点.直线AB 与平面ECD 的距离为( )A .1B .33C .83D .2【答案】B 【解析】如图,以A 为坐标原点,射线AB ,AD ,AP 分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,则B (2,0,0),P (0,0,2),E ⎝⎛⎭⎫22,0,22.由|AD →|=1,得D (0,1,0),C (2,1,0),从而DC →=(2,0,0),DE →=⎝⎛⎭⎫22,-1,22,AE→=⎝⎛⎭⎫22,0,22,设平面DEC 的法向量n =(x ,y ,z ),则n ·DC →=0,n ·DE →=0.故⎩⎪⎨⎪⎧2x =0,22x -y +22z =0,所以x =0,z =2y .可取y =1,则n =(0,1,2).故点A 到平面ECD 的距离d =|AE →·n ||n |=13=33.又直线AB ∥平面ECD ,所以直线AB 到平面ECD 的距离为33. 13.如图,A 是正方形BCDE 外一点,AE ⊥平面BCDE ,且AE =CD =a ,G ,H 分别是BE ,ED 的中点,则GH 到平面ABD 的距离是________.【答案】36a【解析】如图,由题意知,GH∥平面ABD,以E为坐标原点,分别以EB,ED,EA为x轴、y轴、z轴建立空间直角坐标系,则E(0,0,0),G⎝⎛⎭⎫a2,0,0,H⎝⎛⎭⎫0,a2,0,A(0,0,a),B(a,0,0),D(0,a,0).设面ABD的法向量n=(x,y,z),则⎩⎪⎨⎪⎧n·AB→=ax-az=0,n·AD→=ay-az=0,所以x=y=z.所以可取n=(1,1,1).又GB→=⎝⎛⎭⎫a2,0,0,所以由公式得d=|GB→·n||n|=a23=36a.又GH∥平面ABD,所以直线GH到平面ABD 的距离是36a.14.如图,正三棱锥S-ABC的高SO=2,侧棱SC与底面成45°角,则点C到侧面SAB 的距离是________.【答案】655【解析】如图,建立空间直角坐标系,在Rt△SOC中,SO=2,∠SCO=45°,所以OC=2,AB=BC=AC=23,所以S(0,0,2),A(-1,-3,0),B(-1,3,0),C(2,0,0),所以SA→=(-1,-3,-2),AB→=(0,23,0),SC→=(2,0,-2).设平面SAB的法向量n=(x,y,z),则⎩⎪⎨⎪⎧n·SA→=0,n·AB→=0,得⎩⎨⎧-x-3y-2z=0,23y=0,取z=1,则x=-2,y=0,所以平面SAB的一个法向量n=(-2,0,1),d=|SC→·n||n|=|-4-2|5=655.所以点C到侧面SAB的距离为65 5.15.如图,四面体ABCD中,AB,BC,BD两两垂直,AB=BC=BD=4,E,F分别为棱BC,AD的中点.(1)求异面直线AB与EF所成角的余弦值;(2)求点E到平面ACD的距离.解:如图,分别以直线BC ,BD ,BA 为x 轴、y 轴、z 轴建立空间直角坐标系,则各相关点的坐标为A (0,0,4),C (4,0,0),D (0,4,0),E (2,0,0),F (0,2,2). (1)因为AB →=(0,0,-4),EF →=(-2,2,2), 所以|cos 〈AB →,EF →〉|=⎪⎪⎪⎪⎪⎪-84×23=33.所以异面直线AB 与EF 所成角的余弦值为33. (2)设平面ACD 的一个法向量n =(x ,y ,z ), 由AC →=(4,0,-4),CD →=(-4,4,0),则⎩⎪⎨⎪⎧n ·AC →=0,n ·CD →=0,所以⎩⎪⎨⎪⎧4x -4z =0,-4x +4y =0.所以x =y =z ,取n =(1,1,1).所以E 到平面ACD 的距离为d =|n ·EF →||n |=23=233.C 级——探究创新练16.已知圆柱OO 1底面半径为1,高为π,ABCD 是圆柱的一个轴截面,动点M 从点B 出发沿着圆柱的侧面到达点D ,其距离最短时在侧面留下的曲线L 如图所示.将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ<π)后,边B 1C 1与曲线L 相交于点P .(1)求曲线L 的长度为________;(2)当θ=π2时,则点C 1到平面APB 的距离为______.【答案】(1)2π (2)ππ2+4π2+4【解析】(1)曲线L 的长度为矩形的对角线长度.其中矩形的宽为圆柱的高,长为底面的半圆长,其中AD =π,底面的半圆长为12×π×2×1=π.∴曲线L 的长为2π.(2)当θ=π2时,建立如图所示的空间直角坐标系:则有A (0,-1,0),B (0,1,0),P ⎝⎛⎭⎫-1,0,π2,C 1(-1,0,π), 所以AB →=(0,2,0),AP →=⎝⎛⎭⎫-1,1,π2,OC 1→=(-1,0,π). 设平面ABP 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ n ·AB →=0,n ·AP →=0,代入可得⎩⎪⎨⎪⎧2y =0,-x +y +π2z =0, 令z =2,得n =(π,0,2), 所以点C 1到平面P AB 的距离为 d =|OC 1→·n ||n |=ππ2+4=ππ2+4π2+4.17.如图,在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在棱BB 1上,EB 1=1,D ,F ,G 分别为CC 1,B 1C 1,A 1C 1的中点,EF 与B 1D 相交于点H .(1)求证:B 1D ⊥平面ABD ;(2)求证:平面EGF ∥平面ABD ; (3)求平面EGF 与平面ABD 的距离.(1)证明:如图所示,建立空间直角坐标系,设AB =a ,则A 1(a,0,0),B 1(0,0,0),C 1(0,2,0),F (0,1,0),E (0,0,1),A (a ,0,4),B (0,0,4),D (0,2,2),G ⎝⎛⎭⎫a 2,1,0.所以B 1D →=(0,2,2),AB →=(-a,0,0),BD →=(0,2,-2). 所以B 1D →·AB →=0+0+0=0,B 1D →·BD →=0+4-4=0. 所以B 1D →⊥AB →,B 1D →⊥BD →, 所以B 1D ⊥AB ,B 1D ⊥BD .又AB ∩BD =B ,所以B 1D ⊥平面ABD .(2)证明:由(1)可得AB →=(-a,0,0),BD →=(0,2,-2),GF →=⎝⎛⎭⎫-a 2,0,0,EF →=(0,1,-1), 所以AB →=2GF →,BD →=2EF →,所以GF →∥AB →,EF →∥BD →. 所以GF ∥AB ,EF ∥BD . 又GF ∩EF =F ,AB ∩BD =B , 所以平面EGF ∥平面ABD .(3)解:由(1)(2)知,B 1D →是平面EGF 和平面ABD 的法向量.因为平面EGF ∥平面ABD ,所以点E 到平面ABD 的距离就是两平面的距离,设为d . 因为EB →=(0,0,3),B 1D →=(0,2,2), 所以d =|B 1D →·EB →||B 1D →|=622+22=322.即平面EGF 与平面ABD 的距离为322.。
用空间向量研究距离、夹角问题基础练巩固新知夯实基础1.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( )A .(-1,1,0)B .(1,-1,0)C .(0,-1,1)D .(-1,0,1)2.已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为( ) A.1010 B.15 C.31010 D.353.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为 ( ) A.12B.23C.33D.224.正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM →=12MC →1,N 为B 1B 的中点,则|MN →|为( ) A.216aB.66aC.156aD.153a 5.设正方体ABCD -A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( )A.32 B.22 C.223 D.2336.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为__________. 7.在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为__________. 8.如图所示,在多面体A 1B 1D 1-DCBA ,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C .(2)求二面角E -A 1D -B 1的余弦值. 能力练综合应用核心素养9.正△ABC与正△BCD所在平面垂直,则二面角A-BD-C的正弦值为( )A.55B.33C.255D.6310.在四面体P-ABC中,PA,PB,PC两两垂直,设PA=PB=PC=a,则点P到平面ABC的距离为( )A.63B.33a C.a3D.6a11.在正四棱锥S-ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC 所成的角是( )A.30° B.45°C.60° D.90°12.如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成的角是__________.13.在正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于__________.14.如图所示,二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为__________.15.如图,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(1)证明:AC⊥B1D;(2)求直线B1C1与平面ACD1所成角的正弦值.【参考答案】1. B 经检验,选项B 中向量(1,-1,0)与向量a =(1,0,-1)的夹角的余弦值为12,即它们的夹角为60°.2. C 解析 以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),E (1,0,1),D 1(0,0,2).所以BE →=(0,-1,1),CD 1→=(0,-1,2),所以cos 〈BE →,CD 1→〉=BE →·CD 1→|BE →|·|CD 1→|=32×5=31010.3. B 解析 以A 为原点建立如图所示的空间直角坐标系A -xyz ,设棱长为1,则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=⎝ ⎛⎭⎪⎫1,0,-12,设平面A 1ED 的一个法向量为n 1=(1,y ,z ),所以有⎩⎪⎨⎪⎧A 1D →·n 1=0,A 1E →·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,解得⎩⎪⎨⎪⎧y =2,z =2.∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1),∴ cos〈n 1,n 2〉=23×1=23.即所成的锐二面角的余弦值为23.4.A 解析 以D 为原点建立如图所示的空间直角坐标系D -xyz ,则A (a ,0,0),C 1(0,a ,a ),N ⎝⎛⎭⎪⎫a ,a ,a 2.设M (x ,y ,z ),∵点M 在AC 1上且AM →=12MC →1,(x -a ,y ,z )=12(-x ,a -y ,a -z )∴x =23a ,y =a 3,z =a 3.得M ⎝ ⎛⎭⎪⎫2a 3,a 3,a 3,∴|MN →|=⎝ ⎛⎭⎪⎫a -23a 2+⎝ ⎛⎭⎪⎫a -a 32+⎝ ⎛⎭⎪⎫a 2-a 32=216a . 5. D 解析 如图建立坐标系.则D 1(0,0,2),A 1(2,0,2),B (2,2,0),D 1A 1→=(2,0,0),DB →=(2,2,0),设平面A 1BD 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DA 1→=0,n ·DB →=0,∴⎩⎪⎨⎪⎧2x +2z =0,2x +2y =0,令z =1,得n =(-1,1,1).∴D 1到平面A 1BD 的距离d =|D 1A 1→·n ||n |=23=233.6. π4或3π4解析 cos 〈m ,n 〉=m ·n |m ||n |=22,∴〈m ,n 〉=π4.∴两平面所成二面角的大小为π4或3π4.7. 13解析 以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设n =(x ,y ,z )为平面A 1BC 1的法向量.则n ·A 1B →=0,n ·A 1C 1→=0,即⎩⎪⎨⎪⎧2y -z =0,-x +2y =0,令z =2,则y =1,x =2,于是n =(2,1,2),D 1C 1→=(0,2,0)设所求线面角为α,则sin α=| cos 〈n ,D 1C 1→〉|=13.8.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE .又B 1C ⊂面B 1CD 1.面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C .(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1. 设面A 1DE 的法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D →=(0,1,-1),由n 1⊥A 1E →.n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1). 设面A 1B 1CD 的法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1).所以结合图形知二面角E -A 1D -B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.9. C 解析 取BC 中点O ,连接AO ,DO .建立如图所示坐标系,设BC =1,则A ⎝ ⎛⎭⎪⎫0,0,32,B ⎝ ⎛⎭⎪⎫0,-12,0,D ⎝ ⎛⎭⎪⎫32,0,0.∴OA →=⎝ ⎛⎭⎪⎫0,0,32,BA →=⎝ ⎛⎭⎪⎫0,12,32,BD→=⎝⎛⎭⎪⎫32,12,0.由于OA →=⎝⎛⎭⎪⎫0,0,32为平面BCD 的一个法向量,可进一步求出平面ABD 的一个法向量n =(1,-3,1),∴ cos〈n ,OA →〉=55,∴ sin〈n ,OA →〉=255.10. B 解析根据题意,可建立如图所示的空间直角坐标系P -xyz ,则P (0,0,,0),A (a ,0,0),B (0,a ,0),C (0,0,a ).过点P 作PH ⊥平面ABC ,交平面ABC 于点H ,则PH 的长即为点P到平面ABC 的距离.∵PA =PB =PC ,∴H 为△ABC 的外心.又∵△ABC 为正三角形,∴H 为△ABC 的重心,可得H 点的坐标为⎝ ⎛⎭⎪⎫a 3,a 3,a3.∴PH =⎝ ⎛⎭⎪⎫a 3-02+⎝ ⎛⎭⎪⎫a 3-02+⎝ ⎛⎭⎪⎫a 3-02=33a .∴点P 到平面ABC 的距离为33a . 11. A 解析 如图,以O 为原点建立空间直角坐标系O -xyz .设OD =SO =OA =OB =OC =a .则A (a ,0,0),B (0,a ,0),C (-a ,0,0),P ⎝⎛⎭⎪⎫0,-a 2,a 2.则CA →=(2a ,0,0),AP →=⎝⎛⎭⎪⎫-a ,-a 2,a 2,CB →=(a ,a ,0),设平面PAC 的一个法向量为n ,设n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·CA →=0,n ·AP →=0,解得⎩⎪⎨⎪⎧x =0,y =z ,可取n =(0,1,1),则 cos 〈CB →,n 〉=CB →·n |CB →|·|n |=a 2a 2·2=12, ∴〈CB →,n 〉=60°,∴直线BC 与平面PAC 所成的角为90°-60°=30°. 12. 60°解析 以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系. 设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1),则EF →=(0,-1,1),BC 1→=(2,0,2),∴EF →·BC 1→=2,∴cos〈EF →,BC 1→〉=22×22=12,∴EF 和BC 1所成的角为60°.13. 23解析 以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面BDC 1的法向量为n =(x ,y ,z ),则n ⊥DB →,n ⊥DC 1→,所以有⎩⎪⎨⎪⎧x +y =0,y +2z =0,令y =-2,得平面BDC 1的一个法向量为n =(2,-2,1).设CD 与平面BDC 1所成的角为θ,则sin θ=|cos 〈n ,DC →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·DC →|n ||DC →|=23. 14.60°解析 ∵CD →=CA →+AB →+BD →, ∴|CD →|=(CA →+AB →+BD →)2=36+16+64+2CA →·BD →=116+2CA →·BD →=17.∴CA →·BD →=|CA →|·|BD →|· cos〈CA →,BD →〉=-24.∴ cos〈CA →,BD →〉=-12.又所求二面角与〈CA →,BD →〉互补,∴所求的二面角为60 °.15.(1)证明 易知,AB ,AD ,AA 1两两垂直.如图,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设AB =t ,则相关各点的坐标为A (0,0,0),B (t ,0,0),B 1(t ,0,3),C (t ,1,0),C 1(t ,1,3),D (0,3,0),D 1(0,3,3).从而B 1D →=(-t ,3,-3),AC →=(t ,1,0),BD →=(-t ,3,0).因为AC ⊥BD ,所以AC →·BD →=-t 2+3+0=0,解得t =3或t =-3(舍去). 于是B 1D →=(-3,3,-3),AC →=(3,1,0).因为AC →·B 1D →=-3+3+0=0,所以AC →⊥B 1D →,即AC ⊥B 1D .(2)解 由(1)知,AD 1→=(0,3,3),AC →=(3,1,0),B 1C 1→=(0,1,0).设n =(x ,y ,z )是平面ACD 1的一个法向量,则⎩⎪⎨⎪⎧n ·AC →=0,n·AD 1→=0,即⎩⎨⎧3x +y =0,3y +3z =0,令x =1,则n =(1,-3,3).设直线B 1C 1与平面ACD 1所成角为θ,则 sin θ=|cos 〈n ,B 1C 1→〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·B 1C 1→|n |·|B 1C 1→|=37=217. 即直线B 1C 1与平面ACD 1所成角的正弦值为217.。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!高中数学人教A 版(2019)选择性必修第一册第一章——1.4.2用空间向量研究距离、夹角问题B未命名一、单选题1.若平面a 的法向量为n r ,直线l 的方向向量为a r,直线l 与平面a 的夹角为q ,则下列关系式成立的是A .cos n an a q ×=×r r r rB .cos n an aq ×=×r r r r C .sin n an aq ×=×r r r rD .sin n an aq ×=×r r r r 2.在棱长为2的正方体1111ABCD A B C D -中,点E 在棱1AA 上,13AE A E =,点G 是棱CD 的中点,点F 满足114BF BB =uuu r uuur,则直线EF 与直线1D G 所成角的余弦值为( )A .35B .45CD3.如图,在三棱锥P ABC -中,已知12PA PB AC ===2AB BC ==,平面PAB ^平面ABC ,则异面直线PC 与AB 所成角的余弦值为( )ABCD4.已知()1,1,1a ®=,()()0,,101b y y ®=££,则®的最大值为( )A B C D 5.如图,已知正方体ABCD A B C D ¢¢¢¢-的棱长为4,E 为棱AB 的中点,点P 在侧面CC D D ¢¢上运动,当平面B EP ¢与平面ABCD ,平面CC D D ¢¢所成的角相等时,D P ¢的最小值为( )A B C .D 6.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD -中,AB ^平面BCD ,BC CD ^,且AB BC CD ==,M 为AD 的中点,则异面直线BM 与CD 夹角的余弦值为( )A B C D 二、多选题7.如图,ABC V 和DBC △所在平面垂直,且AB BC BD ==,120CBA DBC =Ð=а,则( )A .直线AD 与直线BC 所成角的大小为90°B .直线AB 与直线CDC .直线AD 与平面BCD 所成角的大小为45°D .直线AD 与平面BCD 所成角的大小为60°8.如图,在平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60°,下列说法中不正确的是( )A .1AC =B .BD ^平面1ACC C .向量1B C uuur 与1AA uuur的夹角是60°D .直线1BD 与AC 三、填空题9.已知AB 和CD 是异面直线,()2,1,3AB =-uuu r ,()1,3,2CD =-uuu r,则AB 和CD 所成角的大小为______.10.如图,在棱长为4的正方体1111ABCD A B C D -中,M 是棱1A A 上的动点,N 是棱BC 的中点.当平面1D MN 与底面ABCD 所成的锐二面角最小时,1A M =___________.11.正三棱锥的一个侧面与底面的面积之比为2:3,则这个三棱锥的侧面和底面所成二面角的大小为________.12.若直线a 的方向向量为a r,平面α,β的法向量分别为,n m r u r ,则下列命题为真命题的序号是____.(1)若a r ⊥n r,则直线a ∥平面α;(2)若a r ∥n r,则直线a ⊥平面α;(3)若1cos ,2a n =r r ,则直线a 与平面α所成角的大小为π6;(4)若1cos ,2m n =u r r ,则平面α,β的夹角为π3.四、解答题13.如果12,n n r r分别是平面12,a a 的一个法向量,设1a 与2a 所成角的大小为q ,写出cos q 与12cos ,n n <>ur uu r之间的关系.14.在棱长为1的正方体1111ABCD A B C D -中,E 为线段11A B 的中点,F 为线段AB 的中点.(1)求点B 到直线1AC 的距离;(2)求直线FC 到平面1AEC 的距离.15.如图,已知三棱柱111ABC A B C -,平面11AA C C ^平面ABC ,90ABC Ð=°,1130,,,BAC A A A C AC E F Ð=°==分别是11,AC A B 的中点.(1)证明:EF BC ^;(2)求直线EF 与平面1A BC 所成角的余弦值.16.如图,在四棱锥P ABCD -中,PB ^底面ABCD ,底面ABCD 为梯形,//AD BC ,AD AB ^,且3,1PB AB AD BC ====.(1)若点F为PD上一点且13PF PD=,证明://CF平面PAB;(2)求直线PA与平面BPD所成角的正弦值.参考答案:1.D【分析】根据线面角的正弦值的计算公式,判断出正确选项.【详解】由于直线l 与平面a 的夹角为q ,其中0q p £<,所以sin 0q ³,所以sin cos n a n a n aq ×=×=×r r r rr r .故选:D【点睛】本小题主要考查线面角的正弦值的向量求法,属于基础题.2.B【分析】根据题意,建立空间直角坐标系,利用坐标法求解即可.【详解】解:如图,以D 为坐标原点,分别以DA ,DC ,1DD 所在的直线为x ,y ,z 轴,建立空间直角坐标系,则32,0,2E æöç÷èø,12,2,2F æöç÷èø,()10,0,2D ,()0,1,0G ,所以()0,2,1EF =-u u u r,()10,1,2D G =-uuuu r ,由题知4cos ,5EF =uuu r ,所以直线EF 与直线1D G 所成角的余弦值为45故选:B3.A【分析】取AB 的中点为D ,连接PD ,证明PD ^平面ABC ,AB BC ^,然后建立空间直角坐标系,利用向量求解即可.【详解】取AB 的中点为D ,连接PD 因为PA PB =,所以PD AB ^,因为平面PAB ^平面ABC ,平面PAB Ç平面ABC AB =,PD Ì平面PAB 所以PD ^平面ABC因为12PA PB AC ===2AB BC ==所以AB BC^如图建立空间直角坐标系,则()()()()0,0,0,0,2,0,0,1,1,2,0,0B A P C 所以()()0,2,0,2,1,1AB PC =-=--uuu r uuu r所以异面直线PC 与AB=故选:A 4.D【分析】构造正方体1111ABCD A B C D -,设正方体的棱长为1,()11,1,1OB a ®®==,点E 在线段11D C 上移动.当E 在1C 位置时,cos ,a b ®®最大,利用向量的夹角公式即得解.【详解】利用作图法,构造正方体1111ABCD A B C D -,设正方体的棱长为1,如图所示.则()11,1,1OB a ®®==,()0,,1b OE y ®®==,且点E 在线段11D C 上移动.当E 在1C 位置时,,a b ®®最小,即®最大,则cos ,a ®=为最大值.故选:D 5.B【分析】建立空间直角坐标系,利用空间向量即可求解.【详解】如图,建立空间直角坐标系B xyz -,则(0,0,4)B ¢,()(2,0,0),2,0,4E B E ¢=-uuur. 设(,4,)(0P x z x ££4,04),z ££ 则(2,4,).EP x z =-uuu r易知平面ABCD 和平面CC D D ¢¢的一个法向量分别为12(0,0,1),(0,1,0)n n ==ur uu r.设平面B EP ¢的法向量为3(,,)n a b c =u u r ,则 3300n B E n EP ì×=ïí×¢=ïîu u v uuuv u u v uuu v 即 240,(2)40,a c x ab zc -=ìí-++=î取1c =,可得2,42,4a x zb =ìïí--=ïî所以 3422,,14x z n --æö=ç÷èøu u r 为平面B EP ¢的一个法向量.由题意,平面B EP ¢与平面ABCD ,平面CC D D ¢¢所成的角相等,所以1323cos ,cos ,n n n n =Þu u r uu r r u u r u .1323|||||24|4n n n n x z ×=×Þ+-=Þur u u r uu r u u r280x z +-=或20.x z +=在平面CC D D ¢¢上,直线280x z +-=过点()4,4,0D 和C D ¢¢的中点()2,4,4,在平面CC D D ¢¢上,直线20x z +=只过点()0,4,0,即点C ,取G 为C D ¢¢的中点,连接GD ,则点P 在DG 上运动或点P 在点C 处,由等面积法可得D P ¢=故选:B.【点睛】对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.6.C【解析】画出四面体A BCD-,建立坐标系,利用向量法求异面直线所成角的余弦值即可.【详解】四面体A BCD-是由正方体的四个顶点构成的,如下图所示建立如下图所示的空间直角坐标系,设正方体的棱长为2(0,0,0),(2,0,0),(2,2,0),(1,1,1)B C D M(1,1,1),(0,2,0)BM CD==uuuu r uuurcos,||BM CDBM CDBM CD×áñ===×uuuu r uuu ruuuu r uuu ruuuu r uuu r因为异面直线夹角的范围为0,2pæùçúèû,所以异面直线BM与CD故选:C【点睛】本题主要考查了利用向量法求异面直线夹角的余弦值,属于中档题. 7.ABC【分析】建立适当的空间直角坐标系,再求线线角和线面角即可.【详解】以B为坐标原点,建立如图所示的空间直角坐标系B xyz-,设2AB =,则(0,A -,()0,2,0C ,)1,0D -,所以AD =uuu r ,()0,2,0BC =u u u r ,(0,1,AB =uuu r ,)3,0CD =-uuu r .因为0AD BC ×=uuu r uuu r ,所以AD BC ^,即直线AD 90°,A 正确..因为cos ,AB uuu r uuu所以直线AB 与直线CD B 正确..设AD 与平面BCD 所成的角为q ,因为()0,0,1n =r 是平面BCD 的一个法向量,所以sin cos q =uuu 45q =°,即直线AD 与平面BCD 所成角的大小为45°,C 正确,D 错.故选:ABC.8.AC【分析】根据题意,利用空间向量的线性运算和数量积运算,对选项中的命题分析,判断正误即可.【详解】解:对于111:A AC AB BC CC AB AD AA =++=++uuuu r uuu r uuu r uuuu r uuu r uuu r uuur ,\22221111222AC AB AD AA AB AD AD AA AD AA =+++×+×+×uuuu r uuu r uuu r uuur uuu r uuu r uuu r uuur uuu r uuur363636266cos60266cos60266cos60216=+++´´´°+´´´°+´´´°=,所以1||AC ==A 错误;对于:B 11()()AC BD AB AD AA AD AB ×=++×-uuuu r uuu r uuu r uuu r uuur uuu r uuu r22110AB AD AB AD AB AD AA AD AA AB =×-+×+×--×=uuu r uuu r uuu r uuu r uuu r uuu r uuur uuu r uuur uuu r ,所以10AC DB ×=uuuu r uuu r ,即1AC DB ^,2222()()0AC BD AB AD AD AB AD AB AD AB ×=+×-==--=uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r ,所以0AC BD ×=uuu r uuu r ,即AC BD ^,因为1AC AC A Ç=,1,AC AC Ì平面1ACC ,所以BD ^平面1ACC ,选项B 正确;对于C :向量1B C uuur 与1BB uuur 的夹角是18060120°-°=°,所以向量1B C uuur 与1AA uuur 的夹角也是120°,选项C 错误;对于11:D BD AD AA AB =+-uuuu r uuu r uuur uuu r ,AC AB AD=+uuu r uuu r uuu r 所以()2222211111222BD AD AA AB AD AA AB AD AA AD AB AA AB =+-=+++×-×-×uuuu r uuu r uuur uuu r uuu r uuur uuu r uuu r uuur uuu r uuu r uuur uuu r,1||BD \=uuuu r同理,可得||AC =uuu rQ 11()()18183636181836AC BD AD AA AB AB AD ×=+-×+=+-++-=uuu r uuuu r uuu r uuur uuu r uuu r uuu r ,所以111cos ||||AC BD BD AC AC BD ×<×>=×uuu r uuuu r uuu r uuuuuu r ,所以选项D 正确.故选:AC .9.60°##3p【分析】根据向量数量积求出AB uuu r 与CD uuu r 夹角的余弦,再根据异面直线所成夹角的范围即可求出角.【详解】1cos ,2AB CD AB CD AB CD×===-×uuu r uuu r uuu r uuu r uuu r uuu r ,∵异面直线夹角范围是(0,90ùûo o ,∴AB 和CD 所成角的大小为60°.故答案为:60°.10.85【分析】建立空间直角坐标系,分别得到平面1D MN 、平面ABCD 的法向量,然后按照公式计算进行判断即可.【详解】如图设()()4,0,04M a a ££,()()12,4,0,0,0,4N D ()()12,4,,2,4,4MN a D N =--=-uuuu r uuuu r 设平面1D MN 的一个法向量为(),,n x y z =r ()()14240042440048a z x x y az n MN x y z n D N a zy ì-=ïì-+-=×=ìïïÞÞííí+-=×=+ïîîï=ïîuuuu v v uuuu v v 令8z =,82,4x a y a =-=+,则()82,4,8n a a =-+r 平面ABCD 的法向量的一个法向量为()10,0,1n =ur 设平面1D MN 与底面ABCD 所成的锐二面角为q所以cos =当2412105a ==时,cos q 有最大,则q 有最小,所以185A M =故答案为:8511.60°【分析】由题意作出正三棱锥S ABC -,设O 为底面ABC V 的中心,过S 作SE AB ^交AB 于点E ,连接EO ,可得SEO Ð为侧面和底面所成二面角的平面角,由条件23SAB ABC S S =V V ,得出2SEOE =,从而得出答案.【详解】如图在正三棱锥S ABC -中,设O 为底面ABC V的中心,连接SO ,则SO ^平面ABC .过S 作SE AB ^交AB 于点E ,连接EO则SO AB ^,又SE AB ^,且SE SO S Ç=,所以AB ^平面SEO则OE AB ^,所以SEO Ð为侧面和底面所成二面角的平面角.在正三角形ABC V 中,O 为中心,3++32ABC OBC OAB OAC OAB S S S S S AB OE ===V V V V V 由条件有122332SAB ABC AB SE S S AB OE ×==×V V ,可得2SE OE =在直角三角形SOE 中,1cos 2EOSEO ES Ð==所以60SEO Ð=°故答案为:60°【点睛】本题考查三棱锥的线面关系,正三棱锥的侧面面积与底面积的关系,考查二面角,属于中档题.12.(2)(3)(4)【分析】根据直线的方向向量与平面的法向量之间的关系,逐一判断线面,面面的关系即可得出结论.【详解】若a r ⊥n r ,则直线a 与平面α平行或在平面α内,所以(1)是假命题;若a r ∥n r ,则a r 也是平面α的法向量,所以直线a ⊥平面α,所以(2)是真命题;直线与平面所成角的正弦值等于直线的方向向量与平面的法向量所成角余弦值的绝对值,所以(3)是真命题;两个平面的夹角与它们的法向量所成的不大于90°的角相等,所以(4)是真命题.故答案为:(2)(3)(4).13.12cos cos ,n n q =-<>ur uu r 或12cos cos ,n n q =<>ur uu r 或12cos cos ,0n n q =<>=ur uu r 【分析】分析两个平面所成角为钝二面角、锐二面角、直二面角三种情况.【详解】当两个平面12,a a 所成角为钝二面角,此时12cos cos ,n n q =-<>ur uu r ,当两个平面12,a a 所成角为锐二面角,此时12cos cos ,n n q =<>ur uu r ,当二面角的平面角为直角时,12cos cos ,0n n q =<>=ur uu r 14.(1;(2【分析】(1)以1D 为原点,11111D A D C D D ,,所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,取a AB =r uuu r ,11AC u AC =uuuu r r uuuu r ,根据空间向量点到直线距离公式,可得点点B 到直线1AC 的距离;(2)易证//FC 平面1AEC ,则点F 到平面1AEC 的距离为直线FC 到平面1AEC 的距离,求出平面1AEC 的一个法向量,再求出(0)1,,02AF =uuu r ,根据点到面的距离公式,可得直线FC 到平面1AEC 的距离.【详解】以1D 为原点,11111D A D C D D ,,所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则1111,0,11,1101,10)10101,,12()()()2(A B C C E F æöæöç÷ç÷èøèø,,,,,,,,,,,,所以(0,1,0)AB =uuu r ,1(1,1,1)AC =--uuuu r ,)10,,12(AE -=uuu r , 11111,,01,,0,,02)2(),(),2(0EC FC AF =--==uuuu r uuu r uuu r .(1)取(0,1,0)a AB ==r uuu r,)111,1,1AC u AC ==--uuuu r r uuuu r,则21,a a u =×=r r r 所以,点B 到直线1AC==. (2)因为111,,02FC EC æö==-ç÷èøuuu r uuuu r ,所以1//FC EC,所以//FC 平面1AEC .所以点F 到平面1AEC 的距离为直线FC 到平面1AEC 的距离.设平面1AEC 的法向量为(,,)n x y z =r ,则100n AE n EC ì×=ïí×=ïîuuu v v uuuu v v 所以102102y z x y ì-=ïïíï-+=ïî所以2x z y z=ìí=î取1z =,则1,2x y ==.所以,(1,2,1)n =r 是平面1AEC 的一个法向量.又因为(0)1,,02AF =uuu r ,所以点F 到平面1AEC.即直线FC 到平面1AEC15.(1)证明见解析;(2)35.【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义即可证得线线垂直;(2)建立空间直角坐标系,分别求得直线的方向向量和平面的法向量,然后结合线面角的正弦值和同角三角函数基本关系可得线面角的余弦值.【详解】(1)如图所示,连结11,A E B E ,等边1AA C △中,AE EC =,则1A E AC ^,平面ABC ⊥平面11A ACC ,且平面ABC ∩平面11A ACC AC =,由面面垂直的性质定理可得:1A E ^平面ABC ,故1A E BC ^,由三棱柱的性质可知11A B AB ∥,而AB BC ^,故11A B BC ^,且1111A B A E A =I ,由线面垂直的判定定理可得:BC ^平面11A B E ,结合EF ⊆平面11A B E ,故EF BC ^.(2)在底面ABC 内作EH ⊥AC ,以点E 为坐标原点,EH ,EC ,1EA 方向分别为x ,y ,z 轴正方向建立空间直角坐标系E xyz -.设1EH =,则AE EC ==11AA CA ==3BC AB ==,据此可得:()()()130,,,0,0,3,2A B A C æöç÷ç÷èø,由11AB A B =uuu r uuuu r 可得点1B的坐标为132B æöç÷èø,利用中点坐标公式可得:34F æöç÷èø,由于()0,0,0E ,故直线EF的方向向量为:34EF æö=ç÷èøuuu r 设平面1A BC 的法向量为(),,m x y z =u r ,则:()()133,,30223,,02m A B x y z x z m BC x y z y uuuv v uuu v v ìæö×=×=+=ïç÷ç÷ïèøíæöï×=×=-=ç÷ïç÷èøî,据此可得平面1A BC的一个法向量为()m =u r,34EF æö=ç÷èøuuur此时4cos ,5EF =uuu r u ,设直线EF 与平面1A BC 所成角为q ,则43sin cos ,,cos 55EF m q q ===uuu r u r .【点睛】本题考查了立体几何中的线线垂直的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.16.(1)证明见解析(2)12【分析】(1)作//FH AD ,根据比例关系可知1HF =,从而可证得四边形HFCB 为平行四边形,进而得到//CF BH ,由线面平行判定定理可证得结论;(2)根据垂直关系可以B 为坐标原点建立空间直角坐标系,利用线面角的向量求法可求得结果.【详解】(1)作//FH AD 交PA 于H ,连接BH13PF PD =Q 113HF AD \==又//AD BC 且1BC = //HF BC \且HF BC=\四边形HFCB 为平行四边形 //CF BH\BH ÌQ 平面PAB ,CF Ë平面PAB //CF \平面PAB(2)PB ^Q 平面ABCD ,BC Ì平面ABCD PB BC\^又AD AB ^,//AD BC AB BC\^则可以B为坐标原点,建立如图所示的空间直角坐标系:则()0,0,0B ,()0,0,3P ,()3,3,0D ,()0,3,0A ()3,3,3PD \=-uuu r ,()0,3,3PA =-uuu r ,()3,3,0BD =uuu r 设平面PBD 的法向量(),,n x y z ®=则3330330n PD x y z n BD x y ì×=+-=í×=+=îuuu v r uuu v r ,令1x =,则1y =-,0z = ()1,1,0n ®\=-设直线PA 与平面BPD 所成角为q1sin |cos ,2PA n q ®®\=<=【点睛】关键点点睛:线面平行的判定,关键要利用三角形中位线,平行四边形寻求直线与直线的平行关系,利用线面平行的判定定理求解,属于中档题.。
高中数学立体几何 空间距离1.两条异面直线间的距离和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.2.点到平面的距离从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离.题型一:两条异面直线间的距离【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离;【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线.(2)在Rt △BEF 中,BF =a 23,BE =a 21, 所以EF 2=BF 2-BE 2=a 212,即EF =a 22.由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为a 22. 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED .∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB .∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离.∵CE =23,∴CF =FD =21,∠EFC =90°,EF =22212322=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛. ∴AB 、CD 的距离是22. 【解后归纳】 求两条异面直线之间的距离的基本方法:(1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度.(2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离.例1题图例2题图(3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离.题型二:两条异面直线间的距离【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD , ∴O 是△BCD 的中心,∴BO =32BE =332332=⨯. 又AB =1,且∠AOB =90°,∴AO =36331222=⎪⎪⎭⎫ ⎝⎛-=-BO AB .∴A 到平面BCD的距离是36. 【例4】在梯形ABCD 中,AD ∥BC ,∠ABC =2π,AB =a ,AD =3a 且sin ∠ADC =55,又P A ⊥平面ABCD ,P A =a ,求:(1)二面角P —CD —A 的大小; (2)点A 到平面PBC 的距离.【规范解答】 (1)作AF ⊥DC 于F ,连结PF , ∵AP ⊥平面ABCD ,AF ⊥DC ,∴PF ⊥DC , ∴∠PF A 就是二面角P —CD —A 的平面角. 在△ADF 中,∠AFD =90°,∠ADF =arcsin55,AD =3a ,∴AF =53a , 在Rt △P AF 中tan ∠PF A =3535==a a AF PA ,∴∠PF A =arc tan 35. (2)∵P A ⊥平面ABCD ,∴P A ⊥BC ,又BC ⊥AB ,∴BC ⊥平面P AB ,作AH ⊥PB ,则BC ⊥AH ,∴AH ⊥平面PBC ,∵P A ⊥AB ,P A =AB =a ,∴PB =2a ,∴AH =a 22.【例5】如图,所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中AB=4,BC=2,CC 1=3,BE=1.(Ⅰ)求BF 的长;(Ⅱ)求点C 到平面AEC 1F 的距离.解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. ∵AF ∥EC 1,∴∠FAD=∠C 1EH. ∴Rt △ADF ≌Rt △EHC 1.∴DF=C 1H=2. .6222=+=∴DF BD BF (Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG . 过C 作CM ⊥AG ,垂足为M ,连C 1M ,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC , 且AG ⊂面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到面AEC 1F 的距离..113341712317123,17121743cos 3cos 3,.17,1,2211221=+⨯=⨯=∴=⨯===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CGBGCC EB 知由从而可得由解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0), A (2,0,0),C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ).∵AEC 1F 为平行四边形,例3题图B ACD1A1B 1C1A .62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF F z z EC AF F AEC =--=∴∴=∴-=-=∴∴(II )设1n 为面AEC 1F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x n n 得由⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即111),3,0,0(n CC CC 与设又=的夹角为a ,则11114cos ||||CC n CC n α⋅==⋅ ∴C 到平面AEC 1F 的距离为.11334333343cos ||1=⨯==αCC d【例6】正三棱柱111C B A ABC -的底面边长为8,对角线101=C B ,D 是AC 的中点。
3.2.3 利用空间向量求空间角、空间距离问题1.空间角及向量求法(1)两异面直线所成的角与两直线的方向向量所成的角相等.( )(2)直线l∥平面α,则直线l到平面α的距离就是直线l上的点到平面α的距离.( )(3)若平面α∥β,则两平面α,β的距离可转化为平面α内某条直线到平面β的距离,也可转化为平面α内某点到平面β的距离.( )答案 (1)× (2)√ (3)√2.做一做(请把正确的答案写在横线上)(1)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为________.(2)(教材改编P 111A 组T 11)如图,在正方体ABCD -A 1B 1C 1D 1中,M 是C 1C 的中点,O 是底面ABCD 的中点,P 是A 1B 1上的任意点,则直线BM 与OP 所成的角为________.(3)已知平面α的一个法向量为n =(-2,-2,1),点A (-1,3,0)在平面α内,则点P (-2,1,4)到平面α的距离为________.答案 (1)45°或135° (2)π2 (3)103解析 (2)建立如图所示的空间直角坐标系,设正方体棱长为2 ,则O (1,1,0),P (2,x,2),B (2,2,0),M (0,2,1),则OP→=(1,x -1,2),BM →=(-2,0,1).所以OP →·BM →=0,所以直线BM 与OP 所成角为π2. 探究1 利用空间向量求线线角例1 如图1,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4.求异面直线AQ 与PB 所成角的余弦值.[解] 由题设知,ABCD 是正方形,连接AC ,BD ,交于点O ,则AC ⊥BD .连接PQ ,则PQ 过点O .由正四棱锥的性质知PQ ⊥平面ABCD ,故以O 为坐标原点,以直线CA,DB,QP分别为x轴、y轴、z轴建立空间直角坐标系(如图2),则P(0,0,1),A(22,0,0),Q(0,0,-2),B(0,22,0),∴AQ→=(-22,0,-2),PB→=(0,22,-1).于是cos〈AQ→,PB→〉=AQ→·PB→|AQ→||PB→|=39,∴异面直线AQ与PB所成角的余弦值为3 9 .拓展提升两异面直线所成角的求法(1)平移法:即通过平移其中一条(也可两条同时平移),使它们转化为两条相交直线,然后通过解三角形获解.(2)取定基底法:在一些不适合建立坐标系的题型中,我们经常采用取定基底的方法,这是小技巧.在由公式cos〈a,b〉=a·b|a||b|求向量a、b的夹角时,关键是求出a·b及|a|与|b|,一般是把a、b用一组基底表示出来,再求有关的量.(3)用坐标法求异面直线的夹角的方法①建立恰当的空间直角坐标系;②找到两条异面直线的方向向量的坐标形式;③利用向量的夹角公式计算两直线的方向向量的夹角;④结合异面直线所成角的范围得到异面直线所成的角.【跟踪训练1】如图,在三棱锥V-ABC中,顶点C在空间直角坐标系的原点处,顶点A,B,V分别在x,y,z轴上,D是线段AB 的中点,且AC =BC =2,∠VDC =θ.当θ=π3时,求异面直线AC 与VD 所成角的余弦值.解 由于AC =BC =2,D 是AB 的中点,所以C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0).当θ=π3时,在Rt △VCD 中,CD =2,故有V (0,0,6).所以AC →=(-2,0,0),VD →=(1,1,-6).所以cos 〈AC →,VD →〉=AC →·VD→|AC →||VD →|=-22×22=-24.所以异面直线AC 与VD 所成角的余弦值为24.探究2 利用空间向量求线面角例2 正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求AC 1与侧面ABB 1A 1所成的角.[解] 建立如下图所示的空间直角坐标系,则A (0,0,0),B (0,a,0),A 1(0,0, 2a ),C 1⎝⎛⎭⎪⎪⎫-32a ,a2, 2a , 取A 1B 1的中点M ,则M ⎝⎛⎭⎪⎫0,a2,2a ,连接AM ,MC 1,有MC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,0,0, AB →=(0,a,0),AA1→=(0,0,2a ).∴MC 1→·AB →=0,MC 1→·AA 1→=0, ∴MC 1→⊥AB →,MC1→⊥AA 1→, 即MC 1⊥AB ,MC 1⊥AA 1,又AB ∩AA 1=A , ∴MC 1⊥平面ABB 1A 1 .∴∠C 1AM 是AC 1与侧面A 1ABB 1所成的角.由于AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a ,AM →=⎝ ⎛⎭⎪⎫0,a 2,2a ,∴AC 1→·AM →=0+a 24+2a 2=9a 24,|AC 1→|=3a 24+a 24+2a 2=3a , |AM →|=a 24+2a 2=32a , ∴cos 〈AC1→,AM →〉=9a 243a ×3a 2=32. ∴〈AC 1→,AM →〉=30°,即AC 1与侧面ABB 1A 1所成的角为30°. [解法探究] 此题有没有其他解法?解 与原解建立相同的空间直角坐标系,则AB →=(0,a,0),AA1→=(0,0,2a ),AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a . 设侧面ABB 1A 1的法向量n =(λ,x ,y ),∴n ·AB →=0且n ·AA1→=0.∴ax =0且2ay =0.∴x =y =0.故n =(λ,0,0).∵AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a , ∴cos 〈AC 1→,n 〉=n ·AC1→|n ||AC 1→|=-λ2|λ|.∴|cos 〈AC 1→,n 〉|=12. ∴AC 1与侧面ABB 1A 1所成的角为30°.[条件探究] 此题中增加条件“E ,F ,G 为AB ,AA 1,A 1C 1的中点”,求B 1F 与平面GEF 所成角的正弦值.解 建立如图所示的空间直角坐标系,则B 1(0,a ,2a ),E ⎝ ⎛⎭⎪⎫0,a 2,0,F ⎝ ⎛⎭⎪⎪⎫0,0,22a ,G ⎝⎛⎭⎪⎪⎫-34a ,a 4,2a , 于是B 1F →=⎝ ⎛⎭⎪⎪⎫0,-a ,-22a ,EF →=⎝ ⎛⎭⎪⎪⎫0,-a 2,22a , EG →=⎝ ⎛⎭⎪⎪⎫-34a ,-a 4,2a . 设平面GEF 的法向量n =(x ,y ,z ),则⎩⎨⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧-a 2y +22az =0,-34ax -a 4y +2az =0,所以⎩⎪⎨⎪⎧y =2z ,x =6z ,令z =1,得x =6,y =2,所以平面GEF 的一个法向量为n =(6,2,1), 所以|cos 〈B 1F →,n 〉|=|n ·B 1F →||n ||B 1F →|=⎪⎪⎪⎪⎪⎪⎪⎪-2a -22a 9×a 2+a 22=33. 所以B 1F 与平面GEF 所成角的正弦值为33.拓展提升求直线与平面的夹角的方法与步骤思路一:找直线在平面内的射影,充分利用面与面垂直的性质及解三角形知识可求得夹角(或夹角的某一三角函数值).思路二:用向量法求直线与平面的夹角可利用向量夹角公式或法向量.利用法向量求直线与平面的夹角的基本步骤:(1)建立空间直角坐标系; (2)求直线的方向向量AB →; (3)求平面的法向量n ;(4)计算:设线面角为θ,则sin θ=|n ·AB→||n ||AB→|.【跟踪训练2】 如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.解 (1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN .由N 为PC 的中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)取BC 的中点E ,连接AE .由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,且AE =AB 2-BE 2=AB2-⎝ ⎛⎭⎪⎫BC 22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系Axyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎪⎪⎫52,1,2, PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎪⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎨⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525,则直线AN 与平面PMN所成角的正弦值为8525.探究3 利用空间向量求二面角例3 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.[解] (1)证明:由已知可得AF⊥DF,AF⊥FE,所以AF⊥平面EFDC.又AF⊂平面ABEF,故平面ABEF⊥平面EFDC.(2)过D作DG⊥EF,垂足为G,由(1)知DG⊥平面ABEF.以G为坐标原点,GF→的方向为x轴正方向,|GF→|为单位长,建立如图所示的空间直角坐标系Gxyz.由(1)知∠DFE为二面角D-AF-E的平面角,故∠DFE=60°,则DF=2,DG=3,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,3).由已知,AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,所以AB∥平面EFDC.又平面ABCD∩平面EFDC=CD,故AB∥CD,CD∥EF.由BE∥AF,可得BE⊥平面EFDC,所以∠CEF为二面角C-BE -F的平面角,∠CEF=60°.从而可得C(-2,0,3).连接AC,则EC→=(1,0,3),EB→=(0,4,0),AC→=(-3,-4,3),AB→=(-4,0,0).设n=(x,y,z)是平面BCE的法向量,则⎩⎨⎧n ·EC →=0,n ·EB →=0,即⎩⎪⎨⎪⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎨⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4).则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.拓展提升二面角的向量求法(1)若AB ,CD 分别是二面角α-l -β的两个半平面内与棱l 垂直的异面直线,则二面角的大小就是向量AB →与CD →的夹角(如图①).(2)利用坐标法求二面角的步骤设n 1,n 2分别是平面α,β的法向量,则向量n 1与n 2的夹角(或其补角)就是两个平面夹角的大小,如图②.用坐标法的解题步骤如下:①建系:依据几何条件建立适当的空间直角坐标系. ②求法向量:在建立的坐标系下求两个面的法向量n 1,n 2.③计算:求n1与n2所成锐角θ,cosθ=|n1·n2| |n1||n2|.④定值:若二面角为锐角,则为θ;若二面角为钝角,则为π-θ.【跟踪训练3】若PA⊥平面ABC,AC⊥BC,PA=AC=1,BC =2,求二面角A-PB-C的余弦值.解 解法一:如下图所示,取PB 的中点D ,连接CD .∵PC =BC =2,∴CD ⊥PB .∴作AE ⊥PB 于E ,那么二面角A -PB -C 的大小就等于异面直线DC 与EA 所成的角θ的大小.∵PD =1,PE =PA 2PB =12,∴DE =PD -PE =12,又∵AE =AP ·AB PB =32,CD =1,AC =1,AC →=AE →+ED →+DC →,且AE →⊥ED →,ED →⊥DC→,∴|AC →|2=|AE →|2+|ED →|2+|DC →|2+2|AE →|·|DC →|·cos(π-θ), 即1=34+14+1-2×32×1×cos θ,解得cos θ=33.故二面角A -PB -C 的余弦值为33.解法二:由解法一可知,向量DC →与EA →的夹角的大小就是二面角A -PB -C 的大小,如图,建立空间直角坐标系Cxyz ,则A (1,0,0),B (0,2,0),C (0,0,0),P (1,0,1),D 为PB的中点,D ⎝⎛⎭⎪⎪⎫12,22,12. ∵PE EB =AP 2AB 2=13,即E 分PB →的比为13,∴E ⎝⎛⎭⎪⎪⎫34,24,34,EA →=⎝ ⎛⎭⎪⎪⎫14,-24,-34, DC →=⎝ ⎛⎭⎪⎪⎫-12,-22,-12,|EA →|=32,|DC →|=1,EA →·DC →=14×⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎪⎫-24×⎝ ⎛⎭⎪⎪⎫-22+⎝ ⎛⎭⎪⎫-34×⎝ ⎛⎭⎪⎫-12=12.∴cos 〈EA →,DC →〉=EA →·DC →|EA →||DC →|=33. 故二面角A -PB -C 的余弦值为33.解法三:如右图所示,建立空间直角坐标系,则A (0,0,0),B (2,1,0),C (0,1,0),P (0,0,1),AP →=(0,0,1),AB →=(2,1,0),CB →=(2,0,0),CP →=(0,-1,1),设平面PAB 的法向量为m =(x ,y ,z ),则⎩⎨⎧m ·AP →=0,m ·AB →=0⇒⎩⎪⎨⎪⎧x ,y ,z ·0,0,1=0,x ,y ,z ·2,1,0=0⇒⎩⎪⎨⎪⎧y =-2x ,z =0,令x =1,则m =(1,-2,0),设平面PBC 的法向量为n =(x ′,y ′,z ′),则⎩⎨⎧n ·CB →=0,n ·CP →=0⇒⎩⎪⎨⎪⎧x ′,y ′,z ′·2,0,0=0,x ′,y ′,z ′·0,-1,1=0⇒⎩⎪⎨⎪⎧x ′=0,y ′=z ′.令y ′=-1,则n =(0,-1,-1),∴cos 〈m ,n 〉=m ·n |m ||n |=33.∴二面角A -PB -C 的余弦值为33.探究4 利用空间向量求距离例4 已知正方形ABCD 的边长为1,PD ⊥平面ABCD ,且PD =1,E ,F 分别为AB ,BC 的中点.(1)求点D 到平面PEF 的距离; (2)求直线AC 到平面PEF 的距离.[解] 解法一:(1)建立如图所示的空间直角坐标系,则D (0,0,0),P (0,0,1),A (1,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫12,1,0.设DH ⊥平面PEF ,垂足为H ,则DH →=xDE →+yDF →+zDP →=⎝ ⎛⎭⎪⎫x +12y ,12x +y ,z ·(x +y +z =1),PE →=⎝ ⎛⎭⎪⎫1,12,-1,PF →=⎝ ⎛⎭⎪⎫12,1,-1.∴DH →·PE →=x +12y +12⎝ ⎛⎭⎪⎫12x +y -z =54x +y -z =0.同理,DH →·PF →=x +54y -z =0,又x +y +z =1,∴可解得x =y =417,z =917.∴DH →=317(2,2,3).∴|DH →|=31717.因此,点D 到平面PEF 的距离为31717.(2)设AH ′⊥平面PEF ,垂足为H ′,则AH ′→∥DH →,设AH ′→=λ(2,2,3)=(2λ,2λ,3λ)(λ≠0),则EH ′→=EA →+AH ′→=⎝ ⎛⎭⎪⎫0,-12,0+(2λ,2λ,3λ)=⎝ ⎛⎭⎪⎫2λ,2λ-12,3λ.∴AH ′→·EH ′→=4λ2+4λ2-λ+9λ2=0,即λ=117.∴AH ′→=117(2,2,3),|AH ′→|=1717, 又AC ∥平面PEF ,∴AC 到平面PEF 的距离为1717.解法二:(1)由解法一建立的空间直角坐标系知EF →=⎝ ⎛⎭⎪⎫-12,12,0,PE →=⎝ ⎛⎭⎪⎫1,12,-1,DE →=⎝ ⎛⎭⎪⎫1,12,0,设平面PEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧-12x +12y =0,x +12y -z =0,解得⎩⎪⎨⎪⎧y =x ,z =32x ,令x =2,则n =(2,2,3), ∴点D 到平面PEF 的距离d =|DE →·n ||n |=|2+1|4+4+9=31717.(2)∵AC ∥EF ,∴直线AC 到平面PEF 的距离也即是点A 到平面PEF 的距离.又AE →=⎝ ⎛⎭⎪⎫0,12,0,∴点A 到平面PEF 的距离为 d =|AE →·n ||n |=117=1717.拓展提升1.向量法求点到直线的距离的两种思路(1)将求点到直线的距离问题转化为求向量模的问题,即利用待定系数法求出垂足的坐标,然后求出向量的模,这是求各种距离的通法.(2)直接套用点线距公式求解,其步骤为直线的方向向量a →所求点到直线上一点的向量PP ′→及其在直线的方向向量a 上的投影→代入公式.注意平行直线间的距离与点到直线的距离之间的转化. 2.点面距、线面距、面面距的求解方法线面距、面面距实质上都是求点面距,求直线到平面、平面到平面的距离的前提是线面、面面平行.点面距的求解步骤:(1)求出该平面的一个法向量;(2)找出从该点出发的平面的任一条斜线段对应的向量; (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.【跟踪训练4】 正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.解 如图,建立空间直角坐标系,则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0),∴EF →=(1,-2,1),EG →=(2,-1,-1),GA →=(0,-1,0). 设n =(x ,y ,z )是平面EFG 的法向量,则⎩⎨⎧n ·EF →=0,n ·EG →=0,∴⎩⎪⎨⎪⎧x -2y +z =0,2x -y -z =0,∴x =y =z ,可取n =(1,1,1), ∴d =|GA →·n ||n |=13=33,即点A 到平面EFG 的距离为33.探究5 与空间有关的探索性问题例5 如图,矩形ABCD 和梯形BEFC 所成的平面互相垂直,BE ∥CF ,∠BCF =∠CEF =90°,AD =3,EF =2.(1)求证:AE ∥平面DCF ;(2)当AB 的长为何值时,二面角A -EF -C 的大小为60°?[解] 如图,以点C 为坐标原点,以CB ,CF 和CD 所在直线分别作为x 轴、y 轴和z 轴,建立空间直角坐标系Cxyz .设AB =a ,BE =b ,CF =c ,则C (0,0,0),A (3,0,a ),B (3,0,0),E (3,b,0),F (0,c,0).(1)证明:AE →=(0,b ,-a ),CB →=(3,0,0),BE →=(0,b,0),∴CB →·AE →=0,CB →·BE →=0, 从而CB ⊥AE ,CB ⊥BE . 又AE ∩BE =E , ∴CB ⊥平面ABE . ∵CB ⊥平面DCF ,∴平面ABE ∥平面DCF .又AE ⊂平面ABE , 故AE ∥平面DCF .(2)∵EF →=(-3,c -b,0),CE →=(3,b,0), 且EF →·CE →=0,|EF→|=2, ∴⎩⎪⎨⎪⎧-3+b c -b =0,3+c -b2=2,解得b =3,c =4.∴E (3,3,0),F (0,4,0).设n =(1,y ,z )与平面AEF 垂直, 则n ·AE →=0,n ·EF →=0,即⎩⎪⎨⎪⎧1,y ,z ·0,3,-a =0,1,y ,z ·-3,1,0=0,解得n =⎝⎛⎭⎪⎪⎫1,3,33a.又∵BA ⊥平面BEFC ,BA →=(0,0,a ),∴|cos 〈n ,BA →〉|=|n ·BA →||n ||BA →|=334a 2+27=12, 解得a =92或a =-92(舍去).∴当AB =92时,二面角A -EF -C 的大小为60°.拓展提升利用向量解决存在性问题的方法策略求解存在性问题的基本策略是:首先,假定题中的数学对象存在;其次,构建空间直角坐标系;再次,利用空间向量法把存在性问题转化为求参数是否有解问题;最后,解方程,下结论.利用上述思维策略,可使此类存在性难题变为常规问题.【跟踪训练5】 在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=12AB ,点E 是棱AB 上一点,且AEEB=λ. (1)证明:D 1E ⊥A 1D ;(2)是否存在λ,使得二面角D 1-EC -D 的平面角为π4?并说明理由.解 (1)证明:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系,如图所示.不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以E ⎝⎛⎭⎪⎫1,2λ1+λ,0, 于是D 1E →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1,A 1D →=(-1,0,-1),所以D 1E →·A 1D →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1·(-1,0,-1)=-1+0+1=0,故D 1E ⊥A 1D .(2)因为DD 1⊥平面ABCD ,所以平面DEC 的一个法向量为n =(0,0,1),设平面D 1EC 的法向量为n 1=(x ,y ,z ),又CE →=⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0,CD 1→=(0,-2,1), 则⎩⎨⎧n 1·CE →=0,n 1·CD 1→=0,即⎩⎪⎨⎪⎧n 1·⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0=0,n 1·0,-2,1=0,整理得⎩⎪⎨⎪⎧x -y ·21+λ=0,-2y +z =0,取y =1,则n 1=⎝ ⎛⎭⎪⎫21+λ,1,2. 因为二面角D 1-EC -D 的平面角为π4,所以22=|n ·n 1||n ||n 1|,即22=21+4+⎝⎛⎭⎪⎫21+λ2,解得λ=233-1. 故存在λ=233-1,使得二面角D 1-EC -D 的平面角为π4.1.用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线,把立体几何问题转化为向量问题.(2)通过向量运算,研究点、直线、平面之间的位置关系以及相应的距离和夹角等问题.(3)把向量的运算结果“翻译”成相应的几何意义. 2.利用法向量求直线AB 与平面α所成的角θ的步骤 (1)求平面α的法向量n .(2)利用公式sin θ=|cos 〈AB →,n 〉|=|AB →·n ||AB →||n |,注意直线和平面所成角的取值范围为⎣⎢⎡⎦⎥⎤0,π2.3.利用法向量求二面角的余弦值的步骤 (1)求两平面的法向量.(2)求两法向量的夹角的余弦值.(3)由图判断所求的二面角是锐角、直角,还是钝角,从而下结论.在用法向量求二面角的大小时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度当然就不同,所以最后还应该根据这个二面角的实际形态确定其大小.4.点面距的求解步骤(1)求出该平面的一个法向量.(2)找出从该点出发的平面的任一条斜线段对应的向量. (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.1.若两异面直线l 1与l 2的方向向量分别为a =(0,4,-3),b =(1,2,0),则直线l 1与l 2的夹角的余弦值为( )A.32B.8525C.4315D.33答案 B解析 设l 1,l 2的夹角为θ,则cos θ=|cos 〈a ,b 〉|=0×1+4×2+-3×05×5=8525.2.直角△ABC 的两条直角边BC =3,AC =4,PC ⊥平面ABC ,PC =95,则点P 到斜边AB 的距离是( )A .5B .3C .3 2 D.125答案 B解析 以C 为坐标原点,CA ,CB ,CP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.则A (4,0,0),B (0,3,0),P ⎝ ⎛⎭⎪⎫0,0,95,所以AB →=(-4,3,0),AP →=⎝⎛⎭⎪⎫-4,0,95, 所以AP →在AB →上的投影长为|AP →·AB →||AB →|=165,所以点P 到AB 的距离为d =|AP →|2-⎝ ⎛⎭⎪⎫1652=16+8125-25625=3.故选B.3.把正方形ABCD 沿对角线AC 折起成直二面角,点E ,F 分别是AD ,BC 的中点,O 是正方形中心,则折起后,∠EOF 的大小为( )A .(0°,90°)B .90°C .120°D .(60°,120°)答案 C解析 OE →=12(OA →+OD →),OF →=12(OB →+OC →),∴OE →·OF →=14(OA →·OB →+OA →·OC →+OD →·OB →+OD →·OC →)=-14|OA →|2.又|OE →|=|OF →|=22|OA →|,∴cos 〈OE →,OF →〉=-14|OA →|212|OA →|2=-12.∴∠EOF =120°.故选C. 4.平面α的法向量n 1=(1,0,-1),平面β的法向量n 2=(0,-1,1),则平面α与β所成二面角的大小为________.答案π3或2π3解析 设二面角的大小为θ,则cos 〈n 1,n 2〉=1×0+0×-1+-1×12·2=-12,所以cos θ=12或-12,∴θ=π3或2π3.5.如图,在长方体AC 1中,AB =BC =2,AA 1=2,点E ,F 分别是平面A 1B 1C 1D 1、平面BCC 1B 1的中心.以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.试用向量方法解决下列问题:(1)求异面直线AF 和BE 所成的角;(2)求直线AF 和平面BEC 所成角的正弦值.解 (1)由题意得A (2,0,0),F ⎝ ⎛⎭⎪⎪⎫1,2,22,B (2,2,0),E (1,1,2),C (0,2,0).∴AF →=⎝⎛⎭⎪⎪⎫-1,2,22,BE →=(-1,-1,2), ∴AF →·BE →=1-2+1=0.∴直线AF 和BE 所成的角为90°.(2)设平面BEC 的法向量为n =(x ,y ,z ),又BC→=(-2,0,0),BE →=(-1,-1,2),则n ·BC →=-2x =0,n ·BE →=-x -y +2z =0,∴x =0,取z =1,则y =2,∴平面BEC 的一个法向量为n =(0,2,1).∴cos 〈AF →,n 〉=AF →·n|AF →||n |=522222×3=53333.设直线AF 和平面BEC 所成的角为θ,则sin θ=53333,即直线AF 和平面BEC 所成角的正弦值为53333.。
高中数学立体几何 空间距离1.两条异面直线间的距离和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.2.点到平面的距离从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离.题型一:两条异面直线间的距离【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离;【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线.(2)在Rt △BEF 中,BF =a 23,BE =a 21, 所以EF 2=BF 2-BE 2=a 212,即EF =a 22.由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为a 22. 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED .∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB .∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离.∵CE =23,∴CF =FD =21,∠EFC =90°,EF =22212322=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛. ∴AB 、CD 的距离是22. 【解后归纳】 求两条异面直线之间的距离的基本方法:(1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度.(2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离.例1题图例2题图(3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离.题型二:两条异面直线间的距离【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD , ∴O 是△BCD 的中心,∴BO =32BE =332332=⨯. 又AB =1,且∠AOB =90°,∴AO =36331222=⎪⎪⎭⎫ ⎝⎛-=-BO AB .∴A 到平面BCD 的距离是36. 【例4】在梯形ABCD 中,AD ∥BC ,∠ABC =2π,AB =a ,AD =3a 且sin ∠ADC =55,又P A ⊥平面ABCD ,P A =a ,求:(1)二面角P —CD —A 的大小; (2)点A 到平面PBC 的距离.【规范解答】 (1)作AF ⊥DC 于F ,连结PF , ∵AP ⊥平面ABCD ,AF ⊥DC ,∴PF ⊥DC , ∴∠PF A 就是二面角P —CD —A 的平面角. 在△ADF 中,∠AFD =90°,∠ADF =arcsin55,AD =3a ,∴AF =53a , 在Rt △P AF 中tan ∠PF A =3535==a a AF PA ,∴∠PF A =arc tan 35. (2)∵P A ⊥平面ABCD ,∴P A ⊥BC ,又BC ⊥AB ,∴BC ⊥平面P AB ,作AH ⊥PB ,则BC ⊥AH ,∴AH ⊥平面PBC ,∵P A ⊥AB ,P A =AB =a ,∴PB =2a ,∴AH =a 22.【例5】如图,所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中AB=4,BC=2,CC 1=3,BE=1.(Ⅰ)求BF 的长;(Ⅱ)求点C 到平面AEC 1F 的距离.解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. ∵AF ∥EC 1,∴∠FAD=∠C 1EH. ∴Rt △ADF ≌Rt △EHC 1.∴DF=C 1H=2. .6222=+=∴DF BD BF (Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG . 过C 作CM ⊥AG ,垂足为M ,连C 1M ,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC , 且AG ⊂面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到面AEC 1F 的距离..113341712317123,17121743cos 3cos 3,.17,1,2211221=+⨯=⨯=∴=⨯===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CGBGCC EB 知由从而可得由解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0), A (2,0,0),C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ).∵AEC 1F 为平行四边形,例3题图B ACD1A1B 1C1A .62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF BF EF F z z EC AF F AEC =--=∴∴=∴-=-=∴∴(II )设1n 为面AEC 1F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x AF n AE n 得由⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即111),3,0,0(n CC CC 与设又=的夹角为a ,则11114cos 33||||CC n CC n α⋅==⋅ ∴C 到平面AEC 1F 的距离为.11334333343cos ||1=⨯==αCC d【例6】正三棱柱111C B A ABC -的底面边长为8,对角线101=C B ,D 是AC 的中点。
用空间向量解决空间角与距离问题[A 组 学业达标]1.如图,正四棱柱ABCD A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为( ) A.15B.25 C.35 D.45解析:以D 为坐标原点,DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系Dxyz , 设AB =1.则B (1,1,0),A 1(1,0,2),A (1,0,0),D 1(0,0,2),A 1B →=(0,1,-2),AD 1→=(-1,0,2),cos 〈A 1B →,AD 1→〉=A 1B →·AD 1→|A 1B →||AD 1→|=-45×5=-45,∴异面直线A 1B 与AD 1所成角的余弦值为45. 答案:D2.二面角的棱上有A 、B 两点,直线AC 、BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( )A .150°B .45°C .60°D .120°解析:由条件,知CA →·AB →=0,AB →·BD →=0,CD →=CA →+AB →+BD →.∴|CD →|2=|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2AB →·BD →+2CA →·BD →=62+42+82+2×6×8cos 〈CA →,BD →〉 =(217)2, ∴cos 〈CA →,BD →〉=-12,〈CA →,BD →〉=120°,∴二面角的大小为60°. 答案:C3.把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,O 是正方形中心,则折起后,∠EOF 的大小为( ) A .30°B .90° C .120°D .60°解析:OE →=12(OA →+OD →),OF →=12(OB →+OC →),∴OE →·OF →=14(OA →·OB →+OA →·OC →+OD →·OB →+OD →·OC →)=-14|OA →|2.又|OE →|=|OF →|=22|OA →|,∴cos 〈OE →,OF →〉=-14|OA →|212|OA →|2=-12.∴∠EOF =120°.故选C. 答案:C4.正方体ABCD A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为( ) A.23B.33C.23D.63解析:建系如图,设正方体棱长为1, 则BB 1→=(0,0,1). ∵B 1D ⊥面ACD 1,∴取DB 1→=(1,1,1)为面ACD 1的法向量. 设BB 1与平面ACD 1所成角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪BB1→·DB 1→|BB1→||DB 1→|=13=33, ∴cos θ=63.答案:D5.如图所示,在几何体A BCD 中,AB ⊥平面BCD ,BC ⊥CD ,且AB =BC =1,CD =2,点E 为CD 中点,则AE 的长为( ) A.2 B.3 C .2 D.5 解析:AE →=AB →+BC →+CE →, ∵|AB →|=|BC →|=1=|CE →|, 且AB →·BC →=AB →·CE →=BC →·CE →=0. 又∵AE →2=(AB →+BC →+CE →)2, ∴AE →2=3, ∴AE 的长为 3.故选B. 答案:B6.如图,在正三棱柱ABC A 1B 1C 1中,已知AB =1,点D 在棱BB 1上,且BD =1,则AD 与平面AA 1C 1C 所成角的正弦值为________.解析:取AC 、A 1C 1的中点M 、M 1,连接MM 1、BM .过D 作DN ∥BM ,交MM 1于点N ,则容易证明DN ⊥平面AA 1C 1C .连接AN,则∠DAN就是AD与平面AA1C1C所成的角.在Rt△DAN中,sin∠DAN=NDAD=322=64.答案:647.正方体ABCDA1B1C1D1中,直线BC1与平面A1BD所成的角的正弦值是________.解析:如图,以DA、DC、DD1分别为x轴,y轴,z轴建立空间直角坐标系,取正方体的棱长为1,则A(1,0,0),B(1,1,0),C1(0,1,1),易证AC1→是平面A1BD的一个法向量.AC1→=(-1,1,1),BC1→=(-1,0,1).cos〈AC1→,BC1→〉=1+13×2=63.所以BC1与平面A1BD所成角的正弦值为63.答案:638.如图,已知正三棱柱ABCA1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成角的大小是________. 答案:90°9.如图所示,已知在四面体ABCD 中,O 为BD 的中点,CA =CB =CD =BD =2,AB =AD = 2.(1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值.解析:(1)证明:因为BO =DO ,AB =AD ,所以AO ⊥BD . 因为BO =DO ,BC =CD ,所以CO ⊥BD . 在△AOC 中,由已知可得AO =1,CO =3,而AC =2,所以AO 2+CO 2=AC 2,所以∠AOC =90°,即AO ⊥OC .因为BD ∩OC =O ,所以AO ⊥平面BCD .(2)以O 为坐标原点,建立如图所示的空间直角坐标系,则B (1,0,0),D (-1,0,0),C (0,3,0),A (0,0,1),BA →=(-1,0,1), CD →=(-1,-3,0),所以cos 〈BA →,CD →〉=BA →·CD →|BA →||CD →|=24,所以异面直线AB 与CD 所成角的余弦值为24.10.如图,四棱锥P ABCD 中,PA ⊥底面ABCD ,AB ∥CD ,AD =CD =1,∠BAD =120°,∠ACB =90°. (1)求证:BC ⊥平面PAC ;(2)若二面角D PC A 的余弦值为55,求点A 到平面PBC 的距离.解析:(1)证明:∵PA ⊥底面ABCD ,BC ⊂平面ABCD ,∴PA ⊥BC , ∵∠ACB =90°,∴BC ⊥AC ,又PA ∩AC =A , ∴BC ⊥平面PAC .(2)设AP =h ,取CD 的中点E ,则AE ⊥CD ,∴AE ⊥AB .又PA ⊥底面ABCD ,∴PA ⊥AE ,PA ⊥AB ,建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,h ),C ⎝ ⎛⎭⎪⎪⎫32,12,0,D ⎝ ⎛⎭⎪⎪⎫32,-12,0,B (0,2,0),PC →=⎝ ⎛⎭⎪⎪⎫32,12,-h ,DC →=(0,1,0),设平面PDC 的法向量n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1·PC →=0,n 1·DC →=0,即⎩⎪⎨⎪⎧32x 1+12y 1-hz 1=0,y 1=0,取x 1=h ,∴n 1=⎝ ⎛⎭⎪⎪⎫h ,0,32, 由(1)平面PAC 的一个法向量为BC →=⎝ ⎛⎭⎪⎪⎫32,-32,0.∴|cos 〈n 1,BC →〉|=32hh 2+34×3=55,解得h =3,同理可求得平面PBC的一个法向量n 2=(3,3,2),所以,点A 到平面PBC 的距离为d =|AP →·n 2||n 2|=234=32.[B 组 能力提升]11.二面角αl β等于120°,A 、B 是棱l 上两点,AC 、BD 分别在半平面α、β内,AC ⊥l ,BD ⊥l ,且AB =AC =BD =1,则CD 的长等于( ) A.2B.3 C .2 D.5解析:如图,∵二面角α-l -β等于120°,∴CA →与BD →夹角为60°.由题设知,CA →⊥AB →,AB →⊥BD →,|AB →|=|AC →|=|BD →|=1, |CD →|2=|CA →+AB →+BD →|2=|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2AB →·BD →+2CA →·BD →=3+2×cos 60° =4,∴|CD →|=2.故选C. 答案:C12.正方体ABCD A 1B 1C 1D 1的棱长为1,O 是A 1C 1的中点,则O 到平面ABC 1D 1的距离为( ) A.32B.24C.12D.33解析:以DA →、DC →、DD 1→为正交基底建立空间直角坐标系,则A 1(1,0,1),C 1(0,1,1),C 1O →=12C 1A 1→=⎝ ⎛⎭⎪⎪⎫12,-12,0,平面ABC 1D 1的法向量DA 1→=(1,0,1),点O 到平面ABC 1D 1的距离d =|DA 1→·C 1O →||DA 1→|=122=24.故选B.答案:B13.正三角形ABC 与正三角形BCD 所在的平面互相垂直,则直线CD 与平面ABD 所成角的正弦值为________.解析:取BC 的中点O ,连接AO ,DO ,建立如图所示的空间直角坐标系O xyz .设BC =1,则A ⎝ ⎛⎭⎪⎪⎫0,0,32,B ⎝ ⎛⎭⎪⎪⎫0,-12,0,C ⎝ ⎛⎭⎪⎪⎫0,12,0,D ⎝ ⎛⎭⎪⎪⎫32,0,0,所以BA →=⎝ ⎛⎭⎪⎪⎫0,12,32, BD →=⎝ ⎛⎭⎪⎪⎫32,12,0,CD →=⎝ ⎛⎭⎪⎪⎫32,-12,0.设平面ABD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BA →=0,n ·BD →=0,所以⎩⎪⎨⎪⎧12y +32z =0,32x +12y =0,取x =1,则y =-3,z =1,所以n =(1,-3,1),所以cos 〈n ,CD →〉=32+325×1=155,因此直线CD 与平面ABD 所成角的正弦值为155.答案:15514.在正四棱柱ABCD A 1B 1C 1D 1中,AA 1=4,AB =BC =2,动点P ,Q 分别在线段C 1D ,AC 上,则线段PQ 长度的最小值是________.解析:以D 为原点,分别以DA →,DC →,DD 1→为x ,y ,z 轴正方向,建立如图所示空间直角坐标系,则D (0,0,0),A (2,0,0),C (0,2,0),C 1(0,2,4),设DP →=tDC 1→,AQ →=mAC →(t ,m ∈[0,1]),∴DP →=t (0,2,4)=(0,2t,4t ),DQ →=DA →+mAC →=(2,0,0)+m (-2,2,0)=(2-2m,2m,0). ∴P (0,2t,4t ),Q (2-2m,2m,0), ∴PQ →=(2-2m,2m -2t ,-4t ), 则|PQ →|=2-2m2+2m -2t 2+-4t 2=25⎝⎛⎭⎪⎪⎫t -m 52+95⎝ ⎛⎭⎪⎪⎫m -592+49≥249=43,当且仅当t =m 5,m =59,即t =19,m =59时取等号,∴线段PQ 长度的最小值为43.15.如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF 的中点.(1)设P 是CE 上的一点,且AP ⊥BE ,求∠CBP 的大小; (2)当AB =3,AD =2时,求二面角E AG C 的大小.解析:(1)因为AP ⊥BE ,AB ⊥BE ,AB ,AP ⊂平面ABP ,AB ∩AP =A ,所以BE ⊥平面ABP .又BP ⊂平面ABP ,所以BE ⊥BP . 又∠EBC =120°,因此∠CBP =30°.(2)以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,3,3),C (-1,3,0),故AE →=(2,0,-3),AG →=(1,3,0),CG →=(2,0,3).设m =(x 1,y 1,z 1)是平面AEG 的法向量,由⎩⎪⎨⎪⎧m ·AE →=0,m ·AG →=0,可得⎩⎪⎨⎪⎧2x 1-3z 1=0,x 1+3y 1=0,取z 1=2,可得平面AEG 的法向量m =(3,-3,2),设n =(x 2,y 2,z 2)是平面ACG 的一个法向量,则⎩⎪⎨⎪⎧n ·AG →=0n ·CG →=0,可得⎩⎪⎨⎪⎧x 2+3y 2=02x 2+3y 2=0,取x 2=-2,可得平面ACG 的一个法向量n =(3,-3,-2),所以cos 〈m ,n 〉=m ·n |m ||n |=12.因此二面角E AG C 的大小为60°.16.如图,在四棱锥P ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,PA =PD =6,AB =4.(1)求证:M 为PB 的中点; (2)求二面角B PD A 的大小;(3)求直线MC 与平面BDP 所成角的正弦值.解析:(1)证明:设AC ,BD 的交点为O ,连接OM ,如图所示.∵PD∥平面MAC,且平面PBD∩平面MAC=MO,∴PD∥MO.∵O为BD的中点,∴M为PB的中点.(2)取AD的中点E,连接PE.∵PA=PD,∴PE⊥AD.又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,PE⊂平面PAD,∴PE⊥平面ABCD.建立如图所示的空间直角坐标系,则B(-2,4,0),P(0,0,2),D(2,0,0),A(-2,0,0),DP→=(-2,0,2),DB→=(-4,4,0).易知平面PDA的法向量m=(0,1,0),设平面BPD的法向量为n=(x0,y0,z0),则⎩⎪⎨⎪⎧n·DP→=-2x0+2z0=0,n·DB→=-4x0+4y0=0,可取n=(1,1,2).设二面角BPDA的平面角为θ,∴|cos θ|=|cos 〈m ,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪m ·n |m ||n |=11·12+12+22=12, 由图可知,二面角B PD A 为锐二面角, ∴θ=π3,即二面角B PD A 的大小为60°.(3)由(2)可知M ⎝ ⎛⎭⎪⎪⎫-1,2,22,C (2,4,0),MC →=⎝ ⎛⎭⎪⎪⎫3,2,-22, 设直线MC 与平面BDP 所成的角为α,则有 sin α=|cos 〈MC →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪MC →·n |MC →||n | =3+2-11+1+22·32+22+⎝ ⎛⎭⎪⎪⎫-222=269.∴直线MC 与平面BDP 所成角的正弦值为269.。
课时分层作业(八)(建议用时:40分钟)一、选择题1.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为( )A .15B .25C .35D .45D [以D 为坐标原点,DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系D -xyz (图略),设AB =1.则B (1,1,0),A 1(1,0,2),A (1,0,0),D 1(0,0,2),A 1B →=(0,1,-2),AD 1→=(-1,0,2), cos 〈A 1B →,AD 1→〉=A 1B →·AD 1→|A 1B →||AD 1→|=-45×5=-45,∴异面直线A 1B 与AD 1所成角的余弦值为45.]2.在空间直角坐标系中有长方体ABCD -A 1B 1C 1D 1,AB =1,BC =2,AA 1=3,则点B 到直线A 1C 的距离为( )A .27B .2357C .357 D .1B [过点B 作BE 垂直A 1C ,垂足为E ,设点E 的坐标为(x ,y ,z ),则A 1(0,0,3),B (1,0,0),C (1,2,0),A 1C →=(1,2,-3),A 1E →=(x ,y ,z -3),BE →=(x -1,y ,z ).因为⎩⎨⎧A 1E →∥A 1C →BE →·A 1C →=0,所以⎩⎪⎨⎪⎧x 1=y 2=z -3-3x -1+2y -3z =0,解得⎩⎪⎨⎪⎧x =57y =107z =67,所以BE →=⎝ ⎛⎭⎪⎫-27,107,67,所以点B 到直线A 1C 的距离|BE →|=2357.]3.已知长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为()A .33535B .277C .33D .24A [以D 为原点,DA →,DC →,DD 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(图略),则C (0,3,0),E (1,1,0),D 1(0,0,1),C 1(0,3,1),D (0,0,0),DC 1→=(0,3,1),D 1E →=(1,1,-1),D 1C →=(0,3,-1),设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎨⎧D 1E →·n =0,D 1C →·n =0,可得平面D 1EC 的一个法向量为n =(2,1,3),所以DC 1与平面D 1EC 所成角的正弦值为sin θ=cos 〈DC 1→,n 〉=⎪⎪⎪⎪⎪⎪⎪⎪n ·DC 1→|n |·|DC 1→|=614×10=33535.] 4.如图所示,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 是棱AB 的中点,则点E 到平面ACD 1的距离为()A .12B .22 C .13D .16C [以D 为坐标原点,以DA ,DC ,DD 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示:则A 1(1,0,1),D 1(0,0,1),E (1,1,0),A (1,0,0),C (0,2,0) ∵E 为AB 的中点,∴D 1E →=(1,1,-1),AC →=(-1,2,0),AD 1→=(-1,0,1)设平面ACD 1的法向量为n =(a ,b ,c ), 则⎩⎨⎧n ·AC →=0n ·AD 1→=0,即⎩⎪⎨⎪⎧-a +2b =0-a +c =0,可得⎩⎪⎨⎪⎧a =2ba =c可取n =(2,1,2)∴点E 到面ACD 1的距离为d =|D 1E →·n ||n |=2+1-23=13.]5.如图所示,已知四棱锥P -ABCD 中,底面ABCD 是菱形,且P A ⊥平面ABCD ,P A =AD =AC ,点F 为PC 的中点,则二面角C -BF -D 的正切值为( )A .36B .34C .33D .233D [如图所示,设AC 与BD 交于点O ,连接OF .以O 为坐标原点,OB ,OC ,OF 所在直线分别为x ,y ,z 轴建立空间直角坐标系O -xyz .设P A =AD =AC =1,则BD =3,所以O (0,0,0),B ⎝ ⎛⎭⎪⎫32,0,0,F ⎝ ⎛⎭⎪⎫0,0,12,C ⎝ ⎛⎭⎪⎫0,12,0,OC →=⎝ ⎛⎭⎪⎫0,12,0,易知OC →为平面BDF 的一个法向量,由BC →=⎝ ⎛⎭⎪⎫-32,12,0,FB →=⎝ ⎛⎭⎪⎫32,0,-12,可得平面BCF 的一个法向量为n =(1,3,3).所以cos 〈n ,OC →〉=217,sin 〈n ,OC →〉=277,所以tan 〈n ,OC →〉=233.故二面角C -BF -D 的正切值为233.]二、填空题6.若直线l 的方向向量a =(-2,3,1),平面α的一个法向量n =(4,0,1),则直线l 与平面α所成角的正弦值为________.23834[由题意,得直线l 与平面α所成角的正弦值为|a ·n ||a ||n |=714×17=23834.] 7.在空间直角坐标系中,定义:平面α的一般方程为Ax +By +Cz +D =0(A ,B ,C ,D ∈R ,且A ,B ,C 不同时为零),点P (x 0,y 0,z 0)到平面α的距离d =|Ax 0+By 0+Cz 0+D |A 2+B 2+C 2,则在底面边长与高都为2的正四棱锥中,底面中心O 到侧面的距离等于________.255[作出正四棱锥P -A ′B ′C ′D ′,如图,以底面中心O 为坐标原点,建立空间直角坐标系O -xyz ,则A ′(1,1,0),B ′(-1,1,0),P (0,0,2),设平面P A ′B ′的方程为Ax +By +Cz +D =0,将以上3个坐标代入计算得A =0,B =-D ,C =-12D ,所以平面P A ′B ′的方程为-Dy -12Dz +D =0,即2y +z -2=0,所以点O 到侧面的距离d =|2×0+0-2|22+12=255.]8.如图,已知E ,F 分别是棱长为1的正方体ABCD -A 1B 1C 1D 1的棱BC ,CC 1的中点,则截面AEFD 1与底面ABCD 的夹角的正弦值为________.53[以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则A (1,0,0),E ⎝ ⎛⎭⎪⎫12,1,0,D 1(0,0,1),∴AD 1→=(-1,0,1),AE →=⎝ ⎛⎭⎪⎫-12,1,0.设平面AEFD 1的一个法向量为n =(x ,y ,z ), 则⎩⎨⎧n ·AD 1→=0,n ·AE →=0,⇒⎩⎨⎧-x +z =0,-x2+y =0,∴x =2y =z .取y =1,则n =(2,1,2).又平面ABCD 的一个法向量为u =(0,0,1), ∴cos 〈n ,u 〉=23,∴sin 〈n ,u 〉=53.] 三、解答题9.如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求面AMA 1与面MA 1N 的夹角的正弦值.[解](1)连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1DC ,可得B 1CA 1D ,故MEND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN ⊄平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥DA .以D 为坐标原点,DA 的方向为x 轴正方向,DE 为y 轴正方向,DD 1为z 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0). 设m =(x ,y ,z )为平面A 1MA 的法向量,则 ⎩⎨⎧m ·A 1M →=0,m ·A 1A →=0.所以⎩⎪⎨⎪⎧-x +3y -2z =0,-4z =0.可取m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的法向量,则 ⎩⎨⎧n ·MN →=0,n ·A 1N →=0.所以⎩⎪⎨⎪⎧-3q =0,-p -2r =0.可取n =(2,0,-1).于是cos 〈m ,n 〉=m·n |m||n|=232×5=155,所以面AMA 1与面MA 1N 的夹角的正弦值为105.10.如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ∥CD ,AD =CD =1,∠BAD =120°,∠ACB =90°.(1)求证:BC ⊥平面P AC ;(2)若二面角D -PC -A 的余弦值为55,求点A 到平面PBC 的距离. [解](1)证明:∵P A ⊥底面ABCD ,BC ⊂平面ABCD ,∴P A ⊥BC , ∵∠ACB =90°,∴BC ⊥AC ,又P A ∩AC =A , ∴BC ⊥平面P AC .(2)设AP =h ,取CD 的中点E ,则AE ⊥CD ,∴AE ⊥AB .又P A ⊥底面ABCD ,∴P A ⊥AE ,P A ⊥AB ,故建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,h ),C ⎝ ⎛⎭⎪⎫32,12,0,D ⎝ ⎛⎭⎪⎫32,-12,0,B (0,2,0),PC →=⎝ ⎛⎭⎪⎫32,12,-h ,DC →=(0,1,0),设平面PDC 的法向量n 1=(x 1,y 1,z 1), 则⎩⎨⎧n 1·PC →=0,n 1·DC →=0,即⎩⎨⎧32x 1+12y 1-hz 1=0,y 1=0,取x 1=h , ∴n 1=⎝⎛⎭⎪⎫h ,0,32.由(1)知平面P AC 的一个法向量为BC →=⎝ ⎛⎭⎪⎫32,-32,0,∴|cos 〈n 1,BC →〉|=32h h 2+34×3=55, 解得h =3,同理可求得平面PBC 的一个法向量n 2=(3,3,2), 所以,点A 到平面PBC 的距离为 d =|AP →·n 2||n 2|=234=32.11.(多选题)如图,ABCD -A 1B 1C 1D 1为正方体,下面结论正确的是( )A .BD ∥平面CB 1D 1 B .AC 1⊥BD C .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1所成的角为60°ABC [以D 为坐标原点,分别以DA →,DC →,DD 1→所在方向为x ,y ,z 轴的正半轴,建立空间直角坐标系(图略),设正方体棱长为1,则可以证明AC 1⊥面CB 1D 1,∴AC 1→可以作为面CB 1D 1的法向量,∴C 正确.∵BD →=(-1,-1,0),AC 1→=(-1,1,1),∴BD →·AC 1→=1-1=0,∴BD ∥面CB 1D 1即AB 正确.又∵AD →=(-1,0,0),CB 1→=(1,0,1), ∴cos 〈AD →,CB 1→〉=AD →·CB 1→|AD →||CB 1→|=-22,∴AD 与CB 1所成的角为45°,∴D 错,故应选ABC.]12.如图所示,在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,AB =BC =1,动点P ,Q 分别在线段C 1D ,AC 上,则线段PQ 长度的最小值是( )A .23B .33C .23D .53C [建立如图所示的空间直角坐标系,则A (1,0,0),B (1,1,0),C (0,1,0),C 1(0,1,2).设点P 的坐标为(0,λ,2λ),λ∈[0,1],点Q 的坐标为(1-μ,μ,0),μ∈[0,1],|PQ |=(1-μ)2+(μ-λ)2+4λ2 =2μ2+5λ2-2λμ-2μ+1 =5⎝ ⎛⎭⎪⎫λ-15μ2+95⎝ ⎛⎭⎪⎫μ-592+49, 当且仅当λ=19,μ=59时,线段PQ 的长度取得最小值,为23.]13.(一题两空)如图,四棱锥P -ABCD 中,底面ABCD 是矩形,PD ⊥平面ABCD 且PD =AD =1,AB =2,点E 是线段AB 上一点,当面PEC 与面ABCD 的夹角为π4时,AE =________,这时,点D 到面PEC 的距离为________.2-322[设AE =a (0≤a ≤2),以点D 为坐标原点,DA →,DC →,DP →的方向分别为x ,y ,z 轴的正方向建立空间直角坐标系D -xyz (图略),则D (0,0,0),E (1,a,0),C (0,2,0),P (0,0,1),则PE →=(1,a ,-1),PC →=(0,2,-1),设平面PEC 的法向量为m =(x ,y ,z ),则⎩⎨⎧ m ⊥PE →m ⊥PC →,即⎩⎪⎨⎪⎧x +ay -z =02y -z =0,令y =1,可得x =2-a ,z=2,则m =(2-a,1,2),易知平面DEC 的一个法向量为DP →=(0,0,1),则|cos 〈m ,DP →〉|=⎪⎪⎪⎪⎪⎪2(2-a )2+5=22,解得a =2-3或2+3(舍去),所以AE =2- 3.这时,平面PEC 的法向量可以取(3,1,2),又因DP →=(0,0,1).∴点D 到平面PEC的距离为d =|DP →·m ||m |=222×1=22.] 14.在空间中,已知平面α过点(3,0,0)和(0,4,0)及z 轴上一点(0,0,a )(a >0),如果平面α与平面xOy 的夹角为45°,则a =________.125[平面xOy 的法向量为n =(0,0,1),设平面α的法向量为u =(x ,y ,z ), 则⎩⎪⎨⎪⎧-3x +4y =0,-3x +az =0,即3x =4y =az ,取z =1,则u =⎝ ⎛⎭⎪⎫a 3,a 4,1. 而cos 〈n ,u 〉=1a 29+a 216+1=22, 又∵a >0,∴a =125.]15.如图,在三棱台DEF -ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE ,∠BAC =45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.[解](1)法一:连接GD,CD,设CD∩GF=O,连接OH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形,则O为CD的中点,又H为BC的中点,所以OH∥BD,又OH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.法二:在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形BHFE为平行四边形,可得BE∥HF,在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB,又GH∩HF=H,所以平面FGH∥平面ABED,因为BD⊂平面ABED,所以BD∥平面FGH.(2)设AB =2,则CF =1,在三棱台DEF -ABC 中,G 为AC 的中点,由DF =12AC =GC ,可得 四边形DGCF 为平行四边形,因此DG ∥FC ,又FC ⊥平面ABC ,所以DG ⊥平面ABC ,在△ABC 中,由AB ⊥BC ,∠BAC =45°,G 是AC 中点, 所以AB =BC ,GB ⊥GC ,因此GB ,GC ,GD 两两垂直, 以G 为坐标原点,建立如图所示的空间直角坐标系G -xyz , 所以G (0,0,0),B (2,0,0),C (0,2,0),D (0,0,1).可得H ⎝ ⎛⎭⎪⎫22,22,0,F (0,2,1). 故GH →=⎝ ⎛⎭⎪⎫22,22,0,GF →=(0,2,1), 设n =(x ,y ,z )是平面FGH 的一个法向量,则由⎩⎨⎧ n ·GH →=0,n ·GF →=0,可得⎩⎪⎨⎪⎧x +y =0,2y +z =0,可得平面FGH 的一个法向量n =(1,-1,2),因为GB →是平面ACFD 的一个法向量,GB →=(2,0,0)所以cos 〈GB →,n 〉=GB →·n |GB →|·|n |=222=12. 所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°.。
选修 2-1 空间向量与立体几何一、选择题:1.在正三棱柱 ABC—A1B1C1 中,若 AB= 2 BB1,则 AB1 与 C1B 所成的角的大小为( )A.60°B.90°C.105°D.75°2.如图,ABCD—A1B1C1D1 是正方体,B1E1=D1F1= A1B1 ,则BE14与 DF1 所成角的余弦值是( )A. 15 B. 1 C. 8 D. 317 2 17 2图3.如图,A1B1C1—ABC 是直三棱柱,∠BCA=90°,点 D1、F1分别是 A1B1、A1C1 的中点,若 BC=CA=CC1,则 BD1 与 AF1 所成角的余弦值是( )A. 30 B. 1 C. 30 D. 1510215104.正四棱锥 S ABCD 的高 SO 2 ,底边长 AB 2 ,则异面直线 BD 和图SC 之间的距离( )A. 15 5B. 5 5C .2 5 5D. 5 105.已知 ABC A1B1C1 是各条棱长均等于 a 的正三棱柱, D 是侧棱 CC1 的 A1 中点.点 C1 到平面 AB1D 的距离( )A. 2 a B. 2 a C. 3 2 a D. 2 a48426.在棱长为1 的正方体 ABCD A1B1C1D1 中,则平面 AB1C 与平面 A1C1D 间 A的距离()A. 3 6B. 3 3C .2 3 3C1 B1DC B图D. 3 27.在三棱锥 P-ABC 中,AB⊥BC,AB=BC= 1 PA,点 O、D 分别是 AC、PC 的中点,OP⊥ 2底面 ABC,则直线 OD 与平面 PBC 所成角的正弦值()A. 21 6B. 8 3 3C. 210 60D. 210 308.在直三棱柱 ABC A1B1C1 中,底面是等腰直角三角形,ACB 90 ,侧棱 AA1 2 ,D,E 分别是 CC1与 A1B 的中点,点 E 在平面 ABD 上的射影是 ABD的重心 G.则 A1B 与平面ABD 所成角的余弦值()A. 2 3B. 7 3C. 3 2D. 3 79.正三棱柱ABCA1B1C1 的底面边长为3,侧棱AA13 23 ,D 是 CB 延长线上一点,且BD BC ,则二面角 B1 AD B 的大小A. 3B. 6C . 5 6()D. 2 310.正四棱柱 ABCD A1B1C1D1中,底面边长为 2 2 ,侧棱长为 4,E,F 分别为棱 AB,CD的中点, EF BD G .则三棱锥 B1 EFD1 的体积 V()A. 6 6B. 16 3 3C .16 3D.16二、填空题:11.在正方体 ABCD A1B1C1D1 中,E 为 A1B1 的中点,则异面直线 D1E 和 BC1 间的距离.12. 在棱长为1 的正方体 ABCD A1B1C1D1 中, E 、 F 分别是 A1B1 、 CD 的中点,求点 B 到截面AEC1F 的距离.13.已知棱长为 1 的正方体 ABCD-A1B1C1D1 中,E、F 分别是 B1C1 和 C1D1 的中点,点 A1 到平面 DBEF 的距离.14.已知棱长为 1 的正方体 ABCD-A1B1C1D1 中,E 是 A1B1 的中点,求直线 AE 与平面 ABC1D1所成角的正弦值.三、解答题:15.已知棱长为 1 的正方体 ABCD-A1B1C1D1,求平面 A1BC1 与平面 ABCD 所成的二面角 的大小16.已知棱长为 1 的正方体 ABCD-A1B1C1D1 中,E、F、M 分别是 A1C1、A1D 和 B1A 上任一点, 求证:平面 A1EF∥平面 B1MC.17.在四棱锥 P—ABCD 中,底面 ABCD 是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a, AD=2a,且 PA⊥底面 ABCD,PD 与底面成 30°角. (1)若 AE⊥PD,E 为垂足,求证:BE⊥PD; (2)求异面直线 AE 与 CD 所成角的余弦值.18.已知棱长为 1 的正方体 AC1,E、F 分别是 B1C1、C1D 的中点. (1)求证:E、F、D、B 共面; (2)求点 A1 到平面的 BDEF 的距离; (3)求直线 A1D 与平面 BDEF 所成的角.19 如右下图,在长方体 ABCD—A1B1C1D1 中,已知 AB= 4, AD =3, AA1= 2. E、F 分别是线段 AB、 BC 上的点,且 EB= FB=1.(1) 求二面角 C—DE—C1 的正切值; (2) 求直线 EC1 与 FD1 所成的余值.20 如图,已知四棱锥 P-ABCD,底面 ABCD 是菱形, ∠DAB=600,PD⊥平面 ABCD,PD=AD,点 E 为 AB 中点,点 F 为 PD 中点。
(1)证明平面 PED⊥平面 PAB; (2)求二面角 P-AB-F 的平面角的余弦值21:在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.(Ⅰ)求直线AP与平面BCC1B1所成的角的大小(结果用反三角函数值表示);(Ⅱ)设O点在平面D1AP上的射影是H,求证:D1H⊥AP;(Ⅲ)求点P到平面ABD1的距离.D1C1A1B1DCOAB参考答案一、1.B;2.A;3.A;4.C; 分析:建立如图所示的直角坐标系,则SA ( 2 , 2 , 0) , B ( 2 , 2 , 0) ,2222C ( 2 , 2 , 0) , D ( 2 , 2 , 0) , S (0,0, 2) .2222C DOAB图uuur DB (2,2,0),uuur CS(2 ,2 , 2) .22r uuur令向量r n(x,y,1),且r nuuur DB,r nuuur CS,则nrDB uuur0, n CS 0 (x, y,1) ( 2, (x, y,1) (2 ,22, 0) 0 2 , 2) 20, xx yy 20 20, x y2,r n(22,2,1) .异面直线 BD 和 SC 之间的距离为:uuur r OC n( 2 , 2 , 0) ( 2, 2,1) 22d r n( 2, 2,1)11 02 5.( 2)2 ( 2)2 12 55.A;分析:Q ABB1A1 为正方形, A1B AB1 ,又平面 AB1D 平面 ABB1A1 , A1B 面 AB1D , uuur A1B 是平面 AB1D 的一个法向量,设点 C 到平面 AB1D 的距离为 d ,则uuur uuur uuur uuur uuur uuur uuur uuur uuurdAC A1B uuur=AC ( A1 A AB)=AC A1 A AC AB)0 a a cos 600 =2a .A1B2a2a2a46.B;分析:建立如图所示的直角坐标系,r uuuur设平面A1C1D的一个法向量r n(x,y,1),则 n rn uDuuAur1 DC1 0 0,即(x, ( x,y,1) y,1) (1, 0,1) (0,1,1) 0 0 x y 1 1,uuur rrAD nn (1, 1,1) , 平 面 AB1C 与 平 面 A1C1D 间 的 距 离 d rnzDCABD1yC1A1 E B1x图(_1, 0, 0) (1, 1,1)3.(1)2 (1)2 12 37.D;Q OP 平面ABC,OA OC,AB BC, OA OB,OA OP,OB OP.以O为原点,射线OP为非负z轴,建立空间直角坐标系O xyz 如图,设ABa,则A 2 2a,0,0 ,B 0,2 2a,0 ,C 2 2a,0,0 .设OP h,则P 0,0, h.ⅠQ D为PC的中点,uuur OD 2 4a,0,1 2h ,uuur 又PA 2 2a,0,h,uuur OD1uuur PA.uuur uuur OD∥PA. OD∥平面PAB.2ⅡQ PA 2a, h 7a, 2uuur OD 2 a,0, 414 4 a ,r 可求得平面PBC的法向量 n 1,1,1 7 ,uuur r cosOD, n uuur r OD n uuur r210 .OD n 30xA设OD与平面PBC所成的角为,uuur r 则 sin cosOD, n 210 ,30 OD与平面PBC所成的角为arcsin 210 . 30z PDC OB y8.B;解 以 C 为坐标原点,CA 所在直线为 x 轴,CB 所在直线为 y 轴,CC1 所在直线为 z 轴,建立直角坐标系,设 CA CB a ,则 A(a,0,0), B(0, a,0), A(1 a,0,2), D(0,0,1)∴ E(a , a ,1), G(a , a , 1), GE (a , a , 2),22333663A1BD (0,a,1),z C1D B1 EC∵ 点 E 在平面 ABD 上的射影是 ABD的重心 G, ∴ GE 平面 ABD, ∴ GE BD 0 ,解得 a 2 . x AG B y∴ GE (1 , 1 , 2), 333BA1 (2,2,2),∵ GE 平面 ABD, ∴ GE 为平面 ABD 的一个法向量.4由cos GE, BA1 GE BA1 | GE | | BA1 |3 2 6 2 3 33∴A1B 与平面 ABD 所成的角的余弦值为7. 3评析 因规定直线与平面所成角 [0, ] ,两向量所成角 [0, ] ,所以用此法向量求出 2的线面角应满足 | | . 29.A;取 BC 的中点 O,连 AO.由题意 平面 ABC 平面 BCC1B1 , AO BC ,∴ AO 平面 BCC1B1 ,以 O 为原点,建立如图 6 所示空间直角坐标系,则A(0,0, 3 23),B(3 2,0,0),D(9 2,0,0),B(13 2,3 23,0),∴AD (9 ,0, 3 223),B1D(3,3 23,0),BB1(0,3 23,0),由题意BB1 平面 ABD, ∴BB1(0,3 23,0)为平面 ABD 的法向量.设 平面 AB1D 的法向量为 n2 (x, y, z) ,则 n2AD,n2 B1D∴ n2AD0,n2 B1D 0∴ 9 x 3 22 3x 33z 0,3y 02即x 3 23y . z 3x∴不妨设n2(3 ,1, 3) , 22由cos BB1, n2|BB1 n2 BB1 | | n2|33 2 3 321 2,2得 BB1, n2 60. 故所求二面角 B1 AD B 的大小为 60.评析:(1)用法向量的方法处理二面角的问题时,将传统求二面角问题时的三步曲:“找——证 ——求”直接简化成了一步曲:“计算”,这表面似乎谈化了学生的空间想象能力,但实质不然, 向量法对学生的空间想象能力要求更高,也更加注重对学生创新能力的培养,体现了教育改革 的精神. (2)此法在处理二面角问题时,可能会遇到二面角的具体大小问题,如本题中若取n2 (3 2,1,3) 时,会算得 cos 2BB1, n21 2,从而所求二面角为120 ,但依题意只为 60 .因为二面角的大小有时为锐角、直角,有时也为钝角.所以在计算之前不妨先依题意判断一下所求二面角的大小,然后根据计算取“相等角”或取“补角”. 10.C;解 以 D 为坐标原点,建立如图 10 所示的直角坐标系,则 B1 (2 2,2 2,4) , D1(0,0,4) , E(2 2, 2,0) , F ( 2,2 2,0) ,∴ D1E (2 2, 2,4) , D1F ( 2,2 2,4) ,D1B1 (2 2,2 2,0),图 10 ∴z D1A1DxAEC1 B1GCyFBcos D1E, D1F D1E D1F | D1E | | D1F |24 12 , 26 26 13∴sinD1E, D1F5, 13所以S D1EF1 2| DE | | DF| sinDE, DF1 226 26 5 5 , 13设 平面 D1EF 的方程为: x By Cz D 0 ,将点 D1, E, F 代入得4C D 0 2 2 2B D 0 , 2 2 2B D 0B 1∴C 3 42,D 3 2∴平面 D1EF的方程为: x y3 42z 3 2 0 ,其法向量为n (1,1, 3 42) ,∴点 B1 到平面 D1EF的距离 d | D1B1 n | |n| 16 5,∴VB1 EFD11 3 SEFD1 d 1 5 16 16 3 53即为所求.评析 (1)在求点到平面的距离时,有时也可直接利用点到平面的距离公式d | Ax0 By0 Cz0 D | 计算得到. A2 B2 C2(2) 法向量在距离方面除应用于点到平面的距离、多面体的体积外,还能处理异面直线间的 距离,线面间的距离,以及平行平面间的距离等. 二、11 .26 3分析:设正方体棱长为2,以D1为原点,建立如图所示的空间直角坐标系,则r uuuuruuuur D1E(2,1, 0),uuuur C1B(2, 0, 2),设D1E和BC1公垂线段上的向量为r n(1,, ),则nr Duu1uEur n C1B 0 0,uuuuur r即 2 0 2 2 0, 2,r n 1(1, 2, 1),又uuuuur D1C1(0, 2, 0),D1C1 n r n4 2 6 ,所以异 63面直线D1E和BC1间的距离为26 3.12. 6 分析:以 D 为原点,建立如图所示的空间直角坐标系. 3则 A (1, 0, 0), F (0, 1 , 0), E (1, 1 ,1) .22uuur AE(0,1,1),uuur AF(1,1, 0);22r 设面 AEC1F 的法向量为 n (1,, ) ,r uuur r uuur 则有: n AE 0, n AF 0 ,D1A1EC1 B1DFC 1 2 1 1 2 0 0 2 1,A图Bruuur n (1, 2, 1) ,又 AB (0,1, 0) ,所以点 B到截面 AEC1F的距离为uuur r AB n uuur r AB n=2 166. 313.1;解:如图建立空间直角坐标系,DB =(1,1,0), DF =(0, 1 ,1), 2DA1 =(1,0,1)设平面 DBEF 的法向量为 n =(x,y,z),则有:n DB 0即 x+y=0n DF 01 y+z=0 2令 x=1, y=-1,1z= ,取 n =(1,-1, 1 ),则 A1 到平面22zn DA1DBEF 的距离 h 1D1 A1FC1EnB114. 10 解:如图建立空间直角坐标系,AB =(0,1,0), 5AD1=(-1,0,1),AE=(0,1 2,1)D A xz D1C yBC1设平面 ABC1D1 的法向量为 n =(x,y,z),A1E B1由 n AB 0 可解得 n =(1,0,1) n AD1 0DCA xy B设直线 AE 与平面 ABC1D1 所成的角为θ,则 sin AE n 10 ,AE n 5三、15. 解:如图建立空间直角坐标系,A1C1 =(-1,1,0),A1B=(0,1,-1)设 n1 、 n2 分别是平面 A1BC1 与平面 ABCD 的法向量,由 n1 A1B 0可解得 n1 =(1,1,1)n1 A1C1 0zD1C1A1B1C DAyxB易知 n2 =(0,0,1),所以, cos n1, n2 n1 n2 = n1 n23 3所以平面 A1BC1 与平面 ABCD 所成的二面角大小为 arccos 3 或 -arccos 3 .33注:用法向量的夹角求二面角时应注意:平面的法向量有两个相反的方向,取的方向不同求 出来的角度当然就不同,所以最后还应该根据这个二面角的实际 形态确定其大小.z D116.证明:如图建立空间直角坐标系,A1EC1B1则 A1C1 =(-1,1,0), B1C =(-1,0,-1)FMyA1D =(1,0,1), B1 A =(0,-1,-1)设 A1E A1C1 ,A1F A1D ,B1M B1A( 、 、 R ,且均不为 0)D xAC B设 n1 、 n2 分别是平面 A1EF 与平面 B1MC 的法向量,由 n1 A1E 0 可得 n1 A1C1 0 即 n1 A1C1 0n1 A1F 0n1 A1D 0n1 A1D 0解得: n1 =(1,1,-1)由 n2 B1M 0 可得 n2 B1 A 0 即 n2 B1 A 0n2 B1C 0n2 B1C 0n2 B1C 0解得 n2 =(-1,1,-1),所以 n1 =- n2 , n1 ∥ n2 ,所以平面 A1EF∥平面 B1MC.注:如果求证的是两个平面垂直,也可以求出两个平面的法向量后,利用 n1 ⊥ n2 n1 n2 0来证明. 17.(1)证明:∵PA⊥平面 ABCD,∴PA⊥AB,又 AB⊥AD.∴AB⊥平面 PAD.又∵AE⊥PD, ∴PD⊥平面 ABE,故 BE⊥PD. (2)解:以 A 为原点,AB、AD、AP 所在直线为坐标轴,建立空间直角坐标系,则点 C、D的坐标分别为(a,a,0),(0,2a,0). ∵PA⊥平面 ABCD,∠PDA 是 PD 与底面 ABCD 所成的角,∴∠PDA=30°. 于是,在 Rt△AED 中,由 AD=2a,得 AE=a.过 E 作 EF⊥AD,垂足为 F,在 Rt△AFE 中,由AE=a,∠EAF=60°,得 AF= a ,EF= 3 a,∴E(0, 1 a, 3 a)2222于是, AE {0, 1 a, 3 a}, CD ={-a,a,0} 22设 AE 与 CD 的夹角为θ,则由cosθ= AE CD | AE | | CD |0(a) 1 a a 3 a 022202 (1 a)2 ( 3 a)2 (a)2 a2 02 422AE 与 CD 所成角的余弦值为 2 . 4评述:第(2)小题中,以向量为工具,利用空间向量坐标及数量积,求两异面直线所成的角是立体几何中的常见问题和处理手段.18.解:(1)略.(2)如图,建立空间直角坐标系 D—xyz,则知 B(1,1,0), E(1 ,1,1), F(0, 1 ,1).22设 n (x, y, z)是平面BDEF的法向量.由n DB, n DF, DB (1,1,0), DF (0, 1 ,1) 2得n n DB DF x 1y 2y z0 0则x z y 1 2y.令 y 1,得n (1,1, 1) . 2设点 A1 在平面 BDFE 上的射影为 H,连结 A1D,知 A1D 是平面 BDFE 的斜线段.A1D(1,0,1),ADn(1)(1)01(1)(1) 23. 2又| A1D |(1)2 O 2 (1)2 2,| n |(1)2 12 ( 1 )2 3 , 22 cos A1D, A1H A1D n | A1D | | n |32 232. 22| A1H || A1D | cos A1D, A1H 2 2 1. 2即点 A1 到平面 BDFE 的距离为 1.(3)由(2)知,A1H=1,又 A1D= 2 ,则△A1HD 为等腰直角三角形,A1DH DA1H 45 A1H 平面BDFE, HD是A1D在平面BDFE上的射影, A1DH就是直线A1D与平面BDFE所成的角, A1DH 45.。