距离.
解:依题意,, , 是两两互相垂直的.
以为原点,, , 的方向分别为轴、轴、
轴正方向,建立如图所示的空间直角坐标系.则
(1,0,0), (1,1,0), (0,1,0), (0,0,1),
所以 = (0,1,0), = (−1,0,1), = (0,1, −1).
解:以为原点,��,, 1 的方向分别为轴、
轴、轴正方向,正方体的棱长为2个单位长度,建立如
图所示的空间直角坐标系.则
(1,0,0),(2,1,2), (0,2,1), (2,0,0), (0,2,0),
所以 = (1,1,2), = (−1,2,1), = (−2,2,0).
思维导图
PAR T T W O
复习引入
PAR T T H R E E
“距离”在生活中随处可见,例如,我们常说某两地之间的距
离是多少,汽车的刹车距离是多少,等等。
数学中的“距离” 的概念是从生活中的具体问题中抽象出来的,
要求具有准确的定义,以避免歧义,到目前为止,你学过哪些平
面内的“距离” ?这些“距离”的定义有什么共同点?由此你能
设平面的一个法向量为 = (, , ),则
∙ = + + 2 = 0
∙ = − + 2 + = 0
令 = 1,则得 = (−1, −1,1).
因为 ∙ = (−2) × (−1) + 2 × (−1) + 0 × 1 = 0,
所以 ⊥ ,又因为点显然不在平面内,所以
(−1) +(−1) +1
3
因此点到平面的距离为 ,
3
=
|(−1)×1+(−1)×0+1×0|