变压器及磁性材料基本知识简介
- 格式:ppt
- 大小:305.00 KB
- 文档页数:1
变压器的基础知识一.变压器:是一种静止的电机,它利用电磁感应原理将一种电压、电流的交流电能转换成同频率的另一种电压、电流的电能。
换句话说,变压器就是实现电能在不同等级之间进行转换。
二.结构:铁心和绕组:变压器中最主要的部件,他们构成了变压器的器身。
铁心:构成了变压器的磁路,同时又是套装绕组的骨架。
铁心由铁心柱和铁轭两部分构成。
铁心柱上套绕组,铁轭将铁心柱连接起来形成闭合磁路。
铁心材料:为了提高磁路的导磁性能,减少铁心中的磁滞、涡流损耗,铁心一般用高磁导率的磁性材料——硅钢片叠成。
硅钢片有热轧和冷轧两种,其厚度为0.35~0.5mm,两面涂以厚0.02~0.23mm的漆膜,使片与片之间绝缘。
绕组:绕组是变压器的电路部分,它由铜或铝绝缘导线绕制而成。
一次绕组(原绕组):输入电能二次绕组(副绕组):输出电能他们通常套装在同一个心柱上,一次和二次绕组具有不同的匝数,通过电磁感应作用,一次绕组的电能就可传递到二次绕组,且使一、二次绕组具有不同的电压和电流。
其中,两个绕组中,电压较高的我们称为高压绕组,相应的电压较低的称为低压绕组。
从高、低压绕组的相对位置来看,变压器的绕组又可分为同心式、交迭式。
由于同心式绕组结构简单,制造方便,所以,国产的均采用这种结构,交迭式主要用于特种变压器中。
其他部件:除器身外,典型的油锓电力变压器中还有油箱、变压器油、绝缘套管及继电保护装置等部件。
三.额定值额定值是制造厂对变压器在指定工作条件下运行时所规定的一些量值。
额定值通常标注在变压器的铭牌上。
变压器的额定值主要有:1.额定容量S N额定容量是指额定运行时的视在功率。
以 VA 、kVA 或MVA 表示。
由于变压器的效率很高,通常一、二次侧的额定容量设计成相等。
2.额定电压U 1N 和U 2N正常运行时规定加在一次侧的端电压称为变压器一次侧的额定电压U 1N 。
二次侧的额定电压U 2N 是指变压器一次侧加额定电压时二次侧的空载电压。
变压器的相关资料简介变压器是一种基础的电气设备,用于改变交流电的电压。
它通过电磁感应的原理,将输入端的电压转换为输出端所需要的电压。
变压器通常由两个或多个线圈组成,其中一个线圈称为主线圈,另一个或其他线圈称为副线圈。
本文将介绍变压器的基本原理、结构和应用领域等相关资料。
基本原理变压器的工作基于电磁感应原理。
当主线圈中有交流电通过时,产生的磁场通过磁感应作用于副线圈上,从而引起副线圈中的电流变化。
根据法拉第电磁感应定律,线圈中的电压与磁通量的变化率成正比。
因此,当主线圈的输入电压变化时,副线圈中的输出电压也会相应变化。
根据变压器的结构,输出电压可以比输入电压高或低,这取决于主副线圈的匝数比例。
结构和工作原理变压器通常由铁心和线圈组成。
铁心由软磁材料制成,以增加磁场的传导能力。
线圈则包绕在铁心上,主线圈和副线圈之间通过磁场相互耦合。
当主线圈中有交流电通过时,产生的磁场通过铁心传导到副线圈中,从而激发副线圈中的电流。
变压器可以分为单相变压器和三相变压器。
单相变压器只有一个主线圈和一个副线圈,用于单相电力传输。
三相变压器由三个主线圈和三个副线圈组成,用于三相电力传输。
变压器的效率通常非常高,达到99%以上。
这是由于变压器没有移动部件,基本上没有能量损耗。
应用领域变压器在各个领域都有广泛的应用。
以下是一些常见的应用领域:电力系统变压器在电力系统中起到重要作用。
它们被用于从发电厂将电能输送到不同的地区,以及在配电站和变电站中将电压升高或降低,以适应不同的需求。
在电力系统中,大型变压器通常用于输电线路,而小型变压器用于从电网供电的设备。
电子设备变压器在各种电子设备中都有应用。
例如,手机充电器中的变压器将交流电压转换为适合手机充电的直流电压。
变压器还被用于供电适配器、计算机设备、电视机和音响系统等。
工业领域在工业领域,变压器被用于供应电动机和其他设备所需的电能。
这些变压器通常具有较高的功率和电压级别。
电气测试和实验室应用在电气测试和实验室应用中,变压器被用于生成需要的电压和电流,并提供所需的电源。
变压器磁芯的种类及应用磁性材料一. 磁性材料的基本特性1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2. 软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3. 软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
变压器结构简介与工作原理一、变压器结构简介变压器是一种用来改变交流电压的电气设备,它由磁性材料和绕组组成。
常见的变压器结构主要包括铁芯、一次绕组、二次绕组和绝缘材料。
1. 铁芯:铁芯是变压器的主要结构部分,通常由硅钢片叠压而成。
它的作用是提供一个低磁阻的磁路,使磁场能够有效地传递。
2. 一次绕组:一次绕组是变压器中与输入电源相连的绕组,也称为原边绕组。
它通常由导电材料(如铜线)绕制而成,用于接收输入电源的电能。
3. 二次绕组:二次绕组是变压器中与负载设备相连的绕组,也称为副边绕组。
它的作用是将输入电能转换为适合负载设备使用的电能。
4. 绝缘材料:绝缘材料用于隔离和保护变压器的各个部分,防止电流泄漏和短路等故障发生。
常见的绝缘材料包括绝缘纸、绝缘漆和绝缘胶带等。
二、变压器工作原理变压器的工作原理基于电磁感应定律,即当变化的电流通过绕组时,会在铁芯中产生磁场,从而诱导出相应的电压。
1. 基本原理:变压器的基本原理是利用交流电的变化来产生磁场,进而诱导出电压。
当输入电源的交流电流通过一次绕组时,会在铁芯中产生磁场。
这个磁场会穿过二次绕组,从而在二次绕组中诱导出电压。
2. 变压器方程式:变压器的工作可以通过变压器方程式来描述。
根据变压器方程式,输入电压与输出电压之间的关系可以表示为:V1/N1 = V2/N2,其中V1和V2分别表示输入电压和输出电压,N1和N2分别表示一次绕组和二次绕组的匝数。
3. 变压器的步骤:变压器的工作包括以下几个步骤:a. 输入电源通过一次绕组,产生磁场;b. 磁场穿过铁芯,诱导出二次绕组中的电压;c. 输出电压通过二次绕组传递给负载设备。
4. 变压器的应用:由于变压器可以改变电压的大小,因此广泛应用于电力系统、工业生产和家庭用电等领域。
它可以将高电压输送到远距离,并在终端降低电压以供各种设备使用。
总结:变压器是一种用来改变交流电压的电气设备,由铁芯、一次绕组、二次绕组和绝缘材料等部分组成。
变压器磁芯的种类及应用【最全资料】1.磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H 足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms 保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M 并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2.软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B 值。
矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗 Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ 降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3.软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。