水资源总量及可利用量计算
- 格式:ppt
- 大小:108.00 KB
- 文档页数:3
高标准农田项目工程设计及概算编制讲解高标准农田建设的规划就是从技术上说明:为什么要建?要建什么?建在什么地方?要建多大?要花多少钱?效益多少?水资源够不够?高标准农田建设工程设计就是要说明:选型的实用性、合理性;设计的安全性、经济性、科学性。
高标准农田建设的工程概算就是要说明:工程造价的真实性、科学性。
一、关于项目区水资源平衡分析高标准农田建设项目区的水资源平衡分析是项目立项审查的重要部分,因为水资源是高标准农田建设必不可少的自然资源。
如果水资源不足,建设再多、再大的灌溉工程也是与事无补的,只会成为摆设,浪费国家人力财力,由此可见,项目区水资源平衡分析是高标准农田建设立项论证的一个十分重要的环节。
高标准农田建设项目区的水资源平衡分析是一个十分为难的事。
理论上,水资源平衡分析只能对一个封闭的流域、灌区或有充分水文资料的省、县(市)地域。
而高标准农田建设项目区往往区域较小,既不封闭,又缺乏相应的水文资料,在这样的情况下,要进行水资源平衡分析困难较大。
江苏省一般不缺水,但淮北地区、沿海地区、丘陵山区及高亢的高沙土地区还是存在水资源不足的状况,要慎重选择高标准农田建设项目区,更要慎重进行水资源平衡分析。
1、水资源平衡单元(平衡区)水资源平衡分析是针对一个给定的区域而进行的不同水平年状况下的来用水平衡计算。
由于不同地理条件的水资源具有不同的特点,所以同一区域也可以划分为若干个平衡单元。
应根据项目区所在区的水文特性确定。
考虑到水文资料的局限性,为了方便进行水量平衡分析,可以采用以下方法:(1)以全县为平衡单元:摘录县水资源平衡报告相关数据。
(2)以大中型灌区为平衡单元:摘录项目所在的大中型灌区供需水量分析。
(3)以项目区为平衡单元:自己计算供水、需水量。
但需要注意的是,以全县或大中型灌区为平衡单元进行的水资源平衡分析,由于区域大,加之水资源的全区域平衡性,所以往往水资源平衡结论达不到高标准农田建设的灌溉设计保证率90%以上的要求。
地表水资源可利用量计算补充技术细则地表水资源可利用量计算补充技术细则一、基本要求1、水资源总量可利用量分为地表水可利用量和地下水可利用量(浅层地下水可开采量) 。
水资源总量可利用量为扣除重复水量的地表水资源可利用量与地下水资源可开采量。
本补充细则仅针对地表水可利用量,本文所提到的可利用量一般指地表水资源可利用量,涉及到水资源总量可利用量及地下水资源可利用量将单独注明。
2、地表水资源可利用量是指在可预见的时期内,在统筹考虑河道内生态环境和其它用水的基础上,通过经济合理、技术可行的措施,可供河道外生活、生产、生态用水的一次性最大水量(不包括回归水的重复利用)。
水资源可利用量是从资源的角度分析可能被消耗利用的水资源量。
3、水资源可利用量是反映宏观概念的数,是反映可能被消耗利用的最大极限值,在定性分析方面要进行全面和综合的分析,以求定性准确;在定量计算方面不宜过于繁杂,力求计算的内容简单明了,计算方法简捷可操作性强。
4、地表水资源可利用量以流域和水系为单元分析计算,以保持成果的独立性、完整性。
对于大江大河干流可按重要控制站点,分为若干区间段;控制站以下的三角洲地区和下游平原区,应单独进行分析。
各流域可根据资料条件和具体情况,确定计算的河流水系或区间,并选择控制节点,然后计算地表水资源可利用量。
对长江、黄河、珠江、松花江等大江大河还要对干流重要控制节点和主要二级支流进行可利用量计算。
大江大河又可分为上中游、下游,干、支流,并按照先上游、后下游,先支流、后干流依次逐级进行计算。
上游、支流汇入下游、干流的水量应扣除上游、支流计算出的可利用量,以避免重复计算。
全国地表水资源可利用量计算共分94个水系及区间,水系及区间划分详见附件2。
5.根据流域内的自然地理特点及水资源条件,划分相应的地表水可利用量计算的类型。
全国地表水可利用量计算的类型可以划分为:大江大河、沿海独流入海诸河、内陆河及国际河流等4种类型。
6.本次只计算多年平均水资源量的可利用量。
水资源评价导则----------------------------精品word文档值得下载值得拥有--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------中华人民共和国行业标准水资源评价导则A Guide To Water Resources AssessmentSL/T238-1999主编单位: 水利部水资源水文司批准部门: 1999年5月15日施行日期: 1999年5月15日网页制作: 中国水利科技信息网1999-04-09发布 1999-05-15实施前言根据水利部水利水电技术标准制定计划,在总结全国第一次水资源调查评价以来实践的基础上,编制了《水资源评价导则》。
《水资源评价导则》主要包括以下内容:总则:对标准的编制目的、依据、适用范围及技术原则作了说明。
一般规定:对水资源评价的内容和精度、分区原则、资料收集及评价方法等作了说明。
水资源数量评价:对水汽输送、降水、蒸发、地表水资源、地下水资源、总水资源的评价内容及要求作了说明。
水资源质量评价:对河流泥沙、天然水化学特征、水污染状况的评价内容及要求作了说明。
水资源开发利用及其影响评价:对现状水资源供用水情况调查分析、存在问题、水资源开发利用对环境的影响,以及水资源综合评价、水资源价值量评价等内容及要求作了说明。
本标准解释单位,水利部水资源水文司本标准主编单位,水利部水资源水文司----------------------------精品word文档值得下载值得拥有--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------本标准参编单位,南京水文水资源研究所中国水利水电科学研究院水资源研究所河北省水文水资源勘测局海河大学环境水利研究所本标准主要起草人,黄永基李砚阁王焕榜贺伟程王瑚金传良杨景斌石玉波目录1 总则2 一般规定3 水资源数量评价4 水资源质量评价5 水资源开发利用及其影响评价条文说明1总则1.0.1 依据《中华人民共和国水法》,为查明水资源状况,必须进行水资源评价。
高标准农田建设项目:水资源平衡分析1设计水平年需水量分析项目区用水量分农作物需水和农村生活用水及畜牧用水三部分。
(1)农作物用水:项目区建设总规模为890公顷,通过整理项目区耕地面积为751.92公顷,种植作物为冬小麦、夏玉米、花生、地瓜,种植比例为1:1:1:1,复种指数1.33。
按照85%的灌溉保证率,项目区综合灌溉采用PVC管,因此灌溉水利用系数取0.95。
农作物净灌溉定额表(单位:m3/ha)注:引用《山东省XX县水长期供求计划》。
W =S×M综/ηx0.85x10000式中:W—需水量,万m3;S —灌溉面积,751.92ha;M综—综合灌溉定额,1633m3/ha ;η—灌溉水利用系数0.95计算得W =152.06万m3(2)农村居民用水:项目区附近居民点人口4830人,则农村生活用水量:农村生活用水量(单位:升/ 人·天)农村生活用水量为:0.04×4830×365/10000=7.05万m3(3)农村畜禽用水:项目区有羊5000头,家禽20000只。
则畜禽用水量:牲畜用水量(单位::升/ 头·天)项目区畜禽用水总量为:=(0.01×5000+0.005×20000)×365/10000=5.48万m3(4)项目区总需水量为:152.06+7.05+5.48=164.59万m32 年降水量分析2.1年降水量分析根据《中华人民共和国水文年鉴·第五卷》淮河流域XX水文站1955年-1987年的水文资料1,经过频率分析和计算,可知项目区1975年为平水年,出现频率为50%;1973年为干旱年,出现频率为75%;1981年为特旱年,出现频率为95%。
各典型年月降水量见下表。
XX县典型年月降水量表(mm)为此,根据灌溉率设计标准,我们选择1973年为进行水资源供需平衡分析计算的灌溉设计保证率典型年。
2.2项目区年地表水可利用量分析项目区多年平均年降水量为p=696.3 mm,可利用地表水主要是降水形成的地表径流满足作物灌溉需要,地表水利用系数α=0.32,汇流面积按项目区整理后耕地总面积计算s=751.92公顷,则当地年径流量:Q=p×s×α×10;Q-每年可利用径流量(万m3)经计算,每年可利用径流量为Q=160.75万m3而项目区的实际汇水面积要比项目区面积大得多,因而项目区年地表水可利用量要远大于160.75万m3。
项目区水源主要是浅层地下水、汛期地表水及引黄补源水,由于地表水为季节性水,利用量极少。
浅层地下水主要包括自然降雨的入渗,引黄补源渠道的侧渗补给等。
(1)可供水量计算1、降雨入渗补给量W1=p×a×F式中:W1—降雨入渗补给量m3;a---入渗系数,取0.25;p---年降雨量,单位mm,多年平均降雨量p=623mm,F----控制面积1.19km2W1 =0.623×0. 25×1.19×100=18.53(万m3);2、灌溉回归补给量W2=Q定×U×F灌式中:Q定—灌溉定额,立方/公顷;当p=75%,Q定=800m3/公顷;F灌——灌溉面积,亩;F灌=102.39公顷;U回归系数,取0.18。
计算可得W2=1.47万m33、河渠渗漏补给量W3=K×J×A0×L×t式中:W3-----河渠渗漏补给量,m3;K------渗透系数0.9m/d;J----垂直于河渠单侧剖面的水力坡度,取0.0039;A0----单位长度河渠垂直于地下水流向的剖面面积,m2/m;A0=26m2/m;L----沟河长度,km,L=13.82km;t-----渗漏时间,d,t=180d。
W2=0.9×0.0039×13.82×26×180=227.02(万m3)3、地下水可采量地下水可采量等于地下水补给量乘以可开采系数。
取可利用量的85%为开采量,则项目区地下水可开采量为:W供=(W1+W2+W3)*0.85=(189.34+227.02+68.14)*0.85=474.279(万m3)。
地表水资源可利用量计算补充技术细则一、基本要求1、水资源总量可利用量分为地表水可利用量和地下水可利用量(浅层地下水可开采量) 。
水资源总量可利用量为扣除重复水量的地表水资源可利用量与地下水资源可开采量。
本补充细则仅针对地表水可利用量,本文所提到的可利用量一般指地表水资源可利用量,涉及到水资源总量可利用量及地下水资源可利用量将单独注明。
2、地表水资源可利用量是指在可预见的时期内,在统筹考虑河道内生态环境和其它用水的基础上,通过经济合理、技术可行的措施,可供河道外生活、生产、生态用水的一次性最大水量(不包括回归水的重复利用)。
水资源可利用量是从资源的角度分析可能被消耗利用的水资源量。
3、水资源可利用量是反映宏观概念的数,是反映可能被消耗利用的最大极限值,在定性分析方面要进行全面和综合的分析,以求定性准确;在定量计算方面不宜过于繁杂,力求计算的内容简单明了,计算方法简捷可操作性强。
4、地表水资源可利用量以流域和水系为单元分析计算,以保持成果的独立性、完整性。
对于大江大河干流可按重要控制站点,分为若干区间段;控制站以下的三角洲地区和下游平原区,应单独进行分析。
各流域可根据资料条件和具体情况,确定计算的河流水系或区间,并选择控制节点,然后计算地表水资源可利用量。
对长江、黄河、珠江、松花江等大江大河还要对干流重要控制节点和主要二级支流进行可利用量计算。
大江大河又可分为上中游、下游,干、支流,并按照先上游、后下游,先支流、后干流依次逐级进行计算。
上游、支流汇入下游、干流的水量应扣除上游、支流计算出的可利用量,以避免重复计算。
全国地表水资源可利用量计算共分94个水系及区间,水系及区间划分详见附件2。
5.根据流域内的自然地理特点及水资源条件,划分相应的地表水可利用量计算的类型。
全国地表水可利用量计算的类型可以划分为:大江大河、沿海独流入海诸河、内陆河及国际河流等4种类型。
6.本次只计算多年平均水资源量的可利用量。
中华人民共和国行业标准水资源评价导则A Guide To Water Resources AssessmentSL/T238-1999主编单位:水利部水资源水文司批准部门:1999年5月15日施行日期:1999年5月15日1999-04-09发布1999-05-15实施前言根据水利部水利水电技术标准制定计划,在总结全国第一次水资源调查评价以来实践的基础上,编制了《水资源评价导则》。
《水资源评价导则》主要包括以下内容:总则:对标准的编制目的、依据、适用范围及技术原则作了说明。
一般规定:对水资源评价的内容和精度、分区原则、资料收集及评价方法等作了说明。
水资源数量评价:对水汽输送、降水、蒸发、地表水资源、地下水资源、总水资源的评价内容及要求作了说明。
水资源质量评价:对河流泥沙、天然水化学特征、水污染状况的评价内容及要求作了说明。
水资源开发利用及其影响评价:对现状水资源供用水情况调查分析、存在问题、水资源开发利用对环境的影响,以及水资源综合评价、水资源价值量评价等内容及要求作了说明。
本标准解释单位:水利部水资源水文司本标准主编单位:水利部水资源水文司本标准参编单位:南京水文水资源研究所中国水利水电科学研究院水资源研究所河北省水文水资源勘测局海河大学环境水利研究所本标准主要起草人:黄永基李砚阁王焕榜贺伟程王瑚金传良杨景斌石玉波目录1 总则2 一般规定3 水资源数量评价4 水资源质量评价5 水资源开发利用及其影响评价条文说明1总则1.0.1依据《中华人民共和国水法》,为查明水资源状况,必须进行水资源评价。
为适应水资源评价工作的需要,统一技术标准,保证成果质量,特制定本导则。
1.0.2本导则适用于全国及区域水资源评价和专项工作中的水资源评价。
1.0.3水资源评价内容包括水资源数量评价、水资源质量评价和水资源利用评价及综合评价。
1.0.4水资源评价工作要求客观、科学、系统、实用,并遵循以下技术原则:1地表水与地下水统一评价。