变压器基础知识介绍
- 格式:ppt
- 大小:11.93 MB
- 文档页数:21
变压器基础知识有哪些变压器基础知识有哪些第一章:通用部分1.1 什么是变压器?答:变压器是借助电磁感应,以相同的频率,在两个或更多的绕组之间,变换交流电压和电流而传输交流电能的一种静止电器。
1.2 什么是局部放电?答:局部放电是指高压电器中的绝缘介质在高压电的作用下,发生在电极之间但未贯通的放电。
1.3 局放试验的目的是什么?答:发现设备结构和制造工艺的缺陷,例如:绝缘内部局放电场过高,金属部件有尖角;绝缘混入杂质或局部带有缺陷,防止局部放电对绝缘造成损坏。
1.4 什么是铁损?答:变压器的铁损又叫空载损耗,它属于励磁损耗而与负载无关,它不随负载大小而变化,只要加上励磁电压后就存在,它的大小仅随电压波动而略有变化。
包括铁心材料的磁滞损耗、涡流损耗以及附加损耗三部分。
1.5 什么是铜损?答:负载损耗又称铜损,它是指在变压器一对绕组中,一个绕组流经额定电流,另一个绕组短路,其他绕组开路时,在额定频率及参考温度下,所汲取的功率。
1.6 什么是高压首端?答:与高压中部出头连接的2至3个饼,及附近的纸板、相间隔板等叫做高压首端(强调电气连接)。
1.7 什么是高压首头?答:普通220kV变压器高压线圈中部出头一直到高压佛手叫做高压首头(强调空间位置)。
1.8 什么是主绝缘?它包括哪些内容?答:主绝缘是指绕组(或引线)对地(如对铁轭及芯柱)、对其他绕组(或引线)之间的绝缘。
它包括:同柱各线圈间绝缘、距铁心柱和铁轭的绝缘、各相之间的绝缘、线圈与油箱的绝缘、引线距接地部分的绝缘、引线与其他线圈的绝缘、分接开关距地或其他线圈的绝缘、异相触头间的绝缘。
1.9 什么是纵绝缘?它包括哪些内容?答:纵绝缘是指同一绕组上各点(线匝、线饼、层间)之间或其相应引线之间以及分接开关各部分之间的绝缘。
它包括:桶式线圈的层间绝缘、饼式线圈的段间绝缘、导线线匝的匝间绝缘、同线圈引线间的绝缘、分接开关同触头间的绝缘。
1.10 高压试验有哪些?分别考核重点是什么?答:高压试验包含空载试验、负载试验、外施耐压试验、感应耐压试验、局部放电试验、雷电冲击试验。
变压器的基础知识变压器是一种电力传输和转换设备,广泛应用于电力系统中。
它通过电磁感应原理实现了电压的升降转换。
本文将介绍变压器的基础知识,包括工作原理、结构和应用等方面。
一、工作原理变压器的工作原理是基于电磁感应现象。
当变压器的一侧通以交流电流时,产生的交变磁场会穿过另一侧的线圈,从而在该线圈中感应出电动势。
根据楞次定律,感应电动势的大小与磁场的变化率成正比。
通过合理设计线圈的匝数比,可以实现输入端电压和输出端电压的升降转换。
二、结构组成变压器主要由铁心、一次线圈和二次线圈组成。
铁心是由高导磁率的硅钢片叠压而成,以提高磁通的传导效率。
一次线圈位于铁心的输入端,通以输入电流;二次线圈位于铁心的输出端,输出电流经由其流出。
通过铁心的引导和线圈的匝数比例,可以实现输入输出电压的转换。
三、工作模式根据输入输出电压的关系,变压器可分为升压变压器和降压变压器两种工作模式。
升压变压器将输入电压升高到输出电压,适用于输电线路中远距离输送电能;降压变压器将输入电压降低到输出电压,适用于家庭和工业用电。
四、应用领域变压器被广泛应用于电力系统中。
在输电过程中,变压器起到调整电压、降低线路损耗和提高传输效率的作用。
在家庭和工业用电中,变压器被用于将高电压的输电线路电压降低到安全可靠的电压,以供给各类电器设备使用。
此外,变压器还应用于电力设备的测试、实验和研究等领域。
五、常见问题1. 变压器有哪些常见故障?常见的变压器故障包括短路故障、绝缘损坏、线圈过热和冷却系统故障等。
2. 变压器的效率如何衡量?变压器的效率可以通过输入功率和输出功率的比值来衡量,通常以百分比形式表示。
3. 变压器的额定容量是什么意思?变压器的额定容量是指其设计和制造时可以连续运行的功率上限,通常以千伏安(kVA)为单位。
六、总结变压器是电力系统中不可或缺的设备,通过电磁感应原理实现了电压的升降转换。
它具有结构简单、工作可靠、效率高等优点,被广泛应用于输电和配电系统中。
变压器的基础知识一、变压器的分类1、按照变压器的冷却方式分类冷却形式(一般用4各字母表示)字母代表的意义․对于变压器,一般用四个字母顺序代号标志其冷却方式。
第一个字母表示与绕组接触的内部冷却介质,其中:O代表矿物油或燃点不大于300℃的合成绝缘液体;K代表燃点大于300℃的绝缘液体;L代表燃点不可测出的绝缘液体。
․第二个字母表示内部冷却介质的循环方式,其中:N代表流经冷却设备和绕组内部的油流是自然的热对流循环;F代表冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环;D代表冷却设备中的油流是强迫循环,至少在主要绕组内的油流是强迫导向循环。
․第三个字母表示外部冷却介质,其中:A代表空气;W代表水。
․第四个字母表示外部冷却介质的循环方式,其中:N代表自然对流;F代表强迫循环(风扇、泵等)。
现在高电压、大容量变压器均采用变压器油作为变压器绕组内部的冷却介质,因此变压器冷却方式的字母表示第一个字母均为O。
油在变压器绕组内部的循环方式有三种:自然热对流循环;非导向强油循环;导向强油循环,分别用N、F、D表示。
变压器的外部冷却介质有空气和水,分别用A和W表示,现在变压器一般采用空气作为外部冷却介质,因此第三个字母一般为A。
空气有两种循环方式:自然对流和强迫循环,分别用N和F表示。
因此对于油浸式变压器,一般有以下几种冷却方式:․ONAN(油浸自冷式):通过油的自然热对流带走热量,没有其他冷却设备。
․ONAF(油浸风冷式):在油浸自冷式(ONAN)的基础上,另加风扇给油箱壁和油管或片散吹风,以加强散热作用。
․OFAF(强迫油循环非导向风冷式):用油泵将变压器上部的热油吸入冷却器,流过冷却管簇,将热量传给冷却管,由冷却管簇对空气放出热量。
空气侧则通过变压器风扇将空气吸入,使之流过空气管簇,吸收热量,吹出冷却器外,从而达到变压器冷却的目的。
流经绕组内部的油流是热对流循环。
․ODAF(强迫油循环导向风冷却式):用油泵将变压器上部的热油吸入冷却器,流过冷却管簇,将热量传给冷却管,由冷却管簇对空气放出热量。
变压器的基础知识一.变压器:是一种静止的电机,它利用电磁感应原理将一种电压、电流的交流电能转换成同频率的另一种电压、电流的电能。
换句话说,变压器就是实现电能在不同等级之间进行转换。
二.结构:铁心和绕组:变压器中最主要的部件,他们构成了变压器的器身。
铁心:构成了变压器的磁路,同时又是套装绕组的骨架。
铁心由铁心柱和铁轭两部分构成。
铁心柱上套绕组,铁轭将铁心柱连接起来形成闭合磁路。
铁心材料:为了提高磁路的导磁性能,减少铁心中的磁滞、涡流损耗,铁心一般用高磁导率的磁性材料——硅钢片叠成。
硅钢片有热轧和冷轧两种,其厚度为0.35~0.5mm,两面涂以厚0.02~0.23mm的漆膜,使片与片之间绝缘。
绕组:绕组是变压器的电路部分,它由铜或铝绝缘导线绕制而成。
一次绕组(原绕组):输入电能二次绕组(副绕组):输出电能他们通常套装在同一个心柱上,一次和二次绕组具有不同的匝数,通过电磁感应作用,一次绕组的电能就可传递到二次绕组,且使一、二次绕组具有不同的电压和电流。
其中,两个绕组中,电压较高的我们称为高压绕组,相应的电压较低的称为低压绕组。
从高、低压绕组的相对位置来看,变压器的绕组又可分为同心式、交迭式。
由于同心式绕组结构简单,制造方便,所以,国产的均采用这种结构,交迭式主要用于特种变压器中。
其他部件:除器身外,典型的油锓电力变压器中还有油箱、变压器油、绝缘套管及继电保护装置等部件。
三.额定值额定值是制造厂对变压器在指定工作条件下运行时所规定的一些量值。
额定值通常标注在变压器的铭牌上。
变压器的额定值主要有:1.额定容量S N额定容量是指额定运行时的视在功率。
以 V A 、kV A 或MV A 表示。
由于变压器的效率很高,通常一、二次侧的额定容量设计成相等。
2.额定电压U 1N 和U 2N正常运行时规定加在一次侧的端电压称为变压器一次侧的额定电压U 1N 。
二次侧的额定电压U 2N 是指变压器一次侧加额定电压时二次侧的空载电压。
变压器专业基础知识
变压器是电力系统中最基本的电力设备之一,用于将交流电的
电压从一个电平转换到另一个电平。
本文将介绍变压器的基础知识,包括基本原理、构造、工作原理和类型。
1. 基本原理
变压器的基本原理是磁感应定律和法拉第电磁感应定律。
当交
流电通过变压器中的一条线圈时,产生的磁感应力将导致在另一条
线圈中产生电动势,从而改变电压大小。
简单来说,变压器通过磁
场将电能从一端传输到另一端,从而改变电压大小。
2. 构造
变压器由铁芯和线圈组成。
铁芯是用来在变压器内部建立磁场的,一般由硅钢板制成,具有低磁导率和高电阻率。
线圈分为一次
线圈和二次线圈。
一次线圈接在输入电源上,二次线圈接在输出电
负载上。
由于铁芯的存在,一次线圈和二次线圈被隔离开了,因此
可以实现不同电压的传输。
3. 工作原理
在变压器内部,一次线圈被连接到交流电源,流过线圈的电流
将导致交变磁通量在铁芯内产生。
这个交变磁通量穿过二次线圈,
并在其中产生电动势。
根据法拉第电磁感应定律,这个电动势的大
小与磁通量的变化率有关,因此也与输入电压的大小成正比。
如果
二次线圈上有电负载,那么电势差将推动电流通过负载。
由于一次
和二次线圈的匝数比例,输出电压可以大于或小于输入电压。
1。
1、空载电流、负载损耗、阻抗电压空载电流:当额定频率下的额定电压(分接电压),施加到一个绕组的端子,其它绕组开路时,流经该绕组线路端子的电流的方均根值。
其较小的有功分量用以补偿铁心的损耗,其较大的有功分量用以励磁,以平衡铁心的磁压降。
空载电流Io通常以额定电流的百分数表示。
变压器额定容量越大,Io越小。
负载损耗:在一对绕组中,当额定电流流经一个绕组的线路端子,且另一绕组短路时,在额定频率及参考温度下所吸取的有功功率。
负载损耗也称短路损耗,它与负载电流的平方成正比,是线圈发热的热源。
阻抗电压:双绕组变压器当二次绕组短路,一次绕组流通额定电流而施加的电压称阻抗电压。
阻抗电压大小与变压器的成本和性能、系统稳定性和供电质量有关。
2、局部放电局部放电:指引起导体之间的绝缘只发生局部桥接的一种放电,即在电场作用下,绝缘系统中有部分区域发生放电,而没有贯穿施加电压的导体之间,即尚未击穿。
局部放电产生的原因:绝缘体各部位承受的电场是不均匀的,而且电介质也是不均匀的。
另外在制造或使用过程中会残留一些气泡或其它杂质等,于是在绝缘体内部或表面就会出现某些区域的电场强度高于平均电场强度,某些区域的电场强度低于平均电场强度。
因此,某些区域就会首先发生放电,而其它区域仍保持绝缘的特性,这就形成了局部放电。
3、干式变压器局部放电有几种形式?(1)绕组内部放电,即层、匝间绝缘介质局部放电;(2)表面局部放电;(3)电晕放电。
4、干式变压器绕组散热有哪几种形式?(1)辐射:即绕组以红外线辐射波向周围温度较低的空间传播热量;(2)对流:是发热体通过温度较低运动着的空气而散热;(3)传导:是热源从温度较高处直接到温度较低处。
5、三相变压器接线Y,yn0和D,yn11有什么区别?(1)当变压器二次侧负载不对称时D,yn11接线比Y,yn0接线零位偏移小;(比Y,yn0零序阻抗小)(2)采用D,yn11接线方式可提高变压器过电流继电保护装置的灵敏度,简化保护接线;(3)采用D,yn11接线方式可提高低压干线保护装置的灵敏度,有利于保证各级保护装置的选择性和扩大馈电半径;(4)D,yn11接线的变压器,其二次零线电流不作限制。
变压器主要内容:变压器的工作原理,运行特性,基本方程式等效电路相量土,变压器的并联运行及三相变压器的特有问题。
2-1 变压器的工作原理本节以普通双绕组变压器为例介绍变压器的工作原理,基本结构和额定值。
一、基本结构变压器的主要部件是铁心和绕组,它们构成了变压器的器身。
除此之外,还有放置器身的盛有变压器油的油箱、绝缘套管、分接开关、安全气道等部件。
主要介绍铁心和绕组的结构。
1、铁心变压器的铁心既是磁路,也是套装绕组的骨架。
铁心分:心柱:心柱上套装有绕组。
铁轭:形成闭合磁路为了减少铁心损耗,通常采用含硅量较高,厚度为0.33mm 表面涂有绝缘漆的硅钢片叠装而成。
铁心结构的基本形式分心式和壳式两种心式:铁轭靠着绕组的顶面和底面。
而不包围绕组侧面,见图2-2 特结构较为简单,绕组的装配及绝缘也较为容易,所以国产变压器大多采用心式结构。
(电力变压器常采用的结构)壳式:铁轭不仅包围顶面和底面,也包围绕组的侧面。
见图2-3,这种结构机械强度较好,但制造工艺复杂,用材料较多。
铁心的叠装分为对接和叠接两种对接:将心柱和铁轭分别叠装和夹紧,然后再把它们拼在一起。
工艺简单。
迭接:把心柱和铁轭一层一层的交错重叠,工艺复杂。
由于叠接式铁心使叠片接缝错开,减小接缝处的气隙,从而减小了励磁电流,同时这种结构夹紧装置简单经济可靠性高,多采用叠接式。
缺点:工艺上费时2、绕组绕组是变压器的电路部分,用纸包或纱包的绝缘扁线或圆线绕成。
接入电能的一端称为原绕组(或一次绕组)输出电能的一端称为付绕组(或二次绕组)一、二次绕组中电压高的一端称高电压绕组,低的一端称低电压绕组高压绕组匝数多,导线细;低压绕组匝数少,导线粗。
因为不计铁心的损耗,根据能量的守恒原理U1I1 U2I2 S (s原付绕组的视在功率)电压高的一端电流小所以导线细从高低压绕组的相对位置来看,变压器绕组可以分为同心式和交叠式两类同心式:高低压绕组同心的套在铁心柱上。
为便于绝缘,一般低压绕组在里面高压绕组在外面。