习题课 二重积分的计算
- 格式:ppt
- 大小:559.00 KB
- 文档页数:26
高数二重积分习题加答案用二重积分求立体的表面积二重积分习题课例1 比较I 1 = ∫∫ ( x + y ) 2 dσ 与I 2 = ∫∫ ( x + y ) 3 dσ 的大小,D D其中D 由( x 2 ) 2 + ( y 1) 2 = 2 围成 .y由重积分的性质x+y1I1 I21212xx + y =1用二重积分求立体的表面积例2 将二重积分化成二次积分I = ∫∫ f ( x , y )d xdy ,D: x + y =1 , x C y = 1,x = 0 所围所围. ,1 yD先对y 积分y =1C xI =01∫ dx ∫011 xx 1f ( x , y )d yxy = x C1 C1用二重积分求立体的表面积先对x 积分1 yI =x =1C yD1∫∫ + ∫∫D1 D21 y=1∫ dy ∫01f ( x , y )d x +y +10D2x+∫dy ∫f ( x , y )d xx = y +1 C1用二重积分求立体的表面积例3 将二次积分换序I = D: x ≤ y ≤ 2ax x 2∫0 dx ∫xya2 ax x 2f ( x , y )dy .ax = a a2 y20≤ x≤ay 2 = 2ax x 2即y + ( x a) = a又Q x ≤ a,∴x a = a y2 2222a xI=ady∫y2 2a a yf ( x , y )d x用二重积分求立体的表面积例4 将I = ∫ d y ∫ 0 0 区域边界:区域边界:边界y 2R2 Ry y 2f ( x , y )d x 变为极坐标形式 .即r =2Rsinθπ 即θ = 2x = 2 Ry y 2x=0r =2Rsinθ2R∴ I = ∫ dθ ∫0π 2 02 Rsin θf ( rcos θ , rsin θ )rdr用二重积分求立体的表面积1 x2 例5 计算∫∫ 2 dσ , 其中D由y = x, y = , x = 2 x D y 解围成. 围成. 1 D : ≤ y ≤ x , 1 ≤ x ≤ 2. x∫∫ y2 dσ = ∫1 dx∫Dx22x 1 xx y2D2dyx = ∫ 1 y222 3 dx= ( x x)dx = 9. 1 1 4x∫用二重积分求立体的表面积例6 计算∫∫ y x dσ , 其中D : 1 ≤ x ≤ 1, 0 ≤ y ≤ 1.2 D 先去掉绝对值符号,解先去掉绝对值符号,如图∫∫Dy x2 dσ2D3D12=D +D2 1∫∫ ( x1 1y)dσ + ∫∫ ( y x )dσD3D2= ∫ dx ∫ ( x y )dy + ∫ dx ∫ 2 ( y x2 0 1 xx211211 )dy = . 15用二重积分求立体的表面积例7 证明∫a dx∫a ( x y)证b xxn 21 b f ( y)dy = (b y)n 1 f ( y)dy. n 1∫an 2∫a dx∫a ( x y)b bf ( y)dyy by= xD= ∫ dy∫ ( x y)n 2 f ( y)dxaya=∫ba1 n 1 f ( y) ( x y) dy n 1 yboabx1 b (b y)n 1 f ( y)dy. = n 1 ∫a用二重积分求立体的表面积例8 计算解1∫0 dy∫yy1ysin x dx. x∫0 dy∫y1 01 x sin x sin x dx = ∫ dx∫2 dy 0 x x x= ∫ (1 x)sin xdx= 1 sin1.用二重积分求立体的表面积x2 y2 例9 设D为圆域x 2 + y 2 ≤ R 2 , 求∫∫ 2 + 2 dxdy . a b D y解2由对称性1 y dxdy = ∫∫ ( x 2 + y 2 )dxdy 2 D2ORx∫∫ x dxdy = ∫∫D Dx2 y2 1 1 1 ∴ ∫∫ 2 + 2 dxdy = 2 + 2 ∫∫ ( x 2 + y 2 )dxdy a b 2 a b D D R 2 1 1 1 2π 1 4 1 1 = 2 + 2 ∫ dθ ∫ r rdr = πR 2 + 2 . 0 4 b 2 a a b 0用二重积分求立体的表面积例10 求半球面z = 3a x y 与旋转抛物面2 2 2z x 2 + y 2 = 2az ( a 0 ) 所围成立体的表面积 .oxy用二重积分求立体的表面积S = S1 + S 2zz =3a 2 x 2 y 2 共同的D : 2 x + y 2 = 2azS1 S2x 2 + y 2 ≤ 2a 2 即z = 0oD2ayx用二重积分求立体的表面积S1 : z = 3a 2 x 2 y 23a z z dxdy dA1 = 1 + + dxdy = 2 2 2 3a x y x y 2 2x2 + y2 S2 : z = 2a 2a z z a2 + x2 + y2 dA2 = 1 + + dxdy = dxdy x y a2 2所求面积:所求面积:A = A1 + A2 = ∫∫D3a 3a x y2 2 2dxdy + ∫∫Da2 + x2 + y2 dxdy a用二重积分求立体的表面积= 3a ∫2π 0dθ ∫2a 02a 02a 1 2π rdr + ∫ dθ ∫ a 2 + r 2 rdr 0 a 0 3a 2 r 2 1= 6π a ∫2π rdr + a 3a 2 r 2 12a∫2a 0a 2 + r 2 rdr= 3π a ∫ +1 3a2 r 20 2ad (3a 2 r 2 )πa∫a 2 + r 2 d (a 2 + r 2 )4 2 2 2 = 6 3 + 6 π a . 3 3用二重积分求立体的表面积练习题交换下列二次积分的次序: 交换下列二次积分的次序1 2y 3 3 y1. ∫ dy ∫01 0f ( x , y )dx + ∫ dy ∫1f ( x , y )dx;2. ∫ dx ∫R 21+ 1 x 2 xf ( x , y )dy;计算下列二次积分:计算下列二次积分:二次积分3. ∫ey2dy ∫ e0yx2dx + ∫R R 2ey2dy ∫R2 y 2ex2dx;4.∫155 dx 1 dy ∫ . y ln x y用二重积分求立体的表面积练习题答案1.∫ dx ∫ x0 223 xf ( x , y )dy2 2 y y2 0 R22.∫ dy ∫01y2 0f ( x , y )dx + ∫ dy ∫1R r2f ( x , y )dx).3. I = ∫ π dθ ∫ e2 4 0πrdr =π8(1 e4. I = ∫ dx ∫15x 15 1 dy =∫ ln xdx = 4. 1 ln x y ln x用二重积分求立体的表面积设( x )为[0D关于直线y = x对称, 则若闭区域,1]上的正值连续函数, a ( x )∫∫ f b )( σ ) ∫∫ f ( y, x)dσ1 + (x, y dy = 证明:证明:∫∫ ( x ) D+ ( y ) d Dxdy = 2 (a + b) D为常数,其中a, b为常数,D = {( x , y ) 0 ≤ x , y ≤ 1}. y a ( x ) + b ( y ) 证设I = ∫∫ d xd y y= x 1 ( x) + ( y) Dy 由区域关于直线= x的对称性得a ( y ) + b ( x ) O I = ∫∫ d xd y ( y) + ( x) D1x1 所以, 所以2 I = ∫∫ (a + b )dxdy = a + b I = ( a + b ). 2 D。
重积分习题课1.计算σd yx D ⎰⎰22,其中D 由x y =,x y 1=,2=y 围成。
2.计算积分dxdy y x I D⎰⎰+=)(,其中D 由x y22=,4=+y x ,12=+y x 所围成。
3.计算[]dxdy y x yf x I D⎰⎰++=)(122,其中D 由3x y =,1=y ,1-=x 围成。
4.计算dxdy xye x I Dy x⎰⎰++=)(222,其中:(1)D 为圆域122≤+y x ;(2)D 由直线x y =,1-=y ,1=x 围成。
5.计算二重积分:(1)dxdy x y I D⎰⎰-=||2,其中D :11≤≤-x ,10≤≤y 。
(2)dxdy xy y x I D⎰⎰+-+=)22(22,D 为圆域122≤+y x 在第一象限的部分。
6.交换积分次序:⎰⎰=xdy y x f dx I sin 020),(π。
7.计算dxdy y x I D⎰⎰+=22,其中D 是由心脏线)cos 1(θ+=a r 和圆a r =所围的区域(取圆的外部)。
8.在极坐标系下计算二重积分⎰⎰+Ddxdy y x )(,其中D 是曲线y x y x +=+22围成区域。
9.在极坐标系下把二重积分⎰⎰Dd y x f σ),(化为两种不同次序的累次积分,其中区域D 由222R y x Rx ≤+≤所确定,),(y x f 在D 上连续。
10.计算dxdy yx yx I D⎰⎰+-=)cos(,其中D 是由1=+y x ,0=x 及0=y 所围成。
11.将积分dz z y x f dx dy y x y y yy ⎰⎰⎰+---++)(3022212222)(化成柱坐标和球坐标下的累次积分。
12.计算⎰⎰⎰Ω++=dxdydz y x xy x I )sin 5(2222,其中Ω由)(2122y x z +=,1=z ,4=z 围成。
13.计算⎰⎰⎰Ω-++=dxdydz z y x I |1|222,其中Ω由2223z y x =+,1=z 围成。
二重积分的计算方法例题及解析一、利用直角坐标计算二重积分1. 例题- 计算∬_D(x + y)dσ,其中D是由直线y = x,y = x^2所围成的闭区域。
2. 解析- (1)首先确定积分区域D的范围:- 联立方程<=ft{begin{array}{l}y = x y = x^2end{array}right.,- 解得<=ft{begin{array}{l}x = 0 y = 0end{array}right.和<=ft{begin{array}{l}x = 1 y = 1end{array}right.。
- 所以在x的范围是0≤slant x≤slant1,对于每一个x,y的范围是x^2≤slant y≤slant x。
- (2)然后将二重积分化为累次积分:- ∬_D(x + y)dσ=∫_0^1dx∫_x^2^x(x + y)dy。
- (3)先计算内层积分:- ∫_x^2^x(x + y)dy=∫_x^2^xxdy+∫_x^2^xydy。
- ∫_x^2^xxdy=x<=ft(y)<=ft.rve rt_x^2^x=x(x - x^2)=x^2-x^3。
- ∫_x^2^xydy=(1)/(2)y^2<=ft.rvert_x^2^x=(1)/(2)(x^2-x^4)。
- 所以∫_x^2^x(x + y)dy=x^2-x^3+(1)/(2)(x^2-x^4)=(3)/(2)x^2-x^3-(1)/(2)x^4。
- (4)再计算外层积分:- ∫_0^1((3)/(2)x^2-x^3-(1)/(2)x^4)dx=(3)/(2)×(1)/(3)x^3-(1)/(4)x^4-(1)/(2)×(1)/(5)x^5<=ft.rvert_0^1。
- =(1)/(2)-(1)/(4)-(1)/(10)=(10 - 5 - 2)/(20)=(3)/(20)。
重积分典型例题一、二重积分的概念、性质1、二重积分的概念:d 01(,)lim(,)niiii Df x y f λσξησ→==∆∑⎰⎰其中:D :平面有界闭区域,λ:D 中最大的小区域的直径(直径:小区域上任意两点间距离的最大值者),i σ∆:D 中第i 个小区域的面积2、几何意义:当(,)0f x y ≥时,d (,)Df x y σ⎰⎰表示以曲面(,)z f x y =为曲顶,D 为底的曲顶柱体的体积。
所以d 1Dσ⎰⎰表示区域D 的面积。
3、性质(与定积分类似)::线性性、对积分区域的可加性、比较性质、估值性质、二重积分中值定理(03年)二、二重积分的计算1、在直角坐标系下计算二重积分(1) 若D 为X 型积分区域:12,()()a x b y x y y x ≤≤≤≤,则21()()(,)(,)by x ay x Df x y dxdy dx f x y dy =⎰⎰⎰⎰(2)若D 为Y 型积分区域:12,()()c y d x y x x y ≤≤≤≤,则21()()(,)(,)dx y cx yf x y dxdy dy f x y dx =⎰⎰(X -型或者Y -型区域之和,如图,则123(,)(,)(,)(,)D D D f x y d x d y f x y d x d y f x y d x d y f x y d x=++⎰⎰⎰⎰⎰⎰⎰(4)被积函数含有绝对值符号时,应将积分区域分割成几个子域,使被积函数在每个子域保持同一符号,以消除被积函数中的绝对值符号。
(5)对称性的应用1(,)2(,),(,)0(,)DD f x y dxdy f x y dxdy f x y y D x f x y y ⎧=⎪⎨⎪⎩⎰⎰⎰⎰关于为偶函数区域关于轴对称, 关于为奇函数1(,)2(,),(,)0(,)DD f x y dxdy f x y dxdy f x y x D y f x y x ⎧=⎪⎨⎪⎩⎰⎰⎰⎰关于为偶函数区域关于轴对称, 关于为奇函数 (6)积分顺序的合理选择:不仅涉及到计算繁简问题,而且又是能否进行计算的问题。