Lingo 求解运输问题
- 格式:ppt
- 大小:598.50 KB
- 文档页数:22
数学与计算科学学院实验报告
实验项目名称运输问题求解
所属课程名称运筹学B
实验类型综合
实验日期 2014年10月25日
姓名张丽芬
学号 0102
成绩
附录1:源程序
附录2:实验报告填写说明
1.实验项目名称:要求与实验教学大纲一致.
2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求.
3.实验原理:简要说明本实验项目所涉及的理论知识.
4.实验环境:实验用的软、硬件环境.
5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容.概括整个实验过程.
对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作.对于设计性和综合性实验,在上述内容
基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明.对于创新性实验,还应注明其创新点、特色.
6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析.
7.实验结论(结果):根据实验过程中得到的结果,做出结论.
8.实验小结:本次实验心得体会、思考和建议.
9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价.。
运输问题课程设计lingo一、教学目标本章节的教学目标是让学生掌握运输问题的基本概念、Lingo模型的构建及求解方法。
通过本章节的学习,学生应能够:1.理解运输问题的背景和意义,掌握运输问题的基本概念和分类。
2.学会使用Lingo软件构建运输问题的模型,并运用该软件求解运输问题。
3.能够运用所学知识分析和解决实际生活中的运输问题。
二、教学内容本章节的教学内容主要包括以下几个部分:1.运输问题的基本概念:运输问题的发展历程、基本概念、分类及应用领域。
2.Lingo软件的使用:Lingo软件的界面及功能、模型的构建、求解及优化。
3.运输问题的Lingo模型求解:单源、多源、循环、分配等类型的运输问题的Lingo模型构建及求解。
4.实际案例分析:分析现实生活中遇到的运输问题,运用Lingo软件求解,并提出解决方案。
三、教学方法为了达到本章节的教学目标,将采用以下教学方法:1.讲授法:讲解运输问题的基本概念、Lingo软件的使用方法及运输问题的Lingo模型求解方法。
2.案例分析法:分析实际案例,引导学生运用所学知识解决实际问题。
3.讨论法:学生分组讨论,培养学生的合作能力和解决问题的能力。
4.实验法:让学生动手操作Lingo软件,亲自构建和求解运输问题模型,提高学生的实际操作能力。
四、教学资源为了支持本章节的教学内容和教学方法的实施,将准备以下教学资源:1.教材:《运输问题与Lingo建模》。
2.参考书:关于运输问题、Lingo软件使用的相关书籍。
3.多媒体资料:运输问题案例视频、Lingo软件操作演示视频。
4.实验设备:计算机、投影仪等。
五、教学评估本章节的教学评估将采用多元化的评估方式,全面、客观地评价学生的学习成果。
评估方式包括:1.平时表现:通过课堂参与、提问、讨论等环节,记录学生的表现,占总评的30%。
2.作业:布置与本章节内容相关的作业,要求学生独立完成,占总评的20%。
3.考试:设计针对本章节内容的考试,测试学生对运输问题及Lingo建模的掌握程度,占总评的50%。
用lingo解决运输问题(一)实验目的1. 运输问题求解的编程实现2(掌握使用matlab、Lingo、Excel的求解功能求解运输问题,并对结果进行分析。
(二)实验内容《运筹学》清华三版P98页 3.3题Lingo程序代码及运行结果(选取部分):<1>3.3(1):程序代码:model:sets:xiao/1..4/:s;chan/1..3/:h;link(chan,xiao):x,y;endsetsdata:y=3 7 6 42 43 24 3 8 5;h=5 2 3;s=3 3 2 2;enddatamin=@sum(link:x*y);@for(xiao(j):@sum(chan(i):x(i,j))=s(j));@for(chan(i):@sum(xiao(j):x(i,j))=h(i)); 运行结果及结果分析:Objective value: 32.00000产地1分别将数量为3和2的产品运往销地甲和丁;产地2将数量为2的产品运往销地丙;产地3将数量为3的产品运往销地乙;该运输问题的最小费用为32.<2>3.3(2):程序代码:model:sets:xiao/1..4/:s;chan/1..3/:h;link(chan,xiao):x,y; endsetsdata:y=10 6 7 1216 10 5 95 4 10 10;h=4 9 4;s=5 2 4 6;enddatamin=@sum(link:x*y); @for(xiao(j):@sum(chan(i):x(i,j))=s(j));@for(chan(i):@sum(xiao(j):x(i,j))=h(i));运行结果及结果分析:Objective value: 118.0000产地1将数量为1、2、1的产品分别运往销地甲、乙、丙;产地将数量为3、6的产品运往销地丙、丁;产地3将数量为4的产品运往销地甲。
Lingo软件在运输问题中的应用研究问题:万通公司有三个仓库:H1,H2,H3,B商品在这三仓库中的库存分别为150 吨、145 吨、160 吨;已知有四家商场(S1,S2,S3,S4) 需要购买该公司的B商品,他们的需求量分别为80 吨、118 吨、137 吨、113 吨。
问如何利用现有库存资源满足这四家商场的需求,并使得总运输成本最低。
从这三个仓库向四家商场送货的ij i j构建数学模型如下:目标函数:Min=26* X11 +21* X12…+21* X33 +23* X34库存约束:ΣX1j <=150;ΣX2j <=145;ΣX3j <=160;j=1,2,3,4需求约束:ΣX i1=80;ΣX i2 =118;ΣX i3 =137;ΣX i4 =113;i=1,2,3非负约束:X ij>=0使用Lingo软件,编制程序如下:model:sets:h/h1,h2,h3/:capacity;s/s1,s2,s3,s4/:demand;links(h,s):cost,x;endsetsdata:capacity=150,145,160;demand=80,118,137,113;cost=26,21,23,20,21,19,12,21,16,19,21,23;enddatamin=@sum(links(i,j):cost*x);@for(s(j):@sum(h(i):x(i,j))=demand(j));@for(h(i):@sum(s(j):x(i,j))<=capacity(i));End运行后的结果如下:Global optimal solution found.Objective value: 7486.000Infeasibilities: 0.000000Total solver iterations: 6Variable Value Reduced CostCAPACITY( H1) 150.0000 0.000000CAPACITY( H2) 145.0000 0.000000CAPACITY( H3) 160.0000 0.000000DEMAND( S1) 80.00000 0.000000DEMAND( S2) 118.0000 0.000000 DEMAND( S3) 137.0000 0.000000 DEMAND( S4) 113.0000 0.000000 COST( H1, S1) 26.00000 0.000000 COST( H1, S2) 21.00000 0.000000 COST( H1, S3) 23.00000 0.000000 COST( H1, S4) 20.00000 0.000000 COST( H2, S1) 21.00000 0.000000 COST( H2, S2) 19.00000 0.000000 COST( H2, S3) 12.00000 0.000000 COST( H2, S4) 21.00000 0.000000 COST( H3, S1) 16.00000 0.000000 COST( H3, S2) 19.00000 0.000000 COST( H3, S3) 21.00000 0.000000 COST( H3, S4) 23.00000 0.000000 X( H1, S1) 0.000000 8.000000 X( H1, S2) 30.00000 0.000000 X( H1, S3) 0.000000 9.000000 X( H1, S4) 113.0000 0.000000 X( H2, S1) 0.000000 5.000000 X( H2, S2) 8.000000 0.000000 X( H2, S3) 137.0000 0.000000 X( H2, S4) 0.000000 3.000000 X( H3, S1) 80.00000 0.000000 X( H3, S2) 80.00000 0.000000 X( H3, S3) 0.000000 9.000000 X( H3, S4) 0.000000 5.000000Row Slack or Surplus Dual Price1 7486.000 -1.0000002 0.000000 -18.000003 0.000000 -21.000004 0.000000 -14.000005 0.000000 -20.000006 7.000000 0.0000007 0.000000 2.0000008 0.000000 2.000000 从结果中能看出,最低费用为7486元,最有运输方案是仓库1向商场2供货30吨,向商场4供货113吨,仓库2向商场2进货8吨,向商场3供货137吨,仓库3向商场1供货80吨,向商场2供货80吨。
用lingo解决运输问题(一)实验目的1. 运输问题求解的编程实现2.掌握使用matlab、Lingo、Excel的求解功能求解运输问题,并对结果进行分析。
(二)实验内容《运筹学》清华三版P98页 3.3题Lingo程序代码及运行结果(选取部分):<1>3.3(1):程序代码:model:sets:xiao/1..4/:s;chan/1..3/:h;link(chan,xiao):x,y;endsetsdata:y=3 7 6 42 43 24 3 8 5;h=5 2 3;s=3 3 2 2;enddatamin=@sum(link:x*y);@for(xiao(j):@sum(chan(i):x(i,j))=s(j));@for(chan(i):@sum(xiao(j):x(i,j))=h(i));运行结果及结果分析:Objective value: 32.00000产地1分别将数量为3和2的产品运往销地甲和丁;产地2将数量为2的产品运往销地丙;产地3将数量为3的产品运往销地乙;该运输问题的最小费用为32.<2>3.3(2):model:sets:xiao/1..4/:s;chan/1..3/:h;link(chan,xiao):x,y;endsetsdata:y=10 6 7 1216 10 5 95 4 10 10;h=4 9 4;s=5 2 4 6;enddatamin=@sum(link:x*y);@for(xiao(j):@sum(chan(i):x(i,j))=s(j));@for(chan(i):@sum(xiao(j):x(i,j))=h(i));运行结果及结果分析:Objective value: 118.0000产地1将数量为1、2、1的产品分别运往销地甲、乙、丙;产地将数量为3、6的产品运往销地丙、丁;产地3将数量为4的产品运往销地甲。
最小费用为118.<3>3.3(3):程序代码:model:sets:xiao/1..5/:s;chan/1..4/:h;link(chan,xiao):x,y;endsetsdata:y=10 20 5 9 102 10 8 30 61 20 7 10 4h=5 6 2 9;s=4 4 6 2 4;enddatamin=@sum(link:x*y);@for(xiao(j):@sum(chan(i):x(i,j))=s(j));@for(chan(i):@sum(xiao(j):x(i,j))<=h(i));运行结果及结果分析:Objective value: 90.00000产地1分别将数量为1、2的产品运往销地丙、丁;产地2分别将数量为4、2的产品运往销地甲、戊;产地3将数量为2的产品运往销地戊;产地4分别将数量为4、5的产品运往销地乙、丙;最小运费为90.<4>3.3(4):程序代码:model:sets:xiao/1..5/:s;chan/1..5/:h;link(chan,xiao):x,y;endsetsdata:y=10 18 29 13 2213 10000 21 14 160 6 11 3 100009 11 23 18 1924 28 36 30 34;h=100 120 140 80 60;s=100 120 100 60 80;enddatamin=@sum(link:x*y);@for(xiao(j):@sum(chan(i):x(i,j))=s(j));@for(chan(i):@sum(xiao(j):x(i,j))<=h(i));运行结果及结果分析:Objective value: 5520.000产地1将数量为100的产品运往销地甲;产地2分别将数量为40、80的产品运往销地丙、戊;产地3分别将数量为的产品运往销地乙、丙、丁;产地4将数量为80的产品运往销地乙;产地5将数量为20的产品运往销地乙。
1、 实验目的和任务1.1. 进一步把握Lingo 编程操作;1.2通过实验进一步把握运筹学运输问题的建模和求解进程,提高学生分析问题和解决问题能力。
2、 实验仪器、设备及材料运算机、Lingo3、 实验内容运输问题问题P271设有某种物资需要从m 个产地12,,...,m A A A 运到n 个销地12,,...,n B B B ,其中每一个产地的生产量为12,,...,m a a a ,每一个销地的需求量为12,,...,n b b b 。
设从产地i A 到销地j B 的运费单价为(1,2,...,,1,2,...,),ij c i m j n ==,问如何调运可使总运费最少?3个产地4个销地的运输问题建模决策变量:决策变量确实是产地i A 到销地j B 的运量ij x目标函数:11min m nij ij i j z c x ===∑∑,约束条件:第i 个产地的运出量应小于或等于该地的生产量,即1,1,2,...,.n ij i j xa i m =≤=∑第j 个销地的运入量应等于该地的需求量,即1,1,2,....m ij j i xb j n ===∑求解进程编写模型程序:model :! 3 Warehouse,4 Customer Transportation Problem;sets :Warehouse/1..3/:a;Customer/1..4/:b;Routes(warehouse,customer):c,x;endsets!here are the parameters;data :a=30,25,21;b=15,17,22,12;c=6,2,6,7,4,9,5,3,8,8,1,5;enddata! The objective;[obj] min =@sum (routes:c*x);!The supply constraints;@for (warehouse(i):[sup]@sum (customer(j):x(i,j))<=a(i));!The demand constraints;@for (customer(j):[dem] @sum (warehouse(i):x(i,j))=b(j));end计算结果:Global optimal solution found.Objective value: 161.0000Total solver iterations: 6Variable Value Reduced CostA( 1) 30.00000 0.000000A( 2) 25.00000 0.000000A( 3) 21.00000 0.000000B( 1) 15.00000 0.000000B( 2) 17.00000 0.000000B( 3) 22.00000 0.000000B( 4) 12.00000 0.000000C( 1, 1) 6.000000 0.000000C( 2, 1) 4.000000 0.000000C( 2, 2) 9.000000 0.000000C( 2, 3) 5.000000 0.000000C( 2, 4) 3.000000 0.000000C( 3, 1) 8.000000 0.000000C( 3, 2) 8.000000 0.000000C( 3, 3) 1.000000 0.000000C( 3, 4) 5.000000 0.000000X( 1, 1) 2.000000 0.000000X( 1, 2) 17.00000 0.000000X( 1, 3) 1.000000 0.000000X( 1, 4) 0.000000 2.000000X( 2, 1) 13.00000 0.000000X( 2, 2) 0.000000 9.000000X( 2, 3) 0.000000 1.000000X( 2, 4) 12.00000 0.000000X( 3, 1) 0.000000 7.000000X( 3, 2) 0.000000 11.00000X( 3, 3) 21.00000 0.000000X( 3, 4) 0.000000 5.000000Row Slack or Surplus Dual PriceOBJ 161.0000 -1.000000SUP( 1) 10.00000 0.000000SUP( 2) 0.000000 2.000000SUP( 3) 0.000000 5.000000DEM( 1) 0.000000 -6.000000DEM( 2) 0.000000 -2.000000DEM( 3) 0.000000 -6.000000事实上,咱们关切更多的是那些非零变量,因此,可选择“Lingo|solution..”弹出一个对话框(介绍此对话框),选择“nonzeros only”,即可只列出非零变量:Global optimal solution found.Objective value: 161.0000Total solver iterations: 6Variable Value Reduced CostA( 1) 30.00000 0.000000A( 2) 25.00000 0.000000A( 3) 21.00000 0.000000B( 1) 15.00000 0.000000B( 2) 17.00000 0.000000B( 3) 22.00000 0.000000C( 1, 3) 6.000000 0.000000C( 1, 4) 7.000000 0.000000C( 2, 1) 4.000000 0.000000C( 2, 2) 9.000000 0.000000C( 2, 3) 5.000000 0.000000C( 2, 4) 3.000000 0.000000C( 3, 1) 8.000000 0.000000C( 3, 2) 8.000000 0.000000C( 3, 3) 1.000000 0.000000C( 3, 4) 5.000000 0.000000X( 1, 1) 2.000000 0.000000X( 1, 2) 17.00000 0.000000X( 1, 3) 1.000000 0.000000X( 2, 1) 13.00000 0.000000X( 2, 4) 12.00000 0.000000X( 3, 3) 21.00000 0.000000Row Slack or Surplus Dual PriceSUP( 2) 0.000000 2.000000SUP( 3) 0.000000 5.000000DEM( 1) 0.000000 -6.000000DEM( 2) 0.000000 -2.000000DEM( 3) 0.000000 -6.000000DEM( 4) 0.000000 -5.000000结果分析由于Lingo软件中采纳集,数据段和循环函数的编写方式,因此便于程序推行到一样形式利用,例如,只需修改运输问题中产地和销地的个数,和参数a,b,c的值,就能够够求解任何运输问题。
数学建模-(货机装运lingo)货机装运是指将货物从一个起点运输到一个终点,在这个过程中需要考虑到货物的重量、体积、运输方式等多种因素。
在货机装运过程中,一个关键问题是如何最大化运载效率,即在保证运输安全和合法的前提下,尽可能地提高货机的装载量,从而降低单位运输成本。
在数学建模中,可以使用lingo等工具进行货机装运的优化。
具体来说,可以将该问题抽象为一个数学模型,以最大化货机的装载量为目标函数,同时考虑到运输安全、货物重量、体积等约束条件。
下面以一个具体例子来说明如何使用lingo进行货机装运的优化:假设有一架货机,其载重量为10000公斤,可以装载两种货物A和B,每种货物的重量和体积如下:货物类型重量(公斤)体积(立方米)A 600 1.5B 400 0.8同时,从起点到终点的运输费用如下:货物类型运输费用(元/公斤)A 10B 15要求在保证运输安全和合法的前提下,最大化货机的装载量,即:subject to:A +B <= 10000(装载量不超过10000公斤)其中,A和B表示货机装载的货物A和B的数量,V是货机的装载体积,运输费用是由货物类型和运输距离等因素决定的,这里简化为一个固定值。
使用lingo进行求解的过程如下:1.首先,在lingo中创建一个新的模型文件,并定义目标函数和约束条件:2.对模型进行求解,并设置模型参数:model:solve;parameters:V = 15;end;在上述代码中,V表示货机的装载体积,这里假设为15立方米。
solve表示对模型进行求解,通过设置end来结束参数定义。
3.对求解结果进行分析和优化,例如考虑不同装载体积下的最优解:for V := 15 to 20 dobeginwriteln('Optimal value for V=',V,': ',model.obj);在以上代码中,for循环遍历不同的装载体积值(15到20),分别求解模型并输出优化结果。
一.实验目的1、学会使用LINGO 软件求解运输问题的步骤与方法。
2、掌握使用LINGO 对运输问题的求解功能,并对结果进行分析。
二.实验内容1.已知某企业有甲、乙、丙三个分厂生产一种产品,其产量分别为7、9、7个单位,需运往A 、B 、C 、D 四个门市部,各门市部需要量分别为3、5、7、8个单位。
已知单位运价如下表。
试确定运输计划使总运费最少。
2.现在要在五个工人中确定四个人来分别完成四项工作中的一项工作。
由于每个工人的技术特长不同,他们完成各项工作所需的工时也不同。
每个工人完成各项工作所需工时如下表所示,试找出一个工作分配方案,使总工时最小。
三. 模型建立1.由题设知,总产量为:7+9+7=23个单位,总销量为:3+5+7+8=23个单位,所以这是一个产销平衡的运输问题。
设)4,3,2,1;3,2,1(==j i x ij 代表从第i 个产地运往第j 个销地的数量,z 为总运费。
i a 表示第i 个产地的产量,j b 表示第j 个销地的销量ij c 表示从第i 个产地运往第j 个销地的单位产品运输费用。
则该问题的数学模型为:34114131max 0,1,2,3;1,2,3,4ij iji j ij i j ij j i ij Z c x x a x b x i j =====⎧=⎪⎪⎪=⎨⎪⎪≥==⎪⎩∑∑∑∑2. 设0-1变量,1,0ij i x i ⎧=⎨⎩当第个人完成某j 项工作,当第个人不完成某j 项工作则该问题的数学模型为:54115141min 1,1,01ij iji j ij i ij j ij Z c x x j x i x i j =====⎧= =1,2,3,4⎪⎪⎪= = 1,2,3,4,5⎨⎪⎪= =1,2,3,4,5;=1,2,3,4⎪⎩∑∑∑∑或,四. 模型求解(含经调试后正确的源程序)1、编写程序1-1.m 如下:model : sets :warehouses/wh1..wh3/: capacity; vendors/v1..v4/: demand;links(warehouses,vendors): cost, volume; endsets data :capacity=7 9 7; demand=3 5 7 8; cost= 12 13 10 11 10 12 14 10 14 11 15 12; enddatamin =@sum (links(I,J): cost(I,J)*volume(I,J));@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));end2、编写程序2-1.m如下:model:sets:workers/w1..w5/;jobs/j1..j4/;links(workers,jobs): cost,volume;Endsetsdata:cost=9 4 3 74 65 65 4 7 57 5 2 310 6 7 4;enddatamin=@sum(links: cost*volume);@for(workers(I): @sum(jobs(J): volume(I,J))<=1);@for(jobs(J): @sum(workers(I): volume(I,J))=1);@for(links(i,j): @bin(volume(i,j)));End五.结果分析最优调运方案为:甲→C:7单位;甲→D:0单位;乙→A:3单位;乙→D:6单位;丙→B:5单位;丙→D:2单位。
LINGO是用来求解线性和非线性优化问题的简易工具。
LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。
当你在windows下开始运行LINGO系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例1.1如何在LINGO中求解如下的LP问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码:min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。
例1.2 使用LINGO 软件计算6个发点8个收点的最小费用运输问题。
产销单位运价如下表。
销地产地B 1B 2B 3B 4B 5B 6B 7B 8产量A 1 6 2 6 7 4 2 5 9 60 A 2 4 9 5 3 8 5 8 2 55 A 3 5 2 1 9 7 4 3 3 51 A 4 7 6 7 3 9 2 7 1 43 A 5 2 3 9 5 7 2 6 5 41 A 6 5 5 2 2 8 1 4 3 52 销量3537223241324338使用LINGO软件,编制程序如下:model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity; vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I):volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J):volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38; cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮即可。