2(3).二重积分的换元法
- 格式:pdf
- 大小:355.20 KB
- 文档页数:13
二重积分的计算方法二重积分是微积分中的重要内容,用于计算平面上的曲线与坐标轴所围成的面积或求平面上的散布点的平均性质等。
在实际运用中,可以通过直接计算、换元法、极坐标法等多种方法来进行二重积分的计算。
一、直接计算法直接计算法是最常用也是最基础的计算二重积分的方法。
其基本步骤是将所给的二重积分转化为累次积分,先对一个变量进行积分,再对另一个变量进行积分。
1.内部积分内部积分即对于每个固定的y值,对x进行积分。
可以根据具体的题目决定如何进行内部积分,常用的有定积分、不定积分和积分换元等方法。
2.外部积分外部积分即对内部积分的结果再进行一次积分,这一步是对y进行积分。
同样的,可以根据具体题目决定如何进行外部积分,可以选择定积分、不定积分和积分换元等方法。
需要注意的是,直接计算法在面对比较复杂的函数或曲线时计算量较大,需要进行复杂的代数计算,常常需要对整个积分范围进行划分,或者使用边界定理简化计算。
二、换元法换元法是将二重积分变换到坐标系上的简单区域。
换元法分为直角坐标系的变换和极坐标系的变换两种情况。
1.直角坐标系的变换直角坐标系的变换是指将原先的积分变为关于新的变量的积分,使得积分计算更加简化。
常见的直角坐标系变换有平移变换、旋转变换和放缩变换等。
例如,当变量的变化范围较大或边界不规则时,使用平移变换可以将积分范围变为一个更加简单的区域,从而简化计算。
2.极坐标系的变换极坐标系的变换是将原先的直角坐标系变为极坐标系,使得计算过程更加简单明了。
极坐标系变换常用于对称图形或圆形区域进行积分计算。
极坐标系变换需要通过变量替换来实现,通常需要将原函数和积分上下限由直角坐标形式转换为极坐标形式,再进行计算。
换元法可以大大简化积分计算过程,但需要选择合适的坐标变换,有时会引入更多的计算量。
需要根据具体问题的特点来决定选择哪种变换。
三、几何意义根据题目所给的条件,可以确定积分范围和被积函数形式,将二重积分转化为面积或长度的几何问题。
二重积分的计算方法2. 二重积分的计算法目前所能接触到的方法是:将二重积分化为两次单积分将二重积分化为两次单积分_接下来介绍:①直角坐标系②极坐标③二重积分的换元法(至于二重积分的换元法,仅作简单介绍)2.1 利用直角坐标计算二重积分本质思想是通过画图来判断是先对x还是先对y积分。
(先对哪一个积分不绝对,需要具体问题具体分析,但仍需考虑图形,这里不过多解释为什么,仅给出相关题型的做法)下面的介绍中,默认f(x,y)≥0①有如下闭区域D:∬Df(x,y) dσ=∫abdx∫ϕ1(x)ϕ2(x)f(x,y) dy(先对y后对x)②∬Df(x,y) dσ=∫cddy∫ψ1(y)ψ2(y)f(x,y) dx(先对x后对y)(注:这里未考虑在立体空间中的形状,但只研究物体在xOy面上的投影即可解决问题)我们称①、②中的区域分别为X型区域、Y型区域。
(按先对、x、y中的哪个积分来命名)若闭区域D既是X型区域,又是Y型区域,则选择哪一种都可以(尽量找简单的)不管先对还是进行积分,要找准积分限不管先对x还是y进行积分,要找准积分限“每个人都有每个人的理解方式,这里我有些解释不出来,大家自行领会吧”注:在解题时,注意使用可加性"可加性",区间可以分为X型、Y型,既是X型又是Y型的,此时我们对其分别求二重积分即可。
这里给出一个例子来让大家认识到选择正确的积分次序的重要性:计算∬Dy1+x2−y2 dσ,其中区域D是由、、y=x、x=−1、y=1围成的闭区域。
显然D既是X型,又是Y型积分区域,现在我们用两种方法来看一下:①先对y后对x:∫−11dx∫x1y1+x2−y2 dσ(偶函数,想想为什么这里是)=−13∫−11[(1+x2−y2)32|x1] dx=−13∫−11(|x|3−1) dx_(偶函数,想想为什么这里是|x|3)=−23∫01(x3−1)dx=−23(x44−x)|01 =−23⋅(14−1)=12②先对x后对y:∫−11dy∫y1y1+x2−y2dx=∫−11[xy(1+x2−y2)12|1y−∫1yx d[y(1+x2−y2)12]]=∫−11[y2−y2−y2−∫1yx2y1+x2−y2 dx]dy此时还需求∫1yx2y1+x2−y2 dx,难免比较麻烦。
重积分换元法1. 二维情况(二重积分)- 在平面直角坐标系中,对于二重积分∬_{D}f(x,y)dxdy,如果我们作变量替换x = x(u,v),y=y(u,v)。
- 这里(u,v)是新的变量,并且函数x(u,v)和y(u,v)具有一阶连续偏导数。
- 根据雅可比行列式的定义,雅可比行列式J=(∂(x,y))/(∂(u,v))=<=ftbegin{array}{ll}(∂ x)/(∂ u)&(∂ x)/(∂ v)(∂ y)/(∂ u)&(∂ y)/(∂v)end{array}right。
- 那么二重积分的换元公式为∬_{D}f(x,y)dxdy=∬_{D'}f[x(u,v),y(u,v)]| J| dudv,其中D'是D在uv平面上对应的区域。
2. 三维情况(三重积分)- 对于三重积分∭_{Ω}f(x,y,z)dxdydz,设变换x = x(u,v,w),y = y(u,v,w),z=z(u,v,w)。
- 雅可比行列式J=(∂(x,y,z))/(∂(u,v,w))=<=ftbegin{array}{lll}(∂ x)/(∂ u)&(∂x)/(∂ v)&(∂ x)/(∂ w)(∂ y)/(∂ u)&(∂ y)/(∂ v)&(∂ y)/(∂ w)(∂ z)/(∂ u)&(∂ z)/(∂ v)&(∂z)/(∂ w)end{array}right。
- 换元公式为∭_{Ω}f(x,y,z)dxdydz=∭_{Ω'}f[x(u,v,w),y(u,v,w),z(u,v,w)]| J| dudvdw,其中Ω'是Ω在uvw空间中对应的区域。
1. 简化积分区域- 很多时候,原积分区域D(或Ω)的形状比较复杂,通过合适的变量替换,可以将其转化为比较规则的区域D'(或Ω')。
例如,将一个由复杂曲线围成的平面区域通过极坐标变换转化为矩形区域。
二重积分换元法
哎,说起二重积分换元法,那可真是个让人又爱又恨的家伙。
为啥子这么说呢?因为它能帮咱们解决好多复杂的积分问题,但要是没搞懂,那可就让人头疼了。
二重积分,说白了就是算二维平面上的面积嘛。
有时候,直接算x、y的积分,简直就像是在走迷宫,绕来绕去都找不到出口。
这个时候,换元法就派上用场了。
咱们可以把x、y换成u、v,这样一来,原来的复杂积分就变成了新的、相对简单的积分。
但是,换元不是随便换的,得有个规矩。
这个规矩就是雅可比行列式。
啥子是雅可比行列式呢?说白了,它就是个描述坐标变换关系的工具。
咱们换元之后,原来的面积元素dxdy就变成了新的面积元素dudv,而这个变化关系,就是由雅可比行列式来描述的。
换元的时候,咱们得注意几点。
首先,得找到合适的u、v来替换x、y,这个得靠经验和直觉。
其次,得算出雅可比行列式,这个可是个技术活,得仔细点儿。
最后,还得把原来的积分区域变成新的积分区域,这个也得靠画图和推理。
举个例子来说,要是咱们要算一个椭圆的面积,直接算可能很难,但是咱们可以把它变成圆的形式,然后再用极坐标来算,这样就简单多了。
这个过程中,就用到了换元法和雅可比行列式。
所以说,二重积分换元法虽然复杂,但是只要咱们掌握了它的规律,就能用它来解决好多实际问题。
这就像走迷宫一样,虽然路很难找,但是只要咱们找到了出口,就能顺利地走出去。
αβD)(θϕ=r (2θϕ=r注: 利用例3可得到一个在概率论与数理统计及工程上 非常有用的反常积分公式+∞ − x2 e dx 0 当D 为 R2 时,∫=π2+∞ − x2 e −∞①事实上,∫∫D e− x2 − y2d xd y = ∫d x∫+∞ − y 2 e −∞dy利用例3的结果, 得= 4⎛ ⎜∫ ⎝2+∞ − x 2 e 0d x⎞ ⎟ ⎠24⎛ ⎜∫ ⎝ 故①式成立 .+∞ − x2 e 0−a 2 ⎞ d x ⎟ = lim π (1 − e ) = π ⎠ a → +∞112 2 x + y = 2 ax 例4. 求球体 x + y + z ≤ 4 a 被圆柱面 (a > 0) 所截得的(含在柱面内的)立体的体积. 2 2 2 2解: 设 D : 0 ≤ r ≤ 2 a cosθ , 0 ≤ θ ≤ 由对称性可知π2zV = 4 ∫∫ = 4∫π0D 24 a 2 − r 2 r d r dθ dθo2y∫02 acosθ4a − r r dr22ax32 3 π 2 32 3 π 2 3 = a ∫ (1 − sin θ ) d θ = a ( − ) 0 3 2 3 312x2 y2 z 2 例5. 试计算椭球体 2 + 2 + 2 ≤ 1 的体积V. a b c 2 2 x y 解: 取 D : 2 + 2 ≤ 1, 由对称性 a b令 x = a r cosθ , y = b r sin θ , 则D 的原象为 D′ : r ≤ 1 , 0 ≤ θ ≤ 2π ∂( x, y ) a cosθ − a r sin θ J= = = abr b sin θ b r cos θ ∂( r ,θ )V = 2 ∫∫ z d x d y = 2 c ∫∫DD1−x2 a2−y2 2 d xd by∴ V = 2 c ∫∫D1 − r 2 a b r d r dθ2π 0= 2 abc ∫dθ∫104 1 − r r d r = π abc 3213内容小结(1) 二重积分的换元法x = x(u , v) 下 ⎧ 在变换 ⎨ ⎩ y = y (u , v) ∂ ( x, y ) (u , v) ∈ D′, 且 J = ≠0 ( x, y ) ∈ D ∂ (u , v) 则 ∫∫ f ( x, y ) d σ = ∫∫ f [ x(u , v), y (u , v)] J d u d vD D′14极坐标系情形: 若积分区域为 D = { (r ,θ ) α ≤ θ ≤ β , ϕ1 (θ ) ≤ r ≤ ϕ 2 (θ ) } 则∫∫D f ( x, y) d σ = ∫∫D f (r cosθ , r sin θ ) rd r dθ= ∫ dθ ∫α β ϕ 2 (θ ) ϕ 1 (θ )f (r cosθ , r sin θ ) rd rβD r = ϕ 2 (θ ) oαr = ϕ1 (θ )15二、三重积分换元法定理: 设f (x, y, z)在有界闭区域Ω上连续变换: ⎧ x = x(u , v, w) ⎪ T : ⎨ y = y (u , v, w) (u , v, w) ∈ Ω′ → Ω ⎪ z = z (u , v, w) ⎩ 满足 (1) x, y , z在 Ω′上 有一阶连续偏导数;(2) 在 Ω′上 雅可比行列式 ∂ ( x, y , z ) ≠ 0; 注 J (u , v, w) = ∂ (u , v, w) (3) 变换 T : Ω′ → Ω 是一一对应的 ,则∫∫∫ = ∫∫∫Ωf ( x, y, z )d x d y d zf ( x(u , v), y (u , v), z (u , v)) J (u , v, w) d u d v d w 16 Ω′常用的变换 1. 柱面坐标变换设 M ( x, y, z ) ∈ R 3 , 将x, y用相应的极坐标 ρ ,θ 代替,则称 (ρ ,θ , z ) 为点M 的柱坐标. 直角坐标与柱面坐标的关系:x = ρ cosθ y = ρ sin θ z=z坐标面分别为⎛ 0 ≤ ρ < +∞ ⎞ ⎜ 0 ≤ θ ≤ 2π ⎟ ⎜ ⎟ ⎝ − ∞ < z < +∞ ⎠圆柱面 半平面 平面zzM ( x, y , z )ρ = 常数 θ = 常数z = 常数ox ρy θ ( x, y,0)17如图所示, 在柱面坐标系中体积元素为 d v = ρ d ρ dθ d z 因此zρ dθ∫∫∫Ω f ( x, y, z )d xd yd z = ∫∫∫ F ( ρ ,θ , z )ρ d ρ d θ d z Ωxzρodρ dzy其中 F ( ρ ,θ , z ) = f ( ρ cosθ , ρ sin θ , z ) 适用范围:θρdθdρ1) 积分域表面用柱面坐标表示时方程简单 ; 2) 被积函数用柱面坐标表示时变量互相分离. 积分次序通常为 z → ρ → θ .18柱面 x 2 + y 2 = 2 x 及平面 z = 0, z = a (a > 0), y = 0 所围 成半圆柱体.例6. 计算三重积分 ∫∫∫ z x 2 + y 2 d xd yd z 其中Ω为由Ω0 ≤ ρ ≤ 2 cosθ 解: 在柱面坐标系下 Ω : 0 ≤ θ ≤ π 2 0≤ z≤a原式 = ∫∫∫ z ρ 2 d ρ dθ d zΩz ao= ∫ zd z ∫0aπ02 dθ∫02 cosθρ2 d ρ2 ρ = 2 cos θ xy=2 π 4a3∫02 cos 3θ8 2 dθ = a 9dv = ρ d ρ d θ d z19d xd yd z , 其中Ω由抛物面 例7. 计算三重积分 ∫∫∫ 2 2 Ω1 + x + y z x 2 + y 2 = 4 z 与平面 z = h (h > 0) 所围成 .hxoy20ox h d d θρρ),,(ϕθr Myo4πRr =o x y2 4πo xy24πvd )作业P163 1(2)(4), 2(2)(4), 3(4),6(1)(3)(6), 7(3), 12, 13, 1531。
二重积分的计算方法资料二重积分是微积分中的重要内容,在物理、工程、统计学等领域都有广泛应用。
本文将介绍二重积分的计算方法,包括定积分计算与几何应用两个方面。
一、定积分计算方法(一)极坐标下的二重积分计算:在极坐标下,平面上的一个点可以用极径和极角来表示。
设区域D由曲线r=f(θ)和两直线θ=a,θ=b(0≤a≤b≤2π)所围成。
要计算D上的二重积分,可以通过极坐标转换来简化计算。
1.若函数f为连续函数,则有二重积分I = ∬D f(x,y) dA = ∫ab ∫f(r,θ) r dθ dr2.计算时,先按θ积分,再按r积分。
3.需要注意的是,r的取值范围是由f(θ)和直线θ=a,θ=b所围成的区域。
(二)直角坐标下的二重积分计算:在直角坐标系下,可以利用定积分的性质计算二重积分。
设区域D的上下界分别为y=g1(x)和y=g2(x)(a≤x≤b),则有二重积分I = ∬D f(x,y) dA = ∫ab ∫g2(x) g1(x) f(x,y) dy dx1.计算时,先按y积分,再按x积分。
2.需要注意的是,y的取值范围是由g1(x)和g2(x)所围成的区域。
对于一些复杂的积分,可以通过换元法来简化计算。
一般来说,选择适当的变量替换可以使原积分转化为更简单的形式。
1.平面区域变换:设变换为x = φ(u,v),y = ψ(u,v),则有 dA = ,J, du dv,其中J为变换的雅可比行列式,可利用行列式的性质计算。
2.极坐标变换:设变换为x = r cos(θ),y = r sin(θ),则有dA = r dr dθ。
3.球坐标变换:设变换为x = ρ sinφ cosθ,y = ρ sinφ sinθ,z = ρcosφ,则有dV = ρ^2 sinφ dρ dφ dθ。
(四)离散型二重积分与曲边梯形面积:如果函数f(x,y)是有界函数,并且在区域D上有无穷多个不连续点,则可以通过计算曲边梯形面积来近似计算二重积分:I ≈ ∑f(xi,yi) ΔA = ∑f(xi,yi) Δx Δy其中(Δx,Δy)为曲边梯形的底边与两侧边长,(xi,yi)为底边上的任意点。