煤层瓦斯压力测定套件
- 格式:doc
- 大小:13.50 KB
- 文档页数:2
《井下直接法测定煤层瓦斯压力数值模拟研究及工程指导》篇一一、引言煤层瓦斯压力是煤与瓦斯共采资源的一项关键参数,直接影响到煤炭的安全开采和瓦斯资源的有效利用。
井下直接法作为测定煤层瓦斯压力的常用方法,其准确性和可靠性对于煤矿安全生产具有重要意义。
本文旨在通过数值模拟研究井下直接法测定煤层瓦斯压力的原理及方法,并探讨其在工程实践中的应用与指导。
二、井下直接法测定煤层瓦斯压力原理井下直接法测定煤层瓦斯压力,主要依据煤层中瓦斯气体的渗流特性,通过观测压力传感器数据,从而获得煤层瓦斯压力。
其基本原理包括气体状态方程、瓦斯在煤层中的流动规律等。
数值模拟能够更直观地反映这一过程,有助于我们深入理解井下直接法的原理和操作过程。
三、数值模拟研究(一)模型建立本文采用计算机模拟技术,建立了包含煤层、岩层及井筒等在内的三维地质模型。
该模型基于地质勘查资料和矿区实际条件,真实地反映了矿区的地质结构。
(二)数值模拟过程在模型中,我们设定了合理的瓦斯气体初始状态和流动规律,通过模拟瓦斯在煤层中的渗流过程,观测压力传感器的数据变化,从而得到煤层瓦斯压力的数值。
(三)结果分析模拟结果表明,井下直接法能够有效测定煤层瓦斯压力。
同时,我们分析了不同因素(如煤层厚度、瓦斯含量、井筒结构等)对测定结果的影响,为实际工程提供了理论依据。
四、工程实践应用与指导(一)工程实践应用井下直接法在实际工程中得到了广泛应用。
通过将模拟结果与实际观测数据对比,验证了该方法的有效性和准确性。
该方法具有操作简便、成本低廉等优点,能够为煤矿安全生产提供有力支持。
(二)工程指导根据数值模拟结果,我们可以为煤矿安全生产提供以下指导:1. 合理布置井筒和压力传感器,确保测量的准确性和可靠性;2. 结合地质勘查资料,分析煤层瓦斯压力的分布规律,为煤矿安全开采提供依据;3. 针对不同地质条件和煤层特性,制定相应的安全技术措施,确保煤矿生产安全;4. 通过实时监测煤层瓦斯压力的变化,预测瓦斯突出等灾害事故的发生,及时采取措施防止事故发生。
WP-1井下煤层瓦斯测定仪产品介绍
WP-1井下煤层瓦斯测定仪是确定瓦斯涌出量的基础数据,是矿井瓦斯抽放设计和矿井通风设计的重要参数之一。
WP-1井下煤层瓦斯测定仪适合用于煤矿井下回采或掘进工作面,快速测定煤体中瓦斯解吸量,能够准时把握工作面前方瓦斯含量(W)、瓦斯压力(P)分布状况以及防突猜想指标K1、K2等重要瓦斯参数的变化,形成一套比较完整、牢靠的猜想预报技术0。
WP-1井下煤层瓦斯测定仪性能参数
K1——煤样瓦斯解吸速度衰减系数,shenhua20煤层瓦斯突出危急性重要指标之一;
Kt——煤层瓦斯突出危急性重要指标之一,ml/g.min
V1——单位重量煤样暴露瓦斯解吸速度,山东中煤与煤层瓦斯含量、煤层瓦斯压力有直接关系。
ml/g.min
Q2——瓦斯解吸速度衰减系数;
P——煤层瓦斯含量猜想值。
ml/g
W——煤层瓦斯压力猜想值,Mpa;
R——相关系数,反映测定结果的牢靠性。
WP-1井下煤层瓦斯测定仪工作环境
温度:0~40℃
工作环境湿度:≤95%
工作环境压力:85~110KPa
尺寸、重度:250×145×67mm;2㎏
防爆类型:煤矿用本质安全型,ibI(150℃) WP-1型井下煤层瓦斯含量快速测定仪指标瓦斯解吸量:0~6 ml/min
瓦斯含量:2~30ml/g
瓦斯压力:0.1~6.0MPa
测量精度:±2%
显示方式:8 位液晶(LCD)
显示持续工作时间:8h。
附录 A煤层瓦斯压力测定方法附录 A煤层瓦斯压力测定方法A.0.1煤层瓦斯压力的测定方法按测压方式,即:测压时是否向测压孔内注入补偿气体,可分为主动测压法和被动测压法;按测压钻孔封孔的材料不同可分为胶囊(胶圏)—密封粘液封孔测压法和注浆封孔测压法。
A.0.2打设测压孔应遵守下列规定:1在距测压煤层不少于 5m(垂距)的开挖工作面钻孔,孔径一般宜为 65~ 95mm,钻孔长度应保证测压所需的封孔深度。
2钻孔宜垂直煤层布置。
3从钻孔进入煤层开始,应不停钻直至贯穿煤层。
然后清除孔内积水和煤(岩)屑,放入一根钢性导气管,立即进行封孔。
4在钻孔施工中应准确记录钻孔方位、倾角、长度、钻孔开始见煤长度及钻孔在煤层中长度、钻孔开钻时间、见煤时间及钻毕时间。
A.0.3测压钻孔施工完后应在24h 内完成钻孔的封孔工作,应在完成封孔工作24h 后进行测定工作。
A.0.4采用主动测压时,只在第一次测定时向测压钻孔充入补偿气体,补偿气体的充气压力宜为预计的煤层瓦斯压力的 1.5 倍;采用被动测压法时,不进行气体补偿。
A.0.5采用环形胶圈、黏液或水泥砂浆等封孔测压时,可按下列步骤进行:1在钻孔内插入带有压力表接头的紫铜管,管径为6~20mm,长度不小于 7 m。
岩石硬而无裂隙时封孔长度不宜小于5m,岩石松软或裂隙发育时应增加。
2将经炮泥机挤压成型的特制柱状炮泥送入孔内,柱状翻土末端距紫铜管末端0.2~0.5m,每次送入 0.3~0.5m,用堵棍捣实。
3 每堵 lm 黏土柱打入 1 个木塞,木塞直径小于钻孔直径10~15mm。
打入木塞时应—69—附录 A煤层瓦斯压力测定方法保护好紫铜管,防止折断。
A.0.6观测与测定结果的确定应符合下列规定:1 采用主动测压法时应每天观测一次测定压力表,采用被动测压法应至少3d 观测一次测定压力表。
2将观测结果绘制在以时间(d)为横坐标、瓦斯压力(MPa)为纵坐标的坐标图上,当观测时间达到规定时,如压力变化在 3d 内小于 0.015MPa,测压工作即可结束;否则,应延长测压时间。
煤层瓦斯参数测定技术方法总结目录第一章层瓦斯压力测定 0(一)固体材料封孔测定瓦斯压力 0(二)胶圈粘液封孔测定瓦斯压力 (1)第二章煤层瓦斯含量测定 (3)(一)采取煤样及瓦斯解吸速度测定 (3)(二)计算采样过程中的损失瓦斯量 (4)(三)残余瓦斯含量测定 (6)第三章瓦斯含量系数测定 (7)(一)测定原理 (7)(二)测定方法 (8)第四章煤层透气性系数的测定与计算 (9)(一)计算公式 (9)(二)测定与计算步骤 (10)(三)测定中的注意事项 (11)第五章煤的坚固性系数测定 (13)(一)测定原理 (13)(二)测定方法与步骤 (14)第六章煤的瓦斯放散指数测定 (15)(一)测定仪器 (15)(二)测定步骤 (15)第七章瓦斯吸附常数测定 (16)(一)瓦斯含量欲瓦斯吸附量、瓦斯压力及温度之间的关系 (16)(二)采用容量法测定等温吸附曲线计算a 、 b值的原理 (17)(三)、测定过程 (17)第八章预测瓦斯突出危险性参数测定 (18)(一)单项参数测定及计算 (18)(二)区域预测 (22)(三)工作面预测 (23)(四)防突措施效果检验 (25)第九章瓦斯储量、可抽量及抽放率计算 (26)(一)瓦斯储量计算 (26)(二)可抽瓦斯量概算 (26)(三)抽放率 (27)第十章抽放管路中的瓦斯流量测定与计算 (28)(一)参数测定 (28)(二)流量计算 (29)第十一章钻孔排放瓦斯有效半径测定 (36)(一)根据瓦斯压力确定排放瓦斯有效半径的方法 (36)(二)根据瓦斯流量确定排放瓦斯有效半径的方法 (36)第十二章钻孔瓦斯流量衰减系数的测定于计算 (37)第十三章瓦斯涌出量及其计算 (38)(一)掘进巷道的瓦斯涌出 (38)(二)、回采工作面瓦斯涌出量计算 (40)第一章煤层瓦斯压力测定(一) 固体材料封孔测定瓦斯压力首先在距测压煤层一定距离(≥5m)的岩巷打孔,孔径一般取φ68—φ108mm。
《井下直接法测定煤层瓦斯压力数值模拟研究及工程指导》篇一一、引言煤层瓦斯压力是煤矿安全开采过程中的关键参数之一,直接关系到矿井的瓦斯突出、矿井涌水等安全风险。
随着科技的发展,井下直接法作为一种常用的瓦斯压力测定方法,越来越受到煤矿企业的重视。
本文将就井下直接法测定煤层瓦斯压力的数值模拟研究及工程指导进行详细探讨。
二、井下直接法测定煤层瓦斯压力原理井下直接法测定煤层瓦斯压力主要利用钻孔中的气测技术和钻孔测试装置进行直接测定。
通过钻进至预定深度后,通过煤样采样的方法对钻孔内部压力进行实时测量,得出瓦斯压力数据。
该方法的优点在于具有较高的准确性、时效性和应用范围广泛,能实时获取煤矿的瓦斯压力变化情况。
三、数值模拟研究在深入理解和掌握井下直接法测定煤层瓦斯压力的基础上,我们需要通过数值模拟研究进一步揭示煤层瓦斯流动和运移的规律。
该研究可以通过计算机技术构建相应的地质模型和数值计算模型,分析瓦斯的扩散和运动特性,同时利用物理场等研究方法探究其产生原因。
这将对井下现场实践和制定安全生产策略具有重要的指导意义。
四、模拟与实验的比较虽然数值模拟对于理解和掌握煤层瓦斯流动规律具有重要作用,但我们也应该认识到,实验研究是更直接的检验手段。
在井下实际环境下进行试验测定,能更直观地反映出实际运行状况,有助于发现和修正数值模拟中的问题。
因此,数值模拟与实验应相互结合,相互补充,以提高我们对煤层瓦斯流动特性的认识。
五、工程指导根据井下直接法测定煤层瓦斯压力的数值模拟结果,我们可以对煤矿生产过程中的瓦斯控制、安全管理等提供具体的工程指导。
首先,可以根据模拟结果预测瓦斯压力的变化趋势,提前采取相应的预防措施;其次,根据模拟结果优化瓦斯抽采方案,提高抽采效率;最后,根据模拟结果对矿井的安全生产管理提出建议,确保矿井的安全生产。
六、结论本文通过对井下直接法测定煤层瓦斯压力的数值模拟研究及工程指导的探讨,深入了解了该方法的基本原理和实施过程。
任务二 煤层瓦斯压力及其测定【主要内容】一、煤层瓦斯压力及其分布规律 二、煤层瓦斯压力测定原理 二、煤层瓦斯压力测定方法四、瓦斯压力测定要求与数据处理五、实训与操作-钻机施工钻孔测定瓦斯压力《煤矿安全规程》要求,为了预防石门揭穿煤层时发生突出事故,必须在揭穿突出煤层前,通过钻孔测定煤层的瓦斯压力,它是突出危险性预测的主要指标之一,又是选择石门防突措施的主要依据。
同时,用间接法测定煤层瓦斯含量,也必须知道煤层原始的瓦斯压力。
因此,测定煤层瓦斯压力是煤矿瓦斯管理和科研工作需要经常进行的一项内容。
一、 煤层瓦斯压力及其分布规律煤层瓦斯压力是煤层裂隙和孔隙中所含游离瓦斯的气体压力,即气体作用于孔隙壁的作用力。
其单位是MPa(兆帕)。
它是煤层裂隙和孔隙内游离瓦斯热运动的结果。
根据大量的测定结果表明,在甲烷带内,煤层的瓦斯压力随深度的增加而增加,多数煤层呈线性增加,可以按下式预测深部煤层的瓦斯压力:)(00H H m p p -+= (1-2-1)式中 P ——在深度H 处的瓦斯压力,MPa ;P 0——瓦斯风化带H 0深度的瓦斯压力,MPa ,一般取0.15~0.2,预测瓦斯压力时可取0.196;H 0——瓦斯风化带的深度,m ; H ——煤层距地表的垂直深度,m ;m ——瓦斯压力梯度,MPa/m 。
可由下式计算:101=H H P P m —— (1-2-2)式中 P 1——实测瓦斯压力,MPa ;H 1——测瓦斯压力P 1地点的垂深,m 。
实际应用时,m 一般取为0.01±0.005。
煤层瓦斯的压力应该实际测量。
根据我国各煤矿瓦斯压力随深度变化的实测数据,瓦斯压力梯度m 一般在0.007~0.012 MPa/m ,而瓦斯风化带的深度则在几米至几百米之间。
表1-2-1是我国部分矿井的煤层瓦斯压力和瓦斯压力梯度实测值。
表1-2-1 我国部分矿井的煤层瓦斯压力和瓦斯压力梯度实测值对于一个生产矿井,应该注意积累和充分利用已有的实测数据,总结出适合本矿的基本规律,为深水平的瓦斯压力预测和开采服务。
MWYZ-HⅢ型主动式煤层瓦斯压力测定仪使用说明书华北科技学院二○○八年十月一、煤层瓦斯压力测定技术概述煤层瓦斯压力是瓦斯涌出和突出的动力,也是煤层瓦斯含量多少的标志。
准确测定煤层瓦斯压力对有效而合理地制定矿井防治瓦斯的措施,预测预报煤与瓦斯突出的危险性,具有重要意义。
几十年来,国内外学者对煤层瓦斯压力测定方法进行了大量的研究,提出的测定方法主要有间接测定法和直接测定法两类。
间接测定法一般用于难以进行直接测压的条件,计算准确性依赖于其它瓦斯参数的结果,只能作为参考。
直接测定法是用钻机由岩层巷道或煤层巷道向预定测量瓦斯地点打一钻孔,然后在钻孔中放置测压装置、再将钻孔严密封闭堵塞并将压力表和测压装置相连来测出瓦斯压力。
直接测定法的关键是封闭钻孔的质量。
根据封孔原理的不同,一般将封孔方法分为被动式与主动式。
被动式封孔的历史可以追溯到19世纪,长期以来一直被国内外采用。
经过近百年的发展,该测压方法基本上没有发生变化,都是采用黄泥、水泥沙浆、胶圈、胶囊等进行封孔测定。
由于被动式封孔方法对钻孔周边微裂隙缺乏封堵能力,故而只适用于孔周微裂隙不大的致密岩石段的封孔,在松软岩层及煤层中容易发生瓦斯泄漏,造成所测瓦斯压力值偏低。
主动式封孔测压方法由20世纪80年代周世宁院士提出,其基本原理是“固体封液体、液体封气体”,即利用两个膨胀胶囊,在胶囊之间充入具有一定压力的粘液,粘液的压力略高于瓦斯压力,粘液在压力作用下渗入钻孔周边裂隙,杜绝瓦斯的泄漏,从而使测出的瓦斯压力值等于煤层真实的瓦斯压力。
近年来,在周世宁院士的带领下,借助国家“十五”科技攻关项目的支持,华北科技学院进行了不懈努力,研制了新型主动式煤层瓦斯压力测定仪。
该测定仪采用新型封孔材料,适于直接在各种煤层中进行瓦斯压力测定,仪器结构简单、操作方便、测定过程快捷,“固、液、气”三相封孔特性使测定结果准确可靠,从而为煤层瓦斯压力测定工作奠定了良好的基础。
二、MWYZ-HⅢ型主动式煤层瓦斯压力测定仪结构MWYZ-HⅢ型主动式煤层瓦斯压力测定仪结构如图1所示。
1AQ 1047-2007—2007 煤矿井下煤层瓦斯压力的直接测定方法S. 煤层的瓦斯压力是矿井瓦斯基本参数之一,它对于确定煤层瓦斯含量,进行矿井瓦斯涌出治理,瓦斯抽放以及煤与瓦斯突出的防治等工作均具有十分重要的意义;在治理矿井瓦斯的长期实践中,已探索出了许多井下煤层瓦斯压力的直接测定方法,在这些测定方法中,多数准确度高、易操作,但也有不少的测定方法其准确度低、可靠性差;因此,有必要对煤层瓦斯压力的测定方法进行规范,并在此基础上制定煤矿井下煤层瓦斯压力直接测定的行业标准;本标准的制定以测定方法的可靠性为主,兼顾其可操作性及已使用的程度,同时考虑瓦斯压力测定的最新科研成果;本标准遵循煤炭工业部颁布的煤矿安全规程和防治煤与瓦斯突出细则等文件的有关规定;本标准由煤炭工业部科技教育司提出;本标准由煤矿安全标准化技术委员会归口;本标准起草单位:煤炭科学研究总院重庆分院;本标准主要起草人:许英威、杜子健;本标准委托煤矿安全标准化技术委员会煤矿瓦斯防治及设备分会负责解释;1 范围本标准规定了煤矿井下直接测定煤层瓦斯压力的原理、设备材料、仪表以及打钻、封孔、测压等工艺的要求;本标准适用于煤矿井下直接测定煤层瓦斯压力简称瓦斯压力测定;2 引用标准下列标准包含的条文,通过在本标准中引用而构成为本标准的条文;本标准出版时,所示版本均为有效;所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性;JJG 52—71 工业用单圈管弹簧式压力表、真空表和真空压力表检定规程国家技术监督局防治煤与瓦斯突出细则 1995—05—01 煤炭工业部气瓶安全监察规程 1989—12—22 劳动部3 测定原理通过钻孔揭露煤层,安设测定仪表并密封钻孔,利用煤层中瓦斯的自然渗透原理测定在钻孔揭露处达到平衡的瓦斯压力;4 方法分类4.1 按测压方式分4.1.1 主动测压法钻孔封完孔后,通过钻孔向被测煤层充入补偿气体达到瓦斯压力平衡而测定煤层瓦斯压力的测压方法;补偿气体可选用高压氮气N2,高压二氧化碳气体CO2或其他惰性气体;补偿气体的充气压力应略高于预计煤层瓦斯压力;4.1.2 被动测压法钻孔封完孔后,通过被测煤层瓦斯的自然渗透,达到瓦斯压力平衡而测定其瓦斯压力的测压方法;4.2 按封孔材料分4.2.1 黄泥、水泥封孔测压法封孔材料为黄泥,水泥或黄泥水泥混合物,封孔方式为手工操作,主要适用于石门揭煤的瓦斯压力测定;4.2.2 胶囊—密封粘液封孔测压法封孔材料为胶囊、密封粘液,封孔方式为手工操作;适用于松软岩层或煤巷瓦斯压力测定;4.2.3 注浆封孔测压法封孔材料为膨胀不收缩水泥浆加粘液,封孔方式为压气注浆器或泥浆泵注浆封孔;适用于井下各种条件下的瓦斯压力测定,特别适用于近距离煤层群分煤层的瓦斯压力测定;5 设备材料、仪表及工具5.1 钻孔设备:打钻孔用的钻机可根据实际情况选用,其能力必须应满足测压钻孔长度的要求,钻头直径选用φ650~90mm;5.2 材料:木楔,压力表联接头,密封垫,密封带以及真空密封膏;5.3 仪表:压力表量程为预计煤层瓦斯压力的1.5倍,准确度优于1.5级,必须符合JJG 52的规定;5.4 工具:管钳,扳手,剪刀,皮尺,水桶,螺丝刀,手工封孔送料管;5.5 用黄泥、水泥封孔测压法时,还需:黄泥将质地致密可塑性好的粘土制成两端头呈球状,通过阴干,烤或晒,使其外皮半干,里面湿软;水泥不低于425;黄泥水泥混合物由黄泥和水泥按适当比例混合;速凝水泥凝结时间≤20min;管材φ6×1 mm紫铜管,φ6mm尼龙管,φ3mm铁管,以及相应联接头;其他木塞,挡板,铁丝,肥皂;5.6 用胶囊—密封粘液封孔测压法时,还需:密封粘液;密封粘液罐和压力水罐用于预计的煤层瓦斯压力小于 5 MPa 时的封孔,液压和水压由液态CO2提供;封孔器组件进液管、进水管、测压管、胶囊及测定仪表; 5.7 用注浆封孔测压法时,还需:手摇注液泵;压气注浆器用于测压钻孔长度小于20m时的封孔注浆,其容量应大于封20m钻孔所需的水泥浆容量,动力为井下压缩空气;泥浆泵宜用柱塞泥浆泵,其流量为20~50L/min,压力为3~4MPa;密封粘液密封粘液由骨料、填料和粘液混合而成;密封粘液封堵间隙为不大于4 mm的配方为:化学浆糊粉淀粉+防腐剂与水的比例质量比1:16制成粘液,骨料与粘液的比例体积比为1:8,填料与粘液的比例体积比为1:16;其中骨料由粒度为0.5~1.0,1.0~2.5,2.5~5.0mm的炉渣按体积比1:2:3混合而成;填料由0.25~0.5,0.5~1,1.0~2.5 mm的锯末按体积比1:1:1均匀混合而成;膨胀不收缩水泥浆由膨胀不收缩水泥与水井下清洁水按一定比例制成;测压管、注浆管φ13 mm铁管及附件;5.8 用主动测压法时,还需:高压储气罐必须符合劳动部气瓶安全监察规程的要求;充气联接装置必须联接方便、可靠;补偿气体高压N2,高压CO2气体或其他惰性气体;6 瓦斯压力测定工艺6.1 测定地点的选择6.1.1 同一地点应打两个测压钻孔,钻孔口距离应在其相互影响范围外,其见煤点的距离除石门测压外应不小于20m;石门揭煤瓦斯压力测定按防治煤与瓦斯突出细则简称细则的有关规定进行; 6.1.2 除在煤巷中测定本煤层瓦斯压力外,测定地点应选择在石门或岩巷中;6.1.3 钻孔应避开地质构造裂隙带、巷道的卸压圈和采动影响范围;6.1.4 测定煤层原始瓦斯压力的见煤点应避开地质构造裂隙带、巷道、采动及抽放等的影响范围;6.1.5 选择瓦斯压力测定地点应保证有足够的封孔深度; 6.1.6 瓦斯压力测定地点宜选择在进风系统,行人少且便于安设保护栅栏的地方;6.2 测定方法的选择6.2.1 测压处岩石坚硬、少裂隙,可采用黄泥、水泥封孔测压法; 6,2.2 在松软岩层及煤巷中测定煤层的瓦斯压力时:钻孔长度≤15m时应采用胶囊—密封粘液封孔测压法;钻孔长度>15m时应采用注浆封孔测压法;6.2.3 竖井揭煤可采用注浆封孔测压法;石门揭煤的测压,按细则的有关规定进行;6.2.4 测定邻近煤层的瓦斯压力或煤层群分层测压应采用注浆封孔测压法;6.2.5 测压时间充足时,宜采用被动测压法;测压时间较短时,应采用主动测压法;6.3 钻孔施工6.3.1 钻孔的开孔位置应选在岩石煤壁完整的位置;6.3.2 钻孔施工应保证钻孔平直、孔形完整,穿层测压钻孔宜穿煤层全厚;6.3.3 钻孔施工好后,应立即清洗钻孔,保证钻孔畅通; 6.3.4 在钻孔施工中应准确记录钻孔方位、倾角、长度、钻孔开始见煤长度及钻孔在煤层中长度,钻孔开钻时间、见煤时间及钻毕时间;6.4 封孔6.4.1 钻孔施工完后应在24h内完成封孔工作;6.4.2 准备工作:6.4.2.1 按选用的封孔方法准备好封孔材料、仪表、工具等; 6.4.2.2 检查测压管是否通畅及其与压力表联接的气密性; 6,4.2.3 钻孔为下向孔时应将钻孔水排除;6.4.3 封孔深度:6.4.3.1 封孔深度应超过钻孔施工地点巷道的影响范围,并满足以下要求:a黄泥、水泥封孔测压法的封孔深度应不小于5m;b胶囊—密封粘液封孔测定本煤层瓦斯压力的封孔深度应不小于10m;c注浆封孔测压法的封孔深度不小于12m,煤层群分层测压时则应封堵至被测煤层在钻孔侧的顶板或底板;d应尽可能加长测压钻孔的封孔深度;6.4.3.2 本煤层测压孔封孔应保证其测压气室长不小于1.5m,穿层测压孔的封孔不宜超过被测煤层在钻孔侧的顶板或底板; 6.4.4 黄泥、水泥封孔测压法封孔步骤:a如图1所示,将挡板固定在测压管的端头,然后送至预定的封孔深度;b用送料管将封孔材料送至挡板处,轻轻捣实将测压管固定住,然后将黄泥或水泥团逐步送入孔中,并用送料管将其捣实,一直到孔口;在封孔的过程中,每隔1 m左右打入一个木塞;c在距孔口0.5m处用速凝水泥封孔,孔口用木楔固定;d封孔24h后,安装压力表;1—压力表;2—三通;3—木楔;4—测压管;5—挡板;6—煤层图1 黄泥、水泥封孔测压法示意图6.4.5 胶囊—密封粘液封孔测压法封孔步骤:a如图2所示,在测压地点先将封孔器组装好,将其放入预计的封孔深度,在钻孔孔口安装好阻退楔,联接好封孔器与密封粘液罐、压力水罐,装上各种控制阀,安装好压力表;b启动压力水罐开关向胶囊充压力水,待胶囊膨胀封住钻孔后开启密封粘液罐往钻孔的密封段注入密封粘液,密封粘液的压力应略高于煤层预计的瓦斯压力;1—三通;2—压力表;3—密封粘液罐;4—阻退楔;5—输液管;6—胶囊1;7—密封粘液;8—胶囊2;9—压力水罐;10—钻孔图2 胶囊—密封粘液封孔测压示意图6.4.6 注浆封孔测压法封孔步骤:钻孔直径为φ65~75 mm,钻孔长度为15~70m;封孔步骤为:a如图3所示,将测压管安装至预定的封孔深度,在孔口用木楔封住,并安装好注浆管;b根据封孔深度确定膨胀不收缩水泥的使用量,按一定比例配好封孔水泥浆,用压气注浆器或泥浆泵一次连续将封孔水泥浆注入钻孔内;c注浆48h后,通过测压管用手摇注液泵将粘液注入钻孔内;d撤下手摇注液泵,在孔口安装三通及压力表;1—注液泵;2—三通;3—压力表;4—木楔;5—测压管;6—煤层;7—粘液;8—水泥;9—注浆管;10—注浆泵图3 注浆封孔测压封孔示意图7 瓦斯压力观测与确定7.1 测压管理7.1.1 必须设专人负责瓦斯压力的测定工作;7.1.2 在瓦斯压力测定过程中,应作好各种参数及施工情况的记录;7.2 观测主动测压法应每天观测一次,被动测压法应至少3天观测一次;在观测中发现瓦斯压力值变化较大,则应增加观测次数;煤矿井下煤层瓦斯压力的直接测定方法标准号: MT/T638-1996 替代情况:发布单位:煤炭工业部起草单位:煤炭科学研究总院重庆分院发布日期:实施日期:点击数: 2617 更新日期:2008年12月04日-前言煤层的瓦斯压力是矿井瓦斯基本参数之一,它对于确定煤层瓦斯含量,进行矿井瓦斯涌出治理,瓦斯抽放以及煤与瓦斯突出的防治等工作均具有十分重要的意义;在治理矿井瓦斯的长期实践中,已探索出了许多井下煤层瓦斯压力的直接测定方法,在这些测定方法中,多数准确度高、易操作,但也有不少的测定方法其准确度低、可靠性差;因此,有必要对煤层瓦斯压力的测定方法进行规范,并在此基础上制定煤矿井下煤层瓦斯压力直接测定的行业标准;本标准的制定以测定方法的可靠性为主,兼顾其可操作性及已使用的程度,同时考虑瓦斯压力测定的最新科研成果;本标准遵循煤炭工业部颁布的煤矿安全规程和防治煤与瓦斯突出细则等文件的有关规定;本标准由煤炭工业部科技教育司提出;本标准由煤矿安全标准化技术委员会归口;本标准起草单位:煤炭科学研究总院重庆分院;本标准主要起草人:许英威、杜子健;本标准委托煤矿安全标准化技术委员会煤矿瓦斯防治及设备分会负责解释;1 范围本标准规定了煤矿井下直接测定煤层瓦斯压力的原理、设备材料、仪表以及打钻、封孔、测压等工艺的要求;本标准适用于煤矿井下直接测定煤层瓦斯压力简称瓦斯压力测定;2 引用标准下列标准包含的条文,通过在本标准中引用而构成为本标准的条文;本标准出版时,所示版本均为有效;所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性;JJG 52—71 工业用单圈管弹簧式压力表、真空表和真空压力表检定规程国家技术监督局防治煤与瓦斯突出细则 1995—05—01 煤炭工业部气瓶安全监察规程 1989—12—22 劳动部3 测定原理通过钻孔揭露煤层,安设测定仪表并密封钻孔,利用煤层中瓦斯的自然渗透原理测定在钻孔揭露处达到平衡的瓦斯压力;4 方法分类4.1 按测压方式分4.1.1 主动测压法钻孔封完孔后,通过钻孔向被测煤层充入补偿气体达到瓦斯压力平衡而测定煤层瓦斯压力的测压方法;补偿气体可选用高压氮气N2,高压二氧化碳气体CO2或其他惰性气体;补偿气体的充气压力应略高于预计煤层瓦斯压力;4.1.2 被动测压法钻孔封完孔后,通过被测煤层瓦斯的自然渗透,达到瓦斯压力平衡而测定其瓦斯压力的测压方法;4.2 按封孔材料分4.2.1 黄泥、水泥封孔测压法封孔材料为黄泥,水泥或黄泥水泥混合物,封孔方式为手工操作,主要适用于石门揭煤的瓦斯压力测定;4.2.2 胶囊—密封粘液封孔测压法封孔材料为胶囊、密封粘液,封孔方式为手工操作;适用于松软岩层或煤巷瓦斯压力测定;4.2.3 注浆封孔测压法封孔材料为膨胀不收缩水泥浆加粘液,封孔方式为压气注浆器或泥浆泵注浆封孔;适用于井下各种条件下的瓦斯压力测定,特别适用于近距离煤层群分煤层的瓦斯压力测定;5 设备材料、仪表及工具5.1 钻孔设备:打钻孔用的钻机可根据实际情况选用,其能力必须应满足测压钻孔长度的要求,钻头直径选用φ650~90mm;5.2 材料:木楔,压力表联接头,密封垫,密封带以及真空密封膏;5.3 仪表:压力表量程为预计煤层瓦斯压力的1.5倍,准确度优于1.5级,必须符合JJG 52的规定;5.4 工具:管钳,扳手,剪刀,皮尺,水桶,螺丝刀,手工封孔送料管;5.5 用黄泥、水泥封孔测压法时,还需:黄泥将质地致密可塑性好的粘土制成两端头呈球状,通过阴干,烤或晒,使其外皮半干,里面湿软;水泥不低于425;黄泥水泥混合物由黄泥和水泥按适当比例混合;速凝水泥凝结时间≤20min;管材φ6×1 mm紫铜管,φ6mm尼龙管,φ3mm铁管,以及相应联接头;其他木塞,挡板,铁丝,肥皂;5.6 用胶囊—密封粘液封孔测压法时,还需:密封粘液;密封粘液罐和压力水罐用于预计的煤层瓦斯压力小于 5 MPa 时的封孔,液压和水压由液态CO2提供;封孔器组件进液管、进水管、测压管、胶囊及测定仪表;5.7 用注浆封孔测压法时,还需:手摇注液泵;压气注浆器用于测压钻孔长度小于20m时的封孔注浆,其容量应大于封20m钻孔所需的水泥浆容量,动力为井下压缩空气;泥浆泵宜用柱塞泥浆泵,其流量为20~50L/min,压力为3~4MPa;密封粘液密封粘液由骨料、填料和粘液混合而成;密封粘液封堵间隙为不大于4 mm的配方为:化学浆糊粉淀粉+防腐剂与水的比例质量比1:16制成粘液,骨料与粘液的比例体积比为1:8,填料与粘液的比例体积比为1:16;其中骨料由粒度为0.5~1.0,1.0~2.5,2.5~5.0mm的炉渣按体积比1:2:3混合而成;填料由0.25~0.5,0.5~1,1.0~2.5 mm的锯末按体积比1:1:1均匀混合而成;膨胀不收缩水泥浆由膨胀不收缩水泥与水井下清洁水按一定比例制成;测压管、注浆管φ13 mm铁管及附件;5.8 用主动测压法时,还需:高压储气罐必须符合劳动部气瓶安全监察规程的要求;充气联接装置必须联接方便、可靠;补偿气体高压N2,高压CO2气体或其他惰性气体;6 瓦斯压力测定工艺6.1 测定地点的选择6.1.1 同一地点应打两个测压钻孔,钻孔口距离应在其相互影响范围外,其见煤点的距离除石门测压外应不小于20m;石门揭煤瓦斯压力测定按防治煤与瓦斯突出细则简称细则的有关规定进行;6.1.2 除在煤巷中测定本煤层瓦斯压力外,测定地点应选择在石门或岩巷中;6.1.3 钻孔应避开地质构造裂隙带、巷道的卸压圈和采动影响范围;6.1.4 测定煤层原始瓦斯压力的见煤点应避开地质构造裂隙带、巷道、采动及抽放等的影响范围;6.1.5 选择瓦斯压力测定地点应保证有足够的封孔深度;6.1.6 瓦斯压力测定地点宜选择在进风系统,行人少且便于安设保护栅栏的地方;6.2 测定方法的选择6.2.1 测压处岩石坚硬、少裂隙,可采用黄泥、水泥封孔测压法;6,2.2 在松软岩层及煤巷中测定煤层的瓦斯压力时:钻孔长度≤15m时应采用胶囊—密封粘液封孔测压法;钻孔长度>15m时应采用注浆封孔测压法;6.2.3 竖井揭煤可采用注浆封孔测压法;石门揭煤的测压,按细则的有关规定进行;6.2.4 测定邻近煤层的瓦斯压力或煤层群分层测压应采用注浆封孔测压法;6.2.5 测压时间充足时,宜采用被动测压法;测压时间较短时,应采用主动测压法;6.3 钻孔施工6.3.1 钻孔的开孔位置应选在岩石煤壁完整的位置;6.3.2 钻孔施工应保证钻孔平直、孔形完整,穿层测压钻孔宜穿煤层全厚;6.3.3 钻孔施工好后,应立即清洗钻孔,保证钻孔畅通;6.3.4 在钻孔施工中应准确记录钻孔方位、倾角、长度、钻孔开始见煤长度及钻孔在煤层中长度,钻孔开钻时间、见煤时间及钻毕时间;6.4 封孔6.4.1 钻孔施工完后应在24h内完成封孔工作;6.4.2 准备工作:6.4.2.1 按选用的封孔方法准备好封孔材料、仪表、工具等;6.4.2.2 检查测压管是否通畅及其与压力表联接的气密性;6,4.2.3 钻孔为下向孔时应将钻孔水排除;6.4.3 封孔深度:6.4.3.1 封孔深度应超过钻孔施工地点巷道的影响范围,并满足以下要求:a黄泥、水泥封孔测压法的封孔深度应不小于5m;b胶囊—密封粘液封孔测定本煤层瓦斯压力的封孔深度应不小于10m;c注浆封孔测压法的封孔深度不小于12m,煤层群分层测压时则应封堵至被测煤层在钻孔侧的顶板或底板;d应尽可能加长测压钻孔的封孔深度;6.4.3.2 本煤层测压孔封孔应保证其测压气室长不小于1.5m,穿层测压孔的封孔不宜超过被测煤层在钻孔侧的顶板或底板;6.4.4 黄泥、水泥封孔测压法封孔步骤:a如图1所示,将挡板固定在测压管的端头,然后送至预定的封孔深度;b用送料管将封孔材料送至挡板处,轻轻捣实将测压管固定住,然后将黄泥或水泥团逐步送入孔中,并用送料管将其捣实,一直到孔口;在封孔的过程中,每隔1 m左右打入一个木塞;c在距孔口0.5m处用速凝水泥封孔,孔口用木楔固定;d封孔24h后,安装压力表;6.4.5 胶囊—密封粘液封孔测压法封孔步骤:a如图2所示,在测压地点先将封孔器组装好,将其放入预计的封孔深度,在钻孔孔口安装好阻退楔,联接好封孔器与密封粘液罐、压力水罐,装上各种控制阀,安装好压力表;b启动压力水罐开关向胶囊充压力水,待胶囊膨胀封住钻孔后开启密封粘液罐往钻孔的密封段注入密封粘液,密封粘液的压力应略高于煤层预计的瓦斯压力;1—三通;2—压力表;3—密封粘液罐;4—阻退楔;5—输液管;6—胶囊1;7—密封粘液;8—胶囊2;9—压力水罐;10—钻孔图2 胶囊—密封粘液封孔测压示意图6.4.6 注浆封孔测压法封孔步骤:钻孔直径为φ65~75 mm,钻孔长度为15~70m;封孔步骤为:a如图3所示,将测压管安装至预定的封孔深度,在孔口用木楔封住,并安装好注浆管;b根据封孔深度确定膨胀不收缩水泥的使用量,按一定比例配好封孔水泥浆,用压气注浆器或泥浆泵一次连续将封孔水泥浆注入钻孔内;c注浆48h后,通过测压管用手摇注液泵将粘液注入钻孔内;d撤下手摇注液泵,在孔口安装三通及压力表;图3 注浆封孔测压封孔示意图7 瓦斯压力观测与确定7.1 测压管理7.1.1 必须设专人负责瓦斯压力的测定工作;7.1.2 在瓦斯压力测定过程中,应作好各种参数及施工情况的记录;7.2 观测主动测压法应每天观测一次,被动测压法应至少3天观测一次;在观测中发现瓦斯压力值变化较大,则应增加观测次数;记录表的格式如表1;7.3 瓦斯压力观测时间采用主动测压法时,当煤层的瓦斯压力小于4 MPa时需5~10d;当煤层的瓦斯压力大于4 MPa时,则需20~40d;被动测压法时,则视煤层的瓦斯压力及透气性大小的不同,需30d以上;7.4 瓦斯压力的确定7.4.1 将观测结果绘制在以时间d为横坐标,瓦斯压力MPa 为纵坐标的坐标图上,当测压时间达到7.3的规定,如压力变化小于0.005MPa/d,测压工作即可结束;否则,应延长测压时间;7.4.2 对于上向测压钻孔,在结束测压工作、撤卸表头时撤表头时应制定相应的安全措施,应测量从钻孔中放出的水量,根据钻孔参数、封孔参数计算出钻孔水的静水压力,并从测定压力中扣除;对水平及下向测压孔则以测定值作为瓦斯压力值;7.4.3 同一地点以最高瓦斯压力作为测定结果;。
JD-WCY-1型煤层瓦斯压力测定套件
煤层瓦斯压力测定套件煤层瓦斯压力是重要的瓦斯参数之一,瓦斯压力越大,煤层的瓦斯含量越大,煤与瓦斯突出危险性越大。
煤层瓦斯压力测定时煤矿瓦斯治理的重要工作之一。
准确测定煤层瓦斯压力,对保证矿井安全生产具有重要意义,对有效制定矿井瓦斯防治方案与措施,准确预测预报煤与瓦斯的突出危险性具有重要意义。
目前采取水泥封孔测压是测定煤层瓦斯压力最常用的方法,根据现有瓦斯压力测定的方法的步骤、工序,经过长期的实践和摸索,研发了适合封孔测压发的主动式测压套件,使得瓦斯压力测定过程更加规范,也更加简单,进而确保了瓦斯压力测定结果的准确性。
产品构成:
根据测压钻孔的倾角,JD-WCY-1型煤层瓦斯压力测定套件可分为仰角封孔测压套件和俯角封孔测压套件。
仰角封孔测压套件主要由1/4钢管、高压回浆管、三通、球阀、高压胶管、压力控制专用组合、耐震压力表等组成。
俯角封孔测压套件主要有1/4钢管、花管、高压胶管、三通、球阀、高压胶管、压力控制专用组合、耐震压力表等组成。
性能特点:
1.设备轻便,方便井下携带运输。
2.操作简单并且成本较低。
3.配合本公司研发的速凝膨胀封孔剂,大大提高了测定瓦斯压力的准确性。
4.能够实现主动性测压,测压周期明显缩短。
使用方法:
根据钻孔角度分为仰角连接和俯角连接法。
仰角连接方法:
钻孔钻毕数小时后,用压风清理钻孔。
根据钻孔深度确定测压管、回浆管的长度,连接回浆管同时将侧压管用12号铁丝每隔2米绑定在回浆上并使测压管顶端稍高于回浆管0.5米,然后送入钻孔,回浆管距最顶端2-4米处用三通(回浆用)连接,其余回浆管连接处用直通连接,并在连接均匀涂抹专用胶水,保证连接可靠,将注浆管从孔口处放入,用较稠速速凝膨胀封孔剂封堵孔口0.5-0.7米,固定好孔口,并保证三个管外露藏毒不小于0.3米。
回浆管最低端接PVC球阀,注浆管底端接不锈钢球阀,开始俩球阀均处于开启状态。
待速凝膨胀封孔剂凝固,固定好孔口后,用注浆泵注入配置好的速凝膨胀封孔剂浆液进行封孔,待PVC 球阀流出浑浊浆液时后10s左右停止注浆并关闭不锈钢球阀,待回流量明显变小后再关闭PVC球阀。
待速凝膨胀封孔剂凝固后(一般8h),按照安装方法装配
好各种测压元件,进行注氮气快速测压。
其注氮气工序为:1.注浆封孔完成后,将压力表连接到压测管路上;2.连接压力表三通上的一端与一个压力表的开关相连;3.将高压氮气钢瓶和压力表开关相连;4。
打开氮气钢瓶和压力表开关立刻向孔内注入氮气(以预估煤层瓦斯压力的1.2倍为宜),关闭压力表开关阀,停止注氮,定期观测压力表示数。
俯角连接法:
待钻孔钻毕数小时后,用压风清理钻孔。
依次连接花管和测压管,是花管处于钻孔最低端,并在连接处用铁丝固定一定量棉纱,用直通连接测压管,并使测压管外外端超出钻孔0.5m左右,外接球阀,连接完管路后旋转测压管,直到旋转抽拉不动,使得棉纱完全堵住钻孔。
注入配置后的速凝膨胀封孔剂浆液,注至孔口处停止注浆。
待数小时(8h)浆液凝固后,装配好各种测压元件,然后注入氮气进行快速测压,其注氮工序同仰角法一致。
包装规格:
木箱包装:根据客户要求确定测压管及回浆管长度。
注意事项:
钻孔清空完毕,确认孔内无积水,并于八小时内完成测压套件安装。
用清水实验泵和管路,确认泵运转正常,管路连接玩好后,即可开始注浆。
调整出浆流量,使浆液均匀缓慢的流出。
注氮时,确保各个连接处密闭无泄漏,定期压力表阀门,检查测压孔内有无积水。