LINGO求解运输问题
- 格式:doc
- 大小:68.00 KB
- 文档页数:3
数学与计算科学学院实验报告
实验项目名称运输问题求解
所属课程名称运筹学B
实验类型综合
实验日期 2014年10月25日
姓名张丽芬
学号 0102
成绩
附录1:源程序
附录2:实验报告填写说明
1.实验项目名称:要求与实验教学大纲一致.
2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求.
3.实验原理:简要说明本实验项目所涉及的理论知识.
4.实验环境:实验用的软、硬件环境.
5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容.概括整个实验过程.
对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作.对于设计性和综合性实验,在上述内容
基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明.对于创新性实验,还应注明其创新点、特色.
6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析.
7.实验结论(结果):根据实验过程中得到的结果,做出结论.
8.实验小结:本次实验心得体会、思考和建议.
9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价.。
运输问题课程设计lingo一、教学目标本章节的教学目标是让学生掌握运输问题的基本概念、Lingo模型的构建及求解方法。
通过本章节的学习,学生应能够:1.理解运输问题的背景和意义,掌握运输问题的基本概念和分类。
2.学会使用Lingo软件构建运输问题的模型,并运用该软件求解运输问题。
3.能够运用所学知识分析和解决实际生活中的运输问题。
二、教学内容本章节的教学内容主要包括以下几个部分:1.运输问题的基本概念:运输问题的发展历程、基本概念、分类及应用领域。
2.Lingo软件的使用:Lingo软件的界面及功能、模型的构建、求解及优化。
3.运输问题的Lingo模型求解:单源、多源、循环、分配等类型的运输问题的Lingo模型构建及求解。
4.实际案例分析:分析现实生活中遇到的运输问题,运用Lingo软件求解,并提出解决方案。
三、教学方法为了达到本章节的教学目标,将采用以下教学方法:1.讲授法:讲解运输问题的基本概念、Lingo软件的使用方法及运输问题的Lingo模型求解方法。
2.案例分析法:分析实际案例,引导学生运用所学知识解决实际问题。
3.讨论法:学生分组讨论,培养学生的合作能力和解决问题的能力。
4.实验法:让学生动手操作Lingo软件,亲自构建和求解运输问题模型,提高学生的实际操作能力。
四、教学资源为了支持本章节的教学内容和教学方法的实施,将准备以下教学资源:1.教材:《运输问题与Lingo建模》。
2.参考书:关于运输问题、Lingo软件使用的相关书籍。
3.多媒体资料:运输问题案例视频、Lingo软件操作演示视频。
4.实验设备:计算机、投影仪等。
五、教学评估本章节的教学评估将采用多元化的评估方式,全面、客观地评价学生的学习成果。
评估方式包括:1.平时表现:通过课堂参与、提问、讨论等环节,记录学生的表现,占总评的30%。
2.作业:布置与本章节内容相关的作业,要求学生独立完成,占总评的20%。
3.考试:设计针对本章节内容的考试,测试学生对运输问题及Lingo建模的掌握程度,占总评的50%。
用lingo解决运输问题(一)实验目的1. 运输问题求解的编程实现2(掌握使用matlab、Lingo、Excel的求解功能求解运输问题,并对结果进行分析。
(二)实验内容《运筹学》清华三版P98页 3.3题Lingo程序代码及运行结果(选取部分):<1>3.3(1):程序代码:model:sets:xiao/1..4/:s;chan/1..3/:h;link(chan,xiao):x,y;endsetsdata:y=3 7 6 42 43 24 3 8 5;h=5 2 3;s=3 3 2 2;enddatamin=@sum(link:x*y);@for(xiao(j):@sum(chan(i):x(i,j))=s(j));@for(chan(i):@sum(xiao(j):x(i,j))=h(i)); 运行结果及结果分析:Objective value: 32.00000产地1分别将数量为3和2的产品运往销地甲和丁;产地2将数量为2的产品运往销地丙;产地3将数量为3的产品运往销地乙;该运输问题的最小费用为32.<2>3.3(2):程序代码:model:sets:xiao/1..4/:s;chan/1..3/:h;link(chan,xiao):x,y; endsetsdata:y=10 6 7 1216 10 5 95 4 10 10;h=4 9 4;s=5 2 4 6;enddatamin=@sum(link:x*y); @for(xiao(j):@sum(chan(i):x(i,j))=s(j));@for(chan(i):@sum(xiao(j):x(i,j))=h(i));运行结果及结果分析:Objective value: 118.0000产地1将数量为1、2、1的产品分别运往销地甲、乙、丙;产地将数量为3、6的产品运往销地丙、丁;产地3将数量为4的产品运往销地甲。
用lingo解决运输问题(一)实验目的1. 运输问题求解的编程实现2.掌握使用matlab、Lingo、Excel的求解功能求解运输问题,并对结果进行分析。
(二)实验内容《运筹学》清华三版P98页 3.3题Lingo程序代码及运行结果(选取部分):<1>3.3(1):程序代码:model:sets:xiao/1..4/:s;chan/1..3/:h;link(chan,xiao):x,y;endsetsdata:y=3 7 6 42 43 24 3 8 5;h=5 2 3;s=3 3 2 2;enddatamin=@sum(link:x*y);@for(xiao(j):@sum(chan(i):x(i,j))=s(j));@for(chan(i):@sum(xiao(j):x(i,j))=h(i));运行结果及结果分析:Objective value: 32.00000产地1分别将数量为3和2的产品运往销地甲和丁;产地2将数量为2的产品运往销地丙;产地3将数量为3的产品运往销地乙;该运输问题的最小费用为32.<2>3.3(2):model:sets:xiao/1..4/:s;chan/1..3/:h;link(chan,xiao):x,y;endsetsdata:y=10 6 7 1216 10 5 95 4 10 10;h=4 9 4;s=5 2 4 6;enddatamin=@sum(link:x*y);@for(xiao(j):@sum(chan(i):x(i,j))=s(j));@for(chan(i):@sum(xiao(j):x(i,j))=h(i));运行结果及结果分析:Objective value: 118.0000产地1将数量为1、2、1的产品分别运往销地甲、乙、丙;产地将数量为3、6的产品运往销地丙、丁;产地3将数量为4的产品运往销地甲。
最小费用为118.<3>3.3(3):程序代码:model:sets:xiao/1..5/:s;chan/1..4/:h;link(chan,xiao):x,y;endsetsdata:y=10 20 5 9 102 10 8 30 61 20 7 10 4h=5 6 2 9;s=4 4 6 2 4;enddatamin=@sum(link:x*y);@for(xiao(j):@sum(chan(i):x(i,j))=s(j));@for(chan(i):@sum(xiao(j):x(i,j))<=h(i));运行结果及结果分析:Objective value: 90.00000产地1分别将数量为1、2的产品运往销地丙、丁;产地2分别将数量为4、2的产品运往销地甲、戊;产地3将数量为2的产品运往销地戊;产地4分别将数量为4、5的产品运往销地乙、丙;最小运费为90.<4>3.3(4):程序代码:model:sets:xiao/1..5/:s;chan/1..5/:h;link(chan,xiao):x,y;endsetsdata:y=10 18 29 13 2213 10000 21 14 160 6 11 3 100009 11 23 18 1924 28 36 30 34;h=100 120 140 80 60;s=100 120 100 60 80;enddatamin=@sum(link:x*y);@for(xiao(j):@sum(chan(i):x(i,j))=s(j));@for(chan(i):@sum(xiao(j):x(i,j))<=h(i));运行结果及结果分析:Objective value: 5520.000产地1将数量为100的产品运往销地甲;产地2分别将数量为40、80的产品运往销地丙、戊;产地3分别将数量为的产品运往销地乙、丙、丁;产地4将数量为80的产品运往销地乙;产地5将数量为20的产品运往销地乙。
运筹学实例分析及lingo 求解一、线性规划某公司有6个仓库,库存货物总数分别为60、55、51、43、41、52,现有8个客户各要一批货,数量分别为35,37,22,32,41,32,43,38。
各供货仓库到8个客户处的单位货物运输价见表试确定各仓库到各客户处的货物调运数量,使总的运输费用最小。
解:设ijx 表示从第i 个仓库到第j 个客户的货物运量。
ij c表示从第i 个仓库到第j 个客户的单位货物运价,i a 表示第i 个仓库的最大供货量,j d 表示第j 个客户的订货量。
目标函数是使总运输费用最少,约束条件有三个:1、各仓库运出的货物总量不超过其库存数2、各客户收到的货物总量等于其订货数量3、非负约束数学模型为:∑∑===6181)(min i j ijij x c x f⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥===≤∑∑==08,,2,1,6,2,1,,..6181ij j i ij i j ij x j d x i a x t s 编程如下:model : Sets :Wh/w1..w6/:ai; Vd/v1..v8/:dj;links(wh,vd):c,x;endsetsData:ai=60,55,51,43,41,52;dj=35,37,22,32,41,32,43,38;c=6,2,6,7,4,2,5,94,9,5,3,8,5,8,25,2,1,9,7,4,3,37,6,7,3,9,2,7,12,3,9,5,7,2,6,55,5,2,2,8,1,4,3;EnddataMin=@sum(links(i,j):c(i,j)*x(i,j));@for(wh(i):@sum(vd(j):x(i,j))<=ai(i));@for(vd(j):@sum(wh(i):x(i,j))=dj(j));endGlobal optimal solution found.Objective value: 664.0000Total solver iterations: 0Variable Value Reduced Cost AI( W1) 60.00000 0.000000 AI( W2) 55.00000 0.000000 AI( W3) 51.00000 0.000000 AI( W4) 43.00000 0.000000 AI( W5) 41.00000 0.000000 AI( W6) 52.00000 0.000000 DJ( V1) 35.00000 0.000000 DJ( V2) 37.00000 0.000000 DJ( V3) 22.00000 0.000000 DJ( V4) 32.00000 0.000000 DJ( V5) 41.00000 0.000000 DJ( V6) 32.00000 0.000000 DJ( V7) 43.00000 0.000000 DJ( V8) 38.00000 0.000000 C( W1, V1) 6.000000 0.000000 C( W1, V2) 2.000000 0.000000 C( W1, V3) 6.000000 0.000000 C( W1, V4) 7.000000 0.000000 C( W1, V5) 4.000000 0.000000 C( W1, V6) 2.000000 0.000000 C( W1, V7) 5.000000 0.000000C( W2, V1) 4.000000 0.000000 C( W2, V2) 9.000000 0.000000 C( W2, V3) 5.000000 0.000000 C( W2, V4) 3.000000 0.000000 C( W2, V5) 8.000000 0.000000 C( W2, V6) 5.000000 0.000000 C( W2, V7) 8.000000 0.000000 C( W2, V8) 2.000000 0.000000 C( W3, V1) 5.000000 0.000000 C( W3, V2) 2.000000 0.000000 C( W3, V3) 1.000000 0.000000 C( W3, V4) 9.000000 0.000000 C( W3, V5) 7.000000 0.000000 C( W3, V6) 4.000000 0.000000 C( W3, V7) 3.000000 0.000000 C( W3, V8) 3.000000 0.000000 C( W4, V1) 7.000000 0.000000 C( W4, V2) 6.000000 0.000000 C( W4, V3) 7.000000 0.000000 C( W4, V4) 3.000000 0.000000 C( W4, V5) 9.000000 0.000000 C( W4, V6) 2.000000 0.000000 C( W4, V7) 7.000000 0.000000 C( W4, V8) 1.000000 0.000000 C( W5, V1) 2.000000 0.000000 C( W5, V2) 3.000000 0.000000 C( W5, V3) 9.000000 0.000000 C( W5, V4) 5.000000 0.000000 C( W5, V5) 7.000000 0.000000 C( W5, V6) 2.000000 0.000000 C( W5, V7) 6.000000 0.000000 C( W5, V8) 5.000000 0.000000 C( W6, V1) 5.000000 0.000000 C( W6, V2) 5.000000 0.000000 C( W6, V3) 2.000000 0.000000 C( W6, V4) 2.000000 0.000000 C( W6, V5) 8.000000 0.000000 C( W6, V6) 1.000000 0.000000 C( W6, V7) 4.000000 0.000000 C( W6, V8) 3.000000 0.000000 X( W1, V1) 0.000000 5.000000 X( W1, V2) 19.00000 0.000000 X( W1, V3) 0.000000 5.000000X( W1, V5) 41.00000 0.000000 X( W1, V6) 0.000000 2.000000 X( W1, V7) 0.000000 2.000000 X( W1, V8) 0.000000 10.00000 X( W2, V1) 1.000000 0.000000 X( W2, V2) 0.000000 4.000000 X( W2, V3) 0.000000 1.000000 X( W2, V4) 32.00000 0.000000 X( W2, V5) 0.000000 1.000000 X( W2, V6) 0.000000 2.000000 X( W2, V7) 0.000000 2.000000 X( W2, V8) 0.000000 0.000000 X( W3, V1) 0.000000 4.000000 X( W3, V2) 11.00000 0.000000 X( W3, V3) 0.000000 0.000000 X( W3, V4) 0.000000 9.000000 X( W3, V5) 0.000000 3.000000 X( W3, V6) 0.000000 4.000000 X( W3, V7) 40.00000 0.000000 X( W3, V8) 0.000000 4.000000 X( W4, V1) 0.000000 4.000000 X( W4, V2) 0.000000 2.000000 X( W4, V3) 0.000000 4.000000 X( W4, V4) 0.000000 1.000000 X( W4, V5) 0.000000 3.000000 X( W4, V6) 5.000000 0.000000 X( W4, V7) 0.000000 2.000000 X( W4, V8) 38.00000 0.000000 X( W5, V1) 34.00000 0.000000 X( W5, V2) 7.000000 0.000000 X( W5, V3) 0.000000 7.000000 X( W5, V4) 0.000000 4.000000 X( W5, V5) 0.000000 2.000000 X( W5, V6) 0.000000 1.000000 X( W5, V7) 0.000000 2.000000 X( W5, V8) 0.000000 5.000000 X( W6, V1) 0.000000 3.000000 X( W6, V2) 0.000000 2.000000 X( W6, V3) 22.00000 0.000000 X( W6, V4) 0.000000 1.000000 X( W6, V5) 0.000000 3.000000 X( W6, V6) 27.00000 0.000000 X( W6, V7) 3.000000 0.000000Row Slack or Surplus Dual Price 1 664.0000 -1.000000 2 0.000000 3.000000 3 22.00000 0.000000 4 0.000000 3.000000 5 0.000000 1.000000 6 0.000000 2.000000 7 0.000000 2.000000 8 0.000000 -4.000000 9 0.000000 -5.000000 10 0.000000 -4.000000 11 0.000000 -3.000000 12 0.000000 -7.000000 13 0.000000 -3.000000 14 0.000000 -6.000000 15 0.000000 -2.000000由以上结果可以清楚的看到由各仓库到各客户处的货物调运数量,由此得出的符合条件的最佳运货方案,而使运费最低,最低为664。
1、 实验目的和任务1.1. 进一步把握Lingo 编程操作;1.2通过实验进一步把握运筹学运输问题的建模和求解进程,提高学生分析问题和解决问题能力。
2、 实验仪器、设备及材料运算机、Lingo3、 实验内容运输问题问题P271设有某种物资需要从m 个产地12,,...,m A A A 运到n 个销地12,,...,n B B B ,其中每一个产地的生产量为12,,...,m a a a ,每一个销地的需求量为12,,...,n b b b 。
设从产地i A 到销地j B 的运费单价为(1,2,...,,1,2,...,),ij c i m j n ==,问如何调运可使总运费最少?3个产地4个销地的运输问题建模决策变量:决策变量确实是产地i A 到销地j B 的运量ij x目标函数:11min m nij ij i j z c x ===∑∑,约束条件:第i 个产地的运出量应小于或等于该地的生产量,即1,1,2,...,.n ij i j xa i m =≤=∑第j 个销地的运入量应等于该地的需求量,即1,1,2,....m ij j i xb j n ===∑求解进程编写模型程序:model :! 3 Warehouse,4 Customer Transportation Problem;sets :Warehouse/1..3/:a;Customer/1..4/:b;Routes(warehouse,customer):c,x;endsets!here are the parameters;data :a=30,25,21;b=15,17,22,12;c=6,2,6,7,4,9,5,3,8,8,1,5;enddata! The objective;[obj] min =@sum (routes:c*x);!The supply constraints;@for (warehouse(i):[sup]@sum (customer(j):x(i,j))<=a(i));!The demand constraints;@for (customer(j):[dem] @sum (warehouse(i):x(i,j))=b(j));end计算结果:Global optimal solution found.Objective value: 161.0000Total solver iterations: 6Variable Value Reduced CostA( 1) 30.00000 0.000000A( 2) 25.00000 0.000000A( 3) 21.00000 0.000000B( 1) 15.00000 0.000000B( 2) 17.00000 0.000000B( 3) 22.00000 0.000000B( 4) 12.00000 0.000000C( 1, 1) 6.000000 0.000000C( 2, 1) 4.000000 0.000000C( 2, 2) 9.000000 0.000000C( 2, 3) 5.000000 0.000000C( 2, 4) 3.000000 0.000000C( 3, 1) 8.000000 0.000000C( 3, 2) 8.000000 0.000000C( 3, 3) 1.000000 0.000000C( 3, 4) 5.000000 0.000000X( 1, 1) 2.000000 0.000000X( 1, 2) 17.00000 0.000000X( 1, 3) 1.000000 0.000000X( 1, 4) 0.000000 2.000000X( 2, 1) 13.00000 0.000000X( 2, 2) 0.000000 9.000000X( 2, 3) 0.000000 1.000000X( 2, 4) 12.00000 0.000000X( 3, 1) 0.000000 7.000000X( 3, 2) 0.000000 11.00000X( 3, 3) 21.00000 0.000000X( 3, 4) 0.000000 5.000000Row Slack or Surplus Dual PriceOBJ 161.0000 -1.000000SUP( 1) 10.00000 0.000000SUP( 2) 0.000000 2.000000SUP( 3) 0.000000 5.000000DEM( 1) 0.000000 -6.000000DEM( 2) 0.000000 -2.000000DEM( 3) 0.000000 -6.000000事实上,咱们关切更多的是那些非零变量,因此,可选择“Lingo|solution..”弹出一个对话框(介绍此对话框),选择“nonzeros only”,即可只列出非零变量:Global optimal solution found.Objective value: 161.0000Total solver iterations: 6Variable Value Reduced CostA( 1) 30.00000 0.000000A( 2) 25.00000 0.000000A( 3) 21.00000 0.000000B( 1) 15.00000 0.000000B( 2) 17.00000 0.000000B( 3) 22.00000 0.000000C( 1, 3) 6.000000 0.000000C( 1, 4) 7.000000 0.000000C( 2, 1) 4.000000 0.000000C( 2, 2) 9.000000 0.000000C( 2, 3) 5.000000 0.000000C( 2, 4) 3.000000 0.000000C( 3, 1) 8.000000 0.000000C( 3, 2) 8.000000 0.000000C( 3, 3) 1.000000 0.000000C( 3, 4) 5.000000 0.000000X( 1, 1) 2.000000 0.000000X( 1, 2) 17.00000 0.000000X( 1, 3) 1.000000 0.000000X( 2, 1) 13.00000 0.000000X( 2, 4) 12.00000 0.000000X( 3, 3) 21.00000 0.000000Row Slack or Surplus Dual PriceSUP( 2) 0.000000 2.000000SUP( 3) 0.000000 5.000000DEM( 1) 0.000000 -6.000000DEM( 2) 0.000000 -2.000000DEM( 3) 0.000000 -6.000000DEM( 4) 0.000000 -5.000000结果分析由于Lingo软件中采纳集,数据段和循环函数的编写方式,因此便于程序推行到一样形式利用,例如,只需修改运输问题中产地和销地的个数,和参数a,b,c的值,就能够够求解任何运输问题。
一.实验目的1、学会使用LINGO 软件求解运输问题的步骤与方法。
2、掌握使用LINGO 对运输问题的求解功能,并对结果进行分析。
二.实验内容1.已知某企业有甲、乙、丙三个分厂生产一种产品,其产量分别为7、9、7个单位,需运往A 、B 、C 、D 四个门市部,各门市部需要量分别为3、5、7、8个单位。
已知单位运价如下表。
试确定运输计划使总运费最少。
2.现在要在五个工人中确定四个人来分别完成四项工作中的一项工作。
由于每个工人的技术特长不同,他们完成各项工作所需的工时也不同。
每个工人完成各项工作所需工时如下表所示,试找出一个工作分配方案,使总工时最小。
三. 模型建立1.由题设知,总产量为:7+9+7=23个单位,总销量为:3+5+7+8=23个单位,所以这是一个产销平衡的运输问题。
设)4,3,2,1;3,2,1(==j i x ij 代表从第i 个产地运往第j 个销地的数量,z 为总运费。
i a 表示第i 个产地的产量,j b 表示第j 个销地的销量ij c 表示从第i 个产地运往第j 个销地的单位产品运输费用。
则该问题的数学模型为:34114131max 0,1,2,3;1,2,3,4ij iji j ij i j ij j i ij Z c x x a x b x i j =====⎧=⎪⎪⎪=⎨⎪⎪≥==⎪⎩∑∑∑∑2. 设0-1变量,1,0ij i x i ⎧=⎨⎩当第个人完成某j 项工作,当第个人不完成某j 项工作则该问题的数学模型为:54115141min 1,1,01ij iji j ij i ij j ij Z c x x j x i x i j =====⎧= =1,2,3,4⎪⎪⎪= = 1,2,3,4,5⎨⎪⎪= =1,2,3,4,5;=1,2,3,4⎪⎩∑∑∑∑或,四. 模型求解(含经调试后正确的源程序)1、编写程序1-1.m 如下:model : sets :warehouses/wh1..wh3/: capacity; vendors/v1..v4/: demand;links(warehouses,vendors): cost, volume; endsets data :capacity=7 9 7; demand=3 5 7 8; cost= 12 13 10 11 10 12 14 10 14 11 15 12; enddatamin =@sum (links(I,J): cost(I,J)*volume(I,J));@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));end2、编写程序2-1.m如下:model:sets:workers/w1..w5/;jobs/j1..j4/;links(workers,jobs): cost,volume;Endsetsdata:cost=9 4 3 74 65 65 4 7 57 5 2 310 6 7 4;enddatamin=@sum(links: cost*volume);@for(workers(I): @sum(jobs(J): volume(I,J))<=1);@for(jobs(J): @sum(workers(I): volume(I,J))=1);@for(links(i,j): @bin(volume(i,j)));End五.结果分析最优调运方案为:甲→C:7单位;甲→D:0单位;乙→A:3单位;乙→D:6单位;丙→B:5单位;丙→D:2单位。
172科技创新导报 Science and Technology Innovation Herald2008 NO.36Science and Technology Innovation Herald管 理 科 学随着社会经济的发展,运输业在经济生活中的地位越来越重要,国内国际的物流、人流最终都离不开具体的运输环节。
在社会产品的最终成本中,运输成本约占10%-30%,所以,开展合理运输,节约运输成本,对于降低社会产品的总成本起着重要作用。
因此,运输企业需要在众多运输方案中选择总运费最小的。
这样的问题,在物流运筹学中称为运输问题。
在求解运输问题方面,我们通常介绍的是表上作业法。
这是一种手工做法。
当输出地个数M,和输入地个数N比较大时,这种手工的表上作业法就显得很繁琐了,这时我们要处理的是至少M+1行N+1列的表格。
因此,我们考虑用计算机来处理这个问题。
可以用来求解运输问题的软件常见的有,lingo、lindo、MATLAB、office中的excel等。
他们各有特色,今天,我就通过一个实例来介绍lingo软件在运输问题中的应用。
傲来公司有三个仓库:H1、H2、H3,A商品在这三仓库中的库存分别为100吨,95吨,110吨;另知有四家大型超市(S1、S2、S3、S4)需要该公司的A商品,他们的需求量分别是55吨,80吨,90吨,75吨 。
我们面临的问题是如何利用现有库存资源满足这四家超市的需求,并使总运输成本最低。
从三个仓库向四家超市送货的运输成本价(元/吨)如表1所示。
表1该运输问题的目标很明了,就是总运费最小化。
所以我们令Xij表示从仓库Hi到超市Sj运送的商品吨数。
从而有运输问题的数学模型:目标函数:MIN=25*X11+20*X12….+20*X33+22*X34库存约束:∑X1j<=100;∑X2j<=95;∑X3j<=110;j=1,2,3,4需求约束:∑Xi1=55;∑Xi2=80;∑Xi3=90;∑Xi4=75;i=1,2,3非负约束:Xij>=0用lingo求解的过程如下:model:!3仓库,4超市运输问题模型;sets:h/h1 h2 h3/:capacity;s/s1 s2 s3 s4/:demand;links(h,s):cost,x;endsets!目标函数;min=@sum(links(i,j):cost(i,j)*x(i,j));!需求函数;@for(s(j):@sum(h(i):x(i,j))=demand(j));!供用约束;@for(h(i):@sum(s(j):x(i,j))<=capacity(i));!数据段;data:capacity=100 95 110;demand=55 80 90 75;cost=25 20 22 19 20 18 11 20 15 1820 22;enddata在lingo8.0,windows2000环境中运行结果如下:Global optimal solution found.Objective value: 4720.000Total solver iterations: 4Variable Value Reduced CostCAPACITY( H1)100.0000 0.000000CAPACITY( H2) 95.0000 0.000000CAPACITY( H3)110.0000 0.000000DEMAND( S1) 55.00000 0.000000DEMAND( S2) 80.00000 0.000000DEMAND( S3) 90.00000 0.000000DEMAND( S4) 75.00000 0.000000COST( H1, S1)25.00000 0.000000COST( H1, S2)20.00000 0.000000COST( H1, S3)22.00000 0.000000COST( H1, S4)19.00000 0.000000COST( H2, S1)20.00000 0.000000COST( H2, S2)18.00000 0.000000COST( H2, S3)11.00000 0.000000COST( H2, S4)20.00000 0.000000COST( H3, S1)15.00000 0.000000COST( H3, S2)18.00000 0.000000COST( H3, S3)20.00000 0.000000COST( H3, S4)22.00000 0.000000X( H1, S1) 0.000000 8.000000X( H1, S2) 20.00000 0.000000X( H1, S3) 0.000000 9.000000X( H1, S4) 75.00000 0.000000X( H2, S1) 0.000000 5.000000X( H2, S2) 5.000000 0.000000X( H2, S3) 90.00000 0.000000X( H2, S4) 0.000000 3.000000X( H3, S1) 55.00000 0.000000X( H3, S2) 55.00000 0.000000X( H3, S3) 0.000000 9.000000X( H3, S4) 0.000000 5.000000Row Slack or Surplus Dual Price1 4720.000 -1.0000002 0.000000 -17.000003 0.000000 -20.000004 0.000000 -13.000005 0.000000 -19.000006 5.000000 0.0000007 0.000000 2.0000008 0.000000 2.000000该结果显示最低运费为4720元,最优运输方案是仓库1向超市2供货20吨,仓库1向超市4供货75吨,仓库2向超市2供货5吨,仓库2向超市3供货90吨,仓库3向超市1供货55吨,仓库3向超市2供货55吨。
2012——2013学年第一学期合肥学院数理系实验报告课程名称:运筹学实验项目:应用LINGO软件求解运输问题实验类别:综合性□设计性□√验证性□专业班级:姓名:学号:实验地点:实验时间:指导教师:成绩:一.实验目的1、学会使用LINGO 软件求解运输问题的步骤与方法。
2、掌握使用LINGO 对运输问题的求解功能,并对结果进行分析。
二.实验内容1.已知某企业有甲、乙、丙三个分厂生产一种产品,其产量分别为7、9、7个单位,需运往A 、B 、C 、D 四个门市部,各门市部需要量分别为3、5、7、8个单位。
已知单位运价如下表。
试确定运输计划使总运费最少。
2.现在要在五个工人中确定四个人来分别完成四项工作中的一项工作。
由于每个工人的技术特长不同,他们完成各项工作所需的工时也不同。
每个工人完成各项工作所需工时如下表所示,试找出一个工作分配方案,使总工时最小。
三. 模型建立1.由题设知,总产量为:7+9+7=23个单位,总销量为:3+5+7+8=23个单位,所以这是一个产销平衡的运输问题。
设)4,3,2,1;3,2,1(==j i x ij 代表从第i 个产地运往第j 个销地的数量,z 为总运费。
i a 表示第i 个产地的产量,j b 表示第j 个销地的销量ij c 表示从第i 个产地运往第j 个销地的单位产品运输费用。
则该问题的数学模型为:34114131max 0,1,2,3;1,2,3,4ij iji j ij ij ij j i ij Z c x x a x b x i j =====⎧=⎪⎪⎪=⎨⎪⎪≥==⎪⎩∑∑∑∑2. 设0-1变量,1,0ij i x i ⎧=⎨⎩当第个人完成某j 项工作,当第个人不完成某j 项工作 则该问题的数学模型为:54115141min 1,1,01ij iji j ij i ij j ijZ c x x j x i x i j =====⎧= =1,2,3,4⎪⎪⎪= = 1,2,3,4,5⎨⎪⎪= =1,2,3,4,5;=1,2,3,4⎪⎩∑∑∑∑或,四. 模型求解(含经调试后正确的源程序)1、编写程序1-1.m 如下:model :sets :warehouses/wh1..wh3/: capacity;vendors/v1..v4/: demand;links(warehouses,vendors): cost, volume;endsetsdata :capacity=7 9 7;demand=3 5 7 8;cost= 12 13 10 1110 12 14 1014 11 15 12;enddatamin =@sum (links(I,J): cost(I,J)*volume(I,J));@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));end2、编写程序2-1.m如下:model:sets:workers/w1..w5/;jobs/j1..j4/;links(workers,jobs): cost,volume;Endsetsdata:cost=9 4 3 74 65 65 4 7 57 5 2 310 6 7 4;enddatamin=@sum(links: cost*volume);@for(workers(I): @sum(jobs(J): volume(I,J))<=1);@for(jobs(J): @sum(workers(I): volume(I,J))=1);@for(links(i,j): @bin(volume(i,j)));End五.结果分析1、运行结果:Global optimal solution found.Objective value: 239.0000Infeasibilities: 0.000000Total solver iterations: 6Variable Value Reduced Cost CAPACITY( WH1) 7.000000 0.000000 CAPACITY( WH2) 9.000000 0.000000 CAPACITY( WH3) 7.000000 0.000000 DEMAND( V1) 3.000000 0.000000 DEMAND( V2) 5.000000 0.000000 DEMAND( V3) 7.000000 0.000000 DEMAND( V4) 8.000000 0.000000COST( WH1, V1) 12.00000 0.000000COST( WH1, V2) 13.00000 0.000000COST( WH1, V3) 10.00000 0.000000COST( WH1, V4) 11.00000 0.000000COST( WH2, V1) 10.00000 0.000000COST( WH2, V2) 12.00000 0.000000COST( WH2, V3) 14.00000 0.000000COST( WH2, V4) 10.00000 0.000000COST( WH3, V1) 14.00000 0.000000COST( WH3, V2) 11.00000 0.000000COST( WH3, V3) 15.00000 0.000000COST( WH3, V4) 12.00000 0.000000VOLUME( WH1, V1) 0.000000 1.000000 VOLUME( WH1, V2) 0.000000 3.000000 VOLUME( WH1, V3) 7.000000 0.000000 VOLUME( WH1, V4) 0.000000 0.000000 VOLUME( WH2, V1) 3.000000 0.000000 VOLUME( WH2, V2) 0.000000 3.000000 VOLUME( WH2, V3) 0.000000 5.000000 VOLUME( WH2, V4) 6.000000 0.000000 VOLUME( WH3, V1) 0.000000 2.000000 VOLUME( WH3, V2) 5.000000 0.000000 VOLUME( WH3, V3) 0.000000 4.000000 VOLUME( WH3, V4) 2.000000 0.000000Row Slack or Surplus Dual Price1 239.0000 -1.0000002 0.000000 -12.000003 0.000000 -11.000004 0.000000 -11.000005 0.000000 -12.000006 0.000000 1.0000007 0.000000 2.0000008 0.000000 0.000000所以,最优调运方案为:甲→C:7单位;甲→D:0单位;乙→A:3单位;乙→D:6单位;丙→B:5单位;丙→D:2单位。
运输问题优化模型运输方案问题的优化模型摘要:本文研究运输最优化问题。
运输问题(Transportation Problem)是一个典型的线性规划问题。
一般的运输问题就是要解决把某种产品从若干个产地调运到若干个销地,在每个产地的供应量与每个销地的需求量已知,并知道各地之间的运输单价的前提下,如何确定一个使得总的运输费用最小的方案的问题。
本论文运用线性规划的数学模型来解决此运输问题中总费用最小的问题。
引入x变量作为决策变量,建立目标函数,列出约束条件,借助LINGO软件进行模型求解运算,得出其中的最优解,使得把某种产品从2个产地调运到3个客户的总费用最小。
关键词:LINGO软件运输模型最优化线性规划1问题重述与问题分析1、1 问题重述要把一种产品从产地运到客户处,发量、收量及产地到客户的运输费单价如表1所示。
表1 运输费用表客户1 客户2 客户3 发量产地1 10 4 12 3000 产地2 8 10 3 4000 需求量2000 1500 5000这是一个供求不平衡问题,产品缺少1500个单位,因此决定运输方案应按下列目标满足要求:第一目标,客户1为重要部门,需求量必须全部满足;第二目标,满足其他两个客户至少75%的需要量;第三目标,使运费尽量少;第四目标,从产地2到客户1的运量至少有1000个单位。
1、2 问题分析运输方案就是安排从两个产地向三个客户运送产品的最佳方案,目标是使运费最少。
而从题目来看产品的总量只有7000个单位,客户的需求量却有8500个单位,产品明显的缺了1500各单位,所以至少要按以下要求分配运输,首先客户1为重要部门,需求量必须全部满足,从产地2到客户1的运量至少有1000个单位,即至少向客户1发2000个单位,且从产地2向客户1发的要大于等于1000个单位;其次满足其他两个客户至少75%的需要量,即至少得向客户2发1125个单位,至少向客户3发3750个单位。
最佳的运输方案就是满足了要求中的发量,而让运输费用最少的方案。
sets:factory/1..3/:s1,s2,s3,s4;!工厂四种产品供应量;warhouse/1..13/:lwar,fd,eva,yun,war1,war2,war3,war4,wq1,wq2,wq3,wq4;!配送中心最大仓储量、评价值、固定运营成本、库存成本以及库存量;customer/1..24/:d1,d2,d3,d4;!客户四种产品的需求量;tr/1..13/:z;link1(factory,warhouse):d,x1,x2,x3,x4;!工厂到客户的运输距离,四种产品的运输量;link2(warhouse,customer):dd,xx1,xx2,xx3,xx4,xxx1,xxx2,xxx3,xxx4;!物流中心到客户运输距离、运输量,未超出安全距离的运输量;endsetsdata:!供用量;s1=;s2=;s3=;s4=;!最大库存;lwar=;!安全距离;fd=;!需求量;d1=;d2=;d3=;d4=;!运输成本;tc=;ttc=;yun=;!运营成本;u=;!超出最佳半径的惩罚成本;w1=;w2=;w3=;!单位库存成本;war1=;war2=;war3=;war4=;d=;!各钢厂到备选配送中心距离;dd=;!备选配送中心到需求点的距离;enddataf1=@sum(link1(i,j):x1(i,j)*tc*d(i,j))+@sum(link1(i,j):x2(i,j)*tc*d(i,j) )+@sum(link1(i,j):x3(i,j)*tc*d(i,j))+@sum(link1(i,j):x4(i,j)*tc*d(i,j)) +@sum(link2(j,k):xx1(j,k)*ttc*dd(j,k))+@sum(link2(j,k):xx2(j,k)*ttc*dd( j,k))+@sum(link2(j,k):xx3(j,k)*ttc*dd(j,k))+@sum(link2(j,k):xx4(j,k)*tt c*dd(j,k))+@sum(warhouse(j):z(j)*yun)+@sum(link2(j,k):@smax(dd(j,k)-600,0)*(xx1+xx2+xx3+xx4-xxx1-xxx2-xxx3-xx x4)*u)+@sum(warhouse(j):wq1(j)*war1+wq2(j)*war2+war3*wq3(j)+wq4(j)*war4 );f2=@sum(link2(j,k):xxx1+xxx2+xxx3+xxx4);max=(7731050000-f1)/6485240000+f2/1125;!每种产品的安全距离运输量;@for(link2:xxx1=@if(dd#gt#600,0,xx1));@for(link2:xxx2=@if(dd#gt#600,0,xx2));@for(link2:xxx3=@if(dd#gt#600,0,xx3));@for(link2:xxx4=@if(dd#gt#600,0,xx4));!超过安全距离的惩罚成本;tt=@sum(link2(j,k):@smax(dd-600,0)*(xx1-xxx1)*u)+@sum(link2(j,k):@smax( dd-600,0)*(xx2-xxx2)*u)+@sum(link2(j,k):@smax(dd-600,0)*(xx3-xxx3)*u)+@sum(link2(j,k):@smax(dd -600,0)*(xx4-xxx4)*u);!工厂供应约束;@for(factory(i):@sum(warhouse(j):x1(i,j))<=s1(i));@for(factory(i):@sum(warhouse(j):x2(i,j))<=s2(i));@for(factory(i):@sum(warhouse(j):x3(i,j))<=s3(i));@for(factory(i):@sum(warhouse(j):x4(i,j))<=s4(i));!配送中心库存量;@for(warhouse(j):wq1=-@sum(customer(k):xx1(j,k))+@sum(factory(i):x1(i,j)));@for(warhouse(j):wq2=-@sum(customer(k):xx2(j,k))+@sum(factory(i):x2(i,j)));@for(warhouse(j):wq3=-@sum(customer(k):xx3(j,k))+@sum(factory(i):x3(i,j)));@for(warhouse(j):wq4=-@sum(customer(k):xx4(j,k))+@sum(factory(i):x4(i,j)));!配送中心流出量小于流入量;@for(warhouse(j):@sum(customer(k):xx1(j,k))<=@sum(factory(i):x1(i,j)));@for(warhouse(j):@sum(customer(k):xx2(j,k))<=@sum(factory(i):x2(i,j))); @for(warhouse(j):@sum(customer(k):xx3(j,k))<=@sum(factory(i):x3(i,j))); @for(warhouse(j):@sum(customer(k):xx4(j,k))<=@sum(factory(i):x4(i,j))); !满足顾客需求;@for(customer(k):@sum(warhouse(j):xx1(j,k)*z(j))=d1(k));@for(customer(k):@sum(warhouse(j):xx2(j,k)*z(j))=d2(k));@for(customer(k):@sum(warhouse(j):xx3(j,k)*z(j))=d3(k));@for(customer(k):@sum(warhouse(j):xx4(j,k)*z(j))=d4(k));@sum(tr(j):z(j))<=13;!限制选择配送中心数量;@for(tr(j):@bin(z(j)));!z是0-1变量;end。
一.实验目的
1、学会使用LINGO 软件求解运输问题的步骤与方法。
2、掌握使用LINGO 对运输问题的求解功能,并对结果进行分析。
二.实验内容
1.已知某企业有甲、乙、丙三个分厂生产一种产品,其产量分别为7、9、7个单位,需运往A 、B 、C 、D 四个门市部,各门市部需要量分别为3、5、7、8个单位。
已知单位运价如下表。
试确定运输计划使总运费最少。
2.现在要在五个工人中确定四个人来分别完成四项工作中的一项工作。
由于每个工人的技术特长不同,他们完成各项工作所需的工时也不同。
每个工人完成各项工作所需工时如下表所示,试找出一个工作分配方案,使总工时最小。
三. 模型建立
1.由题设知,总产量为:7+9+7=23个单位,总销量为:3+5+7+8=23个单位,所以这是一个产销平衡的运输问题。
设)4,3,2,1;3,2,1(==j i x ij 代表从第i 个产地运往第j 个销地的数量,z 为总运费。
i a 表示第i 个产地的产量,j b 表示第j 个销地的销量ij c 表示从第i 个产地运往第j 个销地的单位产
品运输费用。
则该问题的数学模型为:
3
4
1
1
4
13
1
max 0,1,2,3;1,2,3,4ij ij
i j ij i j ij j i ij Z c x x a x b x i j =====⎧=⎪⎪⎪=⎨⎪⎪≥==⎪⎩∑
∑
∑∑
2. 设0-1变量,1,0ij i x i ⎧=⎨⎩当第个人完成某j 项工作
,当第个人不完成某j 项工作
则该问题的数学模型为:
5
4
115
141
min 1,1,01ij ij
i j ij i ij j ij Z c x x j x i x i j =====⎧= =1,2,3,4⎪⎪⎪
= = 1,2,3,4,5⎨⎪⎪= =1,2,3,4,5;=1,2,3,4⎪⎩
∑∑∑∑或,
四. 模型求解(含经调试后正确的源程序)
1、编写程序1-1.m 如下:
model : sets :
warehouses/wh1..wh3/: capacity; vendors/v1..v4/: demand;
links(warehouses,vendors): cost, volume; endsets data :
capacity=7 9 7; demand=3 5 7 8; cost= 12 13 10 11 10 12 14 10 14 11 15 12; enddata
min =@sum (links(I,J): cost(I,J)*volume(I,J));
@for(vendors(J):
@sum(warehouses(I): volume(I,J))=demand(J));
@for(warehouses(I):
@sum(vendors(J): volume(I,J))<=capacity(I));
end
2、编写程序2-1.m如下:
model:
sets:
workers/w1..w5/;
jobs/j1..j4/;
links(workers,jobs): cost,volume;
Endsets
data:
cost=9 4 3 7
4 6
5 6
5 4 7 5
7 5 2 3
10 6 7 4;
enddata
min=@sum(links: cost*volume);
@for(workers(I): @sum(jobs(J): volume(I,J))<=1);
@for(jobs(J): @sum(workers(I): volume(I,J))=1);
@for(links(i,j): @bin(volume(i,j)));
End
五.结果分析
最优调运方案为:甲→C:7单位;甲→D:0单位;乙→A:3单位;
乙→D:6单位;丙→B:5单位;丙→D:2单位。
最少总运费为:239。
最优指派方案为:Ⅰ→C;Ⅱ→A;Ⅲ→B;Ⅳ→D。
最小总共时为:14。
六.实验总结。