dx a sec t tan t d t
∴ 原式
a sect tan t a tan t
dt
sect d t
ln sec t tan t C1
t
ln
x a
x2 a2 a
C1
x2 a2
(C C1 ln a)
当x a 时 , 令 x u , 则 u a , 于是
du u 2 a2 ln u
2
,
2
sec tdt ln| sect tan t | C1
ln
x a
ln( x
x2 a
a2
C1
x2 a2 ) C.
x2 a2
x
t a
(C C1 ln a)
例4. 求
解:
当x
a时,
令
x
a sec t
,
t
(0,
π 2
)
,
则
x2 a2 a2 sec2 t a2 a tan t
x5 dx
1 x2
t2 1 2
t tdt
t 4 2t 2 1 dt
1 t5 2 t3 t C 1 (8 4x2 3x4 ) 1 x2 C.
53
15
例6 求
1 dx. 1 ex
解 令 t 1 e x e x t 2 1,
x lnt2 1,
dx
t
2t 2
是单调可导函数 , 且
具有原函数 , 则有换元公式
其中 t 1( x) 是 x (t)的反函数 .
证: 设 f [ (t)] (t)的原函数为 (t) , 令 F ( x) [ 1( x) ] (t) f [ (t)] (t)
则