lingo运输问题的实验报告
- 格式:docx
- 大小:409.15 KB
- 文档页数:11
用lingo解决运输问题(一)实验目的1. 运输问题求解的编程实现2(掌握使用matlab、Lingo、Excel的求解功能求解运输问题,并对结果进行分析。
(二)实验内容《运筹学》清华三版P98页 3.3题Lingo程序代码及运行结果(选取部分):<1>3.3(1):程序代码:model:sets:xiao/1..4/:s;chan/1..3/:h;link(chan,xiao):x,y;endsetsdata:y=3 7 6 42 43 24 3 8 5;h=5 2 3;s=3 3 2 2;enddatamin=@sum(link:x*y);@for(xiao(j):@sum(chan(i):x(i,j))=s(j));@for(chan(i):@sum(xiao(j):x(i,j))=h(i)); 运行结果及结果分析:Objective value: 32.00000产地1分别将数量为3和2的产品运往销地甲和丁;产地2将数量为2的产品运往销地丙;产地3将数量为3的产品运往销地乙;该运输问题的最小费用为32.<2>3.3(2):程序代码:model:sets:xiao/1..4/:s;chan/1..3/:h;link(chan,xiao):x,y; endsetsdata:y=10 6 7 1216 10 5 95 4 10 10;h=4 9 4;s=5 2 4 6;enddatamin=@sum(link:x*y); @for(xiao(j):@sum(chan(i):x(i,j))=s(j));@for(chan(i):@sum(xiao(j):x(i,j))=h(i));运行结果及结果分析:Objective value: 118.0000产地1将数量为1、2、1的产品分别运往销地甲、乙、丙;产地将数量为3、6的产品运往销地丙、丁;产地3将数量为4的产品运往销地甲。
Lingo软件在运输问题中的应用研究问题:万通公司有三个仓库:H1,H2,H3,B商品在这三仓库中的库存分别为150 吨、145 吨、160 吨;已知有四家商场(S1,S2,S3,S4) 需要购买该公司的B商品,他们的需求量分别为80 吨、118 吨、137 吨、113 吨。
问如何利用现有库存资源满足这四家商场的需求,并使得总运输成本最低。
从这三个仓库向四家商场送货的ij i j构建数学模型如下:目标函数:Min=26* X11 +21* X12…+21* X33 +23* X34库存约束:ΣX1j <=150;ΣX2j <=145;ΣX3j <=160;j=1,2,3,4需求约束:ΣX i1=80;ΣX i2 =118;ΣX i3 =137;ΣX i4 =113;i=1,2,3非负约束:X ij>=0使用Lingo软件,编制程序如下:model:sets:h/h1,h2,h3/:capacity;s/s1,s2,s3,s4/:demand;links(h,s):cost,x;endsetsdata:capacity=150,145,160;demand=80,118,137,113;cost=26,21,23,20,21,19,12,21,16,19,21,23;enddatamin=@sum(links(i,j):cost*x);@for(s(j):@sum(h(i):x(i,j))=demand(j));@for(h(i):@sum(s(j):x(i,j))<=capacity(i));End运行后的结果如下:Global optimal solution found.Objective value: 7486.000Infeasibilities: 0.000000Total solver iterations: 6Variable Value Reduced CostCAPACITY( H1) 150.0000 0.000000CAPACITY( H2) 145.0000 0.000000CAPACITY( H3) 160.0000 0.000000DEMAND( S1) 80.00000 0.000000DEMAND( S2) 118.0000 0.000000 DEMAND( S3) 137.0000 0.000000 DEMAND( S4) 113.0000 0.000000 COST( H1, S1) 26.00000 0.000000 COST( H1, S2) 21.00000 0.000000 COST( H1, S3) 23.00000 0.000000 COST( H1, S4) 20.00000 0.000000 COST( H2, S1) 21.00000 0.000000 COST( H2, S2) 19.00000 0.000000 COST( H2, S3) 12.00000 0.000000 COST( H2, S4) 21.00000 0.000000 COST( H3, S1) 16.00000 0.000000 COST( H3, S2) 19.00000 0.000000 COST( H3, S3) 21.00000 0.000000 COST( H3, S4) 23.00000 0.000000 X( H1, S1) 0.000000 8.000000 X( H1, S2) 30.00000 0.000000 X( H1, S3) 0.000000 9.000000 X( H1, S4) 113.0000 0.000000 X( H2, S1) 0.000000 5.000000 X( H2, S2) 8.000000 0.000000 X( H2, S3) 137.0000 0.000000 X( H2, S4) 0.000000 3.000000 X( H3, S1) 80.00000 0.000000 X( H3, S2) 80.00000 0.000000 X( H3, S3) 0.000000 9.000000 X( H3, S4) 0.000000 5.000000Row Slack or Surplus Dual Price1 7486.000 -1.0000002 0.000000 -18.000003 0.000000 -21.000004 0.000000 -14.000005 0.000000 -20.000006 7.000000 0.0000007 0.000000 2.0000008 0.000000 2.000000 从结果中能看出,最低费用为7486元,最有运输方案是仓库1向商场2供货30吨,向商场4供货113吨,仓库2向商场2进货8吨,向商场3供货137吨,仓库3向商场1供货80吨,向商场2供货80吨。
用lingo解决运输问题(一)实验目的1. 运输问题求解的编程实现2.掌握使用matlab、Lingo、Excel的求解功能求解运输问题,并对结果进行分析。
(二)实验内容《运筹学》清华三版P98页 3.3题Lingo程序代码及运行结果(选取部分):<1>3.3(1):程序代码:model:sets:xiao/1..4/:s;chan/1..3/:h;link(chan,xiao):x,y;endsetsdata:y=3 7 6 42 43 24 3 8 5;h=5 2 3;s=3 3 2 2;enddatamin=@sum(link:x*y);@for(xiao(j):@sum(chan(i):x(i,j))=s(j));@for(chan(i):@sum(xiao(j):x(i,j))=h(i));运行结果及结果分析:Objective value: 32.00000产地1分别将数量为3和2的产品运往销地甲和丁;产地2将数量为2的产品运往销地丙;产地3将数量为3的产品运往销地乙;该运输问题的最小费用为32.<2>3.3(2):model:sets:xiao/1..4/:s;chan/1..3/:h;link(chan,xiao):x,y;endsetsdata:y=10 6 7 1216 10 5 95 4 10 10;h=4 9 4;s=5 2 4 6;enddatamin=@sum(link:x*y);@for(xiao(j):@sum(chan(i):x(i,j))=s(j));@for(chan(i):@sum(xiao(j):x(i,j))=h(i));运行结果及结果分析:Objective value: 118.0000产地1将数量为1、2、1的产品分别运往销地甲、乙、丙;产地将数量为3、6的产品运往销地丙、丁;产地3将数量为4的产品运往销地甲。
最小费用为118.<3>3.3(3):程序代码:model:sets:xiao/1..5/:s;chan/1..4/:h;link(chan,xiao):x,y;endsetsdata:y=10 20 5 9 102 10 8 30 61 20 7 10 4h=5 6 2 9;s=4 4 6 2 4;enddatamin=@sum(link:x*y);@for(xiao(j):@sum(chan(i):x(i,j))=s(j));@for(chan(i):@sum(xiao(j):x(i,j))<=h(i));运行结果及结果分析:Objective value: 90.00000产地1分别将数量为1、2的产品运往销地丙、丁;产地2分别将数量为4、2的产品运往销地甲、戊;产地3将数量为2的产品运往销地戊;产地4分别将数量为4、5的产品运往销地乙、丙;最小运费为90.<4>3.3(4):程序代码:model:sets:xiao/1..5/:s;chan/1..5/:h;link(chan,xiao):x,y;endsetsdata:y=10 18 29 13 2213 10000 21 14 160 6 11 3 100009 11 23 18 1924 28 36 30 34;h=100 120 140 80 60;s=100 120 100 60 80;enddatamin=@sum(link:x*y);@for(xiao(j):@sum(chan(i):x(i,j))=s(j));@for(chan(i):@sum(xiao(j):x(i,j))<=h(i));运行结果及结果分析:Objective value: 5520.000产地1将数量为100的产品运往销地甲;产地2分别将数量为40、80的产品运往销地丙、戊;产地3分别将数量为的产品运往销地乙、丙、丁;产地4将数量为80的产品运往销地乙;产地5将数量为20的产品运往销地乙。
运筹学lingo实验报告
运筹学lingo实验报告
一、引言
实验目的
本次实验旨在探索运筹学lingo在解决实际问题中的应用,了解lingo的基本使用方法和解题思路。
实验背景
运筹学是一门研究决策和规划的学科,其能够帮助我们优化资源分配、解决最优化问题等。
lingo是一种常用的运筹学工具,具有强大的求解能力和用户友好的界面,被广泛应用于各个领域。
二、实验步骤
准备工作
•安装lingo软件并激活
•熟悉lingo界面和基本功能
确定问题
•选择一个运筹学问题作为实验对象,例如线性规划、整数规划、网络流等问题
•根据实际问题,使用lingo的建模语言描述问题,并设置变量、约束条件和目标函数
运行模型
•利用lingo的求解器,运行模型得到结果
结果分析
•分析模型求解结果的合理性和优劣,对于不符合要求的结果进行调整和优化
结论
•根据实验结果,总结lingo在解决该问题中的应用效果和局限性,对于其他类似问题的解决提出建议和改进方案
三、实验总结
实验收获
•通过本次实验,我熟悉了lingo软件的基本使用方法和建模语言,增加了运筹学领域的知识和实践经验。
实验不足
•由于时间和条件的限制,本次实验仅涉及了基本的lingo应用,对于一些复杂问题的解决还需要进一步学习和实践。
•在以后的学习中,我将继续深入研究lingo的高级功能和应用场景,以提升运筹学问题的求解能力。
以上就是本次实验的相关报告内容,通过实验的实践和总结,我对lingo在运筹学中的应用有了更深入的理解,为今后的学习和研究奠定了基础。
运筹学lingo实验报告(一)运筹学lingo实验报告介绍•运筹学是一门研究在给定资源约束下优化决策的学科,广泛应用于管理、工程、金融等领域。
•LINGO是一种常用的运筹学建模和求解软件,具有丰富的功能和高效的求解算法。
实验目的•了解运筹学的基本原理和应用。
•掌握LINGO软件的使用方法。
•运用LINGO进行优化建模和求解实际问题。
实验内容1.使用LINGO进行线性规划的建模和求解。
2.使用LINGO进行整数规划的建模和求解。
3.使用LINGO进行非线性规划的建模和求解。
4.使用LINGO进行多目标规划的建模和求解。
实验步骤1. 线性规划•确定决策变量、目标函数和约束条件。
•使用LINGO进行建模,设定目标函数和约束条件。
•运行LINGO求解线性规划问题。
2. 整数规划•在线性规划的基础上,将决策变量的取值限制为整数。
•使用LINGO进行整数规划的建模和求解。
3. 非线性规划•确定决策变量、目标函数和约束条件。
•使用LINGO进行非线性规划的建模和求解。
4. 多目标规划•确定多个目标函数和相应的权重。
•使用LINGO进行多目标规划的建模和求解。
实验结果•列举各个实验的结果,包括最优解、最优目标函数值等。
结论•运筹学lingo实验是一种有效的学习运筹学和应用LINGO的方法。
•通过本实验能够提高对运筹学概念和方法的理解,并掌握运用LINGO进行优化建模和求解的技能。
讨论与建议•实验过程中是否遇到困难或问题,可以进行讨论和解决。
•提出对于实验内容或方法的建议和改进方案。
参考资料•提供参考书目、文献、教材、网站等资料,以便学生深入学习和研究。
致谢•对与实验指导、帮助或支持的人员表示感谢,如老师、助教或同学等。
以上为运筹学lingo实验报告的基本框架,根据实际情况进行适当调整和补充。
实验报告应简洁明了,清晰表达实验目的、内容、步骤、结果和结论,同时可以加入必要的讨论和建议,以及参考资料和致谢等信息。
用LINGO软件解决运输问题研究
用LINGO软件解决运输问题研究
摘要:运输问题是运筹学中常见问题。
针对这种问题我们也曾学习过传统的方法,运输问题可以利用表上作业法来解决。
当数据不多且复杂性地时,表上作业法比较好操作,但是现实中我们面对的问题往往数据更多且更为复杂。
而lingo是针对运筹学问题的一个很好的软件应用。
在此,简要的介绍lingo软件在运输问题上的运用,并给出相关例子供读者参考,以便能在遇到类似问题时更准确的解答。
关键词:lingo软件应用运输问题
一、lingo软件简介
lingo是linear interactive and general optimizer的缩写,即”交互式的线性和通用优化求解器”,由美国lindo系统公司(lindo system inc.)推出的,可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解等,功能十分强大,是求解优化模型的最佳选择。
其特色在于内置建模语言,提供十几个内部函数,可以允许决策变量是整数(即整数规划,包括0-1 整数规划),方便灵活,而且执行速度非常快。
能方便与excel,数据库等其他软件交换数据。
lingo 是使建立和求解线性、非线性和整数最佳化模型更快更简单更有效率的综合工具。
lingo 提供强大的语言和快速的求解引擎来阐述和求解最佳化模型。
1. 简单的模型表示。
运筹学实验报告姓名:学号:班级:采矿1103 教师:(一)实验目的(1)学会安装并使用Lingo软件(2)利用Lingo求解一般线性,运输,一般整数和分派问题(二)实验设备(1)计算机(2)Lingo软件(三)实验步骤(1)打开已经安装Lingo软件的计算机,进入Lingo(2)建立数学模型和Lingo语言(3)输入完Lingo语言后运行得出求解结果LINGO是用来求解线性和非线性规化问题的简易工具。
LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。
当在windows 下开始运行LINGO系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model–LINGO1的窗口是LINGO的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面是以一般线性,运输,一般整数和分派问题为例进行实验的具体操作步骤:A:一般线性规划问题数学模型(课本31页例11)求解线性规划:Minz=-3x1+x2+x3x1 - 2x2 + x3<=11-4x1 + x2 + 2x3>=3-2x1 + x3=1x1,x2,x3>=0打开lingo输入min=-3*x1+x2+x3;x1-2*x2+x3<=11;-4*x1+x2+2*x3>=3;-2*x1+x3=1;End如图所示:然后按工具条的按钮运行出现如下的界面,也即是运行的结果和所求的解:然后按工具条的按钮运行出现如下的界面,也即是运行的结果和所求的解:结果:由longo运行的结果界面可以得到该运输问题的最优运输方案为运6吨至B3;运2吨至B4,由A2运4吨至B1,运1吨至B4,由A3运吨7至B2,运4吨至B4,此时对应的的目标函数值为Z=6X4+2X11+4X2+1X9+7X5+4X6+122(元)到此lingo软件已经解决了运输问题。
2012——2013学年第一学期合肥学院数理系实验报告课程名称:运筹学实验项目:应用LINGO软件求解运输问题实验类别:综合性□设计性□√验证性□专业班级:姓名:学号:实验地点:实验时间:指导教师:成绩:一.实验目的1、学会使用LINGO 软件求解运输问题的步骤与方法。
2、掌握使用LINGO 对运输问题的求解功能,并对结果进行分析。
二.实验内容1.已知某企业有甲、乙、丙三个分厂生产一种产品,其产量分别为7、9、7个单位,需运往A 、B 、C 、D 四个门市部,各门市部需要量分别为3、5、7、8个单位。
已知单位运价如下表。
试确定运输计划使总运费最少。
2.现在要在五个工人中确定四个人来分别完成四项工作中的一项工作。
由于每个工人的技术特长不同,他们完成各项工作所需的工时也不同。
每个工人完成各项工作所需工时如下表所示,试找出一个工作分配方案,使总工时最小。
三. 模型建立1.由题设知,总产量为:7+9+7=23个单位,总销量为:3+5+7+8=23个单位,所以这是一个产销平衡的运输问题。
设)4,3,2,1;3,2,1(==j i x ij 代表从第i 个产地运往第j 个销地的数量,z 为总运费。
i a 表示第i 个产地的产量,j b 表示第j 个销地的销量ij c 表示从第i 个产地运往第j 个销地的单位产品运输费用。
则该问题的数学模型为:34114131max 0,1,2,3;1,2,3,4ij iji j ij ij ij j i ij Z c x x a x b x i j =====⎧=⎪⎪⎪=⎨⎪⎪≥==⎪⎩∑∑∑∑2. 设0-1变量,1,0ij i x i ⎧=⎨⎩当第个人完成某j 项工作,当第个人不完成某j 项工作 则该问题的数学模型为:54115141min 1,1,01ij iji j ij i ij j ijZ c x x j x i x i j =====⎧= =1,2,3,4⎪⎪⎪= = 1,2,3,4,5⎨⎪⎪= =1,2,3,4,5;=1,2,3,4⎪⎩∑∑∑∑或,四. 模型求解(含经调试后正确的源程序)1、编写程序1-1.m 如下:model :sets :warehouses/wh1..wh3/: capacity;vendors/v1..v4/: demand;links(warehouses,vendors): cost, volume;endsetsdata :capacity=7 9 7;demand=3 5 7 8;cost= 12 13 10 1110 12 14 1014 11 15 12;enddatamin =@sum (links(I,J): cost(I,J)*volume(I,J));@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));end2、编写程序2-1.m如下:model:sets:workers/w1..w5/;jobs/j1..j4/;links(workers,jobs): cost,volume;Endsetsdata:cost=9 4 3 74 65 65 4 7 57 5 2 310 6 7 4;enddatamin=@sum(links: cost*volume);@for(workers(I): @sum(jobs(J): volume(I,J))<=1);@for(jobs(J): @sum(workers(I): volume(I,J))=1);@for(links(i,j): @bin(volume(i,j)));End五.结果分析1、运行结果:Global optimal solution found.Objective value: 239.0000Infeasibilities: 0.000000Total solver iterations: 6Variable Value Reduced Cost CAPACITY( WH1) 7.000000 0.000000 CAPACITY( WH2) 9.000000 0.000000 CAPACITY( WH3) 7.000000 0.000000 DEMAND( V1) 3.000000 0.000000 DEMAND( V2) 5.000000 0.000000 DEMAND( V3) 7.000000 0.000000 DEMAND( V4) 8.000000 0.000000COST( WH1, V1) 12.00000 0.000000COST( WH1, V2) 13.00000 0.000000COST( WH1, V3) 10.00000 0.000000COST( WH1, V4) 11.00000 0.000000COST( WH2, V1) 10.00000 0.000000COST( WH2, V2) 12.00000 0.000000COST( WH2, V3) 14.00000 0.000000COST( WH2, V4) 10.00000 0.000000COST( WH3, V1) 14.00000 0.000000COST( WH3, V2) 11.00000 0.000000COST( WH3, V3) 15.00000 0.000000COST( WH3, V4) 12.00000 0.000000VOLUME( WH1, V1) 0.000000 1.000000 VOLUME( WH1, V2) 0.000000 3.000000 VOLUME( WH1, V3) 7.000000 0.000000 VOLUME( WH1, V4) 0.000000 0.000000 VOLUME( WH2, V1) 3.000000 0.000000 VOLUME( WH2, V2) 0.000000 3.000000 VOLUME( WH2, V3) 0.000000 5.000000 VOLUME( WH2, V4) 6.000000 0.000000 VOLUME( WH3, V1) 0.000000 2.000000 VOLUME( WH3, V2) 5.000000 0.000000 VOLUME( WH3, V3) 0.000000 4.000000 VOLUME( WH3, V4) 2.000000 0.000000Row Slack or Surplus Dual Price1 239.0000 -1.0000002 0.000000 -12.000003 0.000000 -11.000004 0.000000 -11.000005 0.000000 -12.000006 0.000000 1.0000007 0.000000 2.0000008 0.000000 0.000000所以,最优调运方案为:甲→C:7单位;甲→D:0单位;乙→A:3单位;乙→D:6单位;丙→B:5单位;丙→D:2单位。
实验二运输问题一、实验目的:(1) 进一步熟悉LINGO软件环境;(2) 掌握如何建立运输问题的数学模型;(3) 掌握如何LINGO来解决运输问题;二、实验内容:已知某公司有A1、A2和A3三个工厂生产某种产品,分别运往四个门市部B1、B2、B3和B4去销售。
有关各厂的产量、各个产部门的销量及运价等信息如表所示。
问如何组织运输,使运输成本最少。
每个工厂生产产品不一定直接发往门市部,可以集中到其中的某几个产地一起运;运往个销地的物资可以先运到几个销地再转运到其他销地;除了产地之外,中间可以有几个转运站,在产地之间、销地之间,或产地销地之间转运。
三、实验步骤及实验要求:A:不含转运的运输问题(1)数学模型的建立与分析 这是一个 产销平衡的运输问题。
目标 总运输成本最少。
约束条件 每个产地运出的产品的量等于该产地的产量;运到每个销地的产品的量等于该销地的销量。
每个产地的运出量和每个销地运进的量为非负值。
决策变量 该运输问题有12个决策变量x ij (i=1,2,3;j=1,2,3,4;)分别代表第A i 个产地运往第B j 个销地的运量。
已知条件:c ij (i=1,2,3;j=1,2,3,4;)分别代表第A i 个产地运往第B j 个销地的单位运费。
每个产地的产量Supply; 每个销地的销量Demand; 2.2.3数学模型 约束条件1:每个产地运出的产品的量等于该产地的产量。
约束条件2:运到每个销地的产品的量等于该销地的销量。
约束条件3:每个产地的运出量和每个销地运进的量为非负值。
完整的数学模型如下:∑∑===m i nj ijij x c z 11min =3*x11+11*x12+3*x13+10*x14+x21+9*x22+2*x23+8*x24+7*x31+4*x32+10*x33+5*x34x11+x21+x31=3 x12+x22+x32=6 s.t . x13+x23+x33=5 x14+x24+x34=6 x11+x12+x13+x14=7 x21+x22+x23+x24=4 x31+x32+x33+x34=9 xij>=0(2)ILOG 模型建立及求解 第一步 建立ILOG OPL 工程建立ILOG OPL 工程,工程名transportation,为该工程添加模型文件transportation.mod 和数据文件transportation.dat 。
运筹linggo实验报告运筹学实验报告一、引言运筹学是一门研究如何在有限资源下做出最优决策的学科,它涵盖了数学、统计学、经济学等多个学科的理论和方法。
本次实验旨在通过运筹学的方法,解决一个实际问题,并评估其效果和可行性。
二、问题描述本次实验的问题是一个生产调度问题。
某工厂需要生产三种产品A、B、C,每种产品的产量和利润如下表所示:产品产量(单位)利润(元/单位)A 50 10B 100 15C 80 12工厂有三个生产车间,分别可以生产A、B、C三种产品,每个车间的生产能力如下表所示:车间生产能力(单位/小时)A 20B 30C 25同时,工厂还有一些限制条件:1. 每种产品的生产时间不能超过8小时;2. 每种产品的生产量不能为负数。
三、模型建立为了解决这个问题,我们可以建立一个线性规划模型。
假设每个车间的生产时间为x、y、z(单位:小时),则目标函数为最大化总利润:10x + 15y + 12z。
同时,需要满足以下约束条件:1. A产品的生产量为50x,不能超过8小时:50x ≤ 8;2. B产品的生产量为100y,不能超过8小时:100y ≤ 8;3. C产品的生产量为80z,不能超过8小时:80z ≤ 8;4. A产品的生产量不能为负数:x ≥ 0;5. B产品的生产量不能为负数:y ≥ 0;6. C产品的生产量不能为负数:z ≥ 0;7. A产品的生产量不能超过车间A的生产能力:50x ≤ 20;8. B产品的生产量不能超过车间B的生产能力:100y ≤ 30;9. C产品的生产量不能超过车间C的生产能力:80z ≤ 25。
四、模型求解通过线性规划求解器,我们可以得到最优解。
经过计算,最优解为x = 0.16,y = 0.24,z = 0.2,总利润为4.4元。
五、结果分析通过模型求解,我们得到了最优的生产调度方案。
根据最优解,工厂应该将A 产品的生产时间分配为0.16小时,B产品的生产时间分配为0.24小时,C产品的生产时间分配为0.2小时。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==实验报告-实验三《运筹学》课程实验报告实验名称:实验三灵敏性报告与运输规划任课教师:专业:班级:姓名:学号:完成日期:一、实验目的(1) 熟悉LINGO的模型结果报告的主要数据含义; (2) 掌握在LINGO进行灵敏度分析的操作方法; (3) 掌握运输规划的求解。
二、实验内容(1) 实验1: (2) 实验2: (3) 实验3:略难三、实验步骤及设计说明(1) 实验1:3.该报告说明:(1)运行 3 步找到全局最优解,目标函数值为 29000,变量值分别为x1= ,;(2)在“Slack or Surplus”(松弛或剩余)列,对于“<=”不等式,右减左的差值为Slack,对于“>=”不等式,左减右的差值为Surplus,从Row2和Row4的数值0,表示资源 1号生产线和劳动工时在最优生产计划下已经用尽,从Row3的数值90,表示 2号生产线的资源使用剩余的资源还有90 ;(3)“Dual Price”是对偶价格(影子价格),从报告中可看出,生产线1、生产线2和劳动工时的影子价格分别是 50 、 0 、 150。
①若有2号生产线可以升级产量,升级成本是300,升级后的产量是200,问是否值得升级____不值得____?②若通过加班来增加工人劳动力时间,那么付给工人的加班费每小时最多不能超过_150_______.5.在模型窗口中,选择LINGO/Range选项,或按Ctrl+R,可得到该模型的灵敏度分析报告:可以看到在最优基不改变的条件下,x1的目标函数系数c1有效范围是[150,+∞],x2的目标函数系数c2有效范围是对应1号生产线资源b1的有效范围是[ 0,160 ] ;对应2号生产线资源b2的有效范围是 [ 30,+∞ ] ;对应劳动工时b3的有效范围是 [ 100,340 ].(2) 实验2:实验代码:sets:col/1..3/:a; row/1..4/:b; aa(col,row):c,x; endsets data: a = 7,4,9; b = 3,6,5,6; c = 3,11,3,10, 1,9,2,8, 7,4,10,5; enddatamin = @sum (aa:c*x);@for (col(i):@sum (row(j):x(i,j)) = a(i)); @for (row(j):@sum(col(i):x(i,j)) = b(j));实验3:代码:max = 550*x1 + 600*x2 + 350*x3 + 400*x4 + 200*x5; 12*x1 + 20*x2 +25*x4 + 15*x5 <= 864; 10*x1 + 8*x2 + 16*x3 <= 576;20*x1 + 20*x2 + 20*x3 + 20*x4 + 20*x5 <= 1152; x2 >= 10; x2 <= 100;x4 >= 20; x4 <= 150;并结合模型结果报告和灵敏度分析报告回答下列问题:(1)写出正确的线性规划模型与生产计划。
实验二运输问题实验二运输问题(1)实验目的:熟悉运用Excel和LINGO软件求解运输问题,掌握其求解方法(2)内容及要求:求解习题2-12、2-14(3)实验报告:2-12. 1,2,3三个城市每年需分别供应电力320,250和350单位,由Ⅰ,II两个电站提供,它们的最大可供电量分别为400个单位和450个单位,单位费用如表2-23所示。
由于需要量大于可供量,决定城市1的供应量可减少0~30单位,城市2的供应量不变,城市3的供应量不能少于270单位,试求总费用最低的分配方案(将可供电量用完)。
表1 供应电力单位费用表城市123电站I151822II212516解:用LINGO求解:LINGO模型代码为:min=15*x11+18*x12+22*x13+21*x21+25*x22+16*x23;x11+x12+x13+x21+x22+x23=850;x11+x12+x13<=400;x21+x22+x23<=450;x11+x21<320;x11+x21>290;x12+x22=250;x13+x23>270;x13+x23<350;点击“求解”按钮后,获得求解报告如下:Global optimal solution found.Objective value:14650.00Infeasibilities:0.000000Total solver iterations:4Variable Value Reduced CostX11 150.0000 0.000000X12 250.0000 0.000000X13 0.000000 12.00000X21 140.0000 0.000000X22 0.000000 1.000000X23 310.0000 0.000000Row Slack or Surplus Dual Price1 14650.00 -1.0000002 0.000000 -16.000003 0.000000 6.0000004 0.000000 0.0000005 30.00000 0.0000006 0.000000 -5.0000007 0.000000-8.0000008 40.00000 0.0000009 40.00000 0.000000又上述求解报告可知,电站I向城市1供电150单位,向城市2供电250单位,向城市3不供电;II向城市1供电140单位,向城市2不供电,向城市3供电310单位,此时总费用最小,为:14650。
数学与计算科学学院实验报告
实验项目名称运输问题求解
所属课程名称运筹学B
实验类型综合
实验日期 2014年10月25日
姓名张丽芬
学号 0102
成绩
附录1:源程序
附录2:实验报告填写说明
1.实验项目名称:要求与实验教学大纲一致.
2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求.
3.实验原理:简要说明本实验项目所涉及的理论知识.
4.实验环境:实验用的软、硬件环境.
5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容.概括整个实验过程.
对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作.对于设计性和综合性实验,在上述内容
基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明.对于创新性实验,还应注明其创新点、特色.
6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析.
7.实验结论(结果):根据实验过程中得到的结果,做出结论.
8.实验小结:本次实验心得体会、思考和建议.
9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价.。