变压器基础知识
- 格式:docx
- 大小:56.01 KB
- 文档页数:10
变压器基础知识变压器基础知识有哪些变压器基础知识有哪些第一章:通用部分1.1 什么是变压器?答:变压器是借助电磁感应,以相同的频率,在两个或更多的绕组之间,变换交流电压和电流而传输交流电能的一种静止电器。
1.2 什么是局部放电?答:局部放电是指高压电器中的绝缘介质在高压电的作用下,发生在电极之间但未贯通的放电。
1.3 局放试验的目的是什么?答:发现设备结构和制造工艺的缺陷,例如:绝缘内部局放电场过高,金属部件有尖角;绝缘混入杂质或局部带有缺陷,防止局部放电对绝缘造成损坏。
1.4 什么是铁损?答:变压器的铁损又叫空载损耗,它属于励磁损耗而与负载无关,它不随负载大小而变化,只要加上励磁电压后就存在,它的大小仅随电压波动而略有变化。
包括铁心材料的磁滞损耗、涡流损耗以及附加损耗三部分。
1.5 什么是铜损?答:负载损耗又称铜损,它是指在变压器一对绕组中,一个绕组流经额定电流,另一个绕组短路,其他绕组开路时,在额定频率及参考温度下,所汲取的功率。
1.6 什么是高压首端?答:与高压中部出头连接的2至3个饼,及附近的纸板、相间隔板等叫做高压首端(强调电气连接)。
1.7 什么是高压首头?答:普通220kV变压器高压线圈中部出头一直到高压佛手叫做高压首头(强调空间位置)。
1.8 什么是主绝缘?它包括哪些内容?答:主绝缘是指绕组(或引线)对地(如对铁轭及芯柱)、对其他绕组(或引线)之间的绝缘。
它包括:同柱各线圈间绝缘、距铁心柱和铁轭的绝缘、各相之间的绝缘、线圈与油箱的绝缘、引线距接地部分的绝缘、引线与其他线圈的绝缘、分接开关距地或其他线圈的绝缘、异相触头间的绝缘。
1.9 什么是纵绝缘?它包括哪些内容?答:纵绝缘是指同一绕组上各点(线匝、线饼、层间)之间或其相应引线之间以及分接开关各部分之间的绝缘。
它包括:桶式线圈的层间绝缘、饼式线圈的段间绝缘、导线线匝的匝间绝缘、同线圈引线间的绝缘、分接开关同触头间的绝缘。
1.10 高压试验有哪些?分别考核重点是什么?答:高压试验包含空载试验、负载试验、外施耐压试验、感应耐压试验、局部放电试验、雷电冲击试验。
变压器基础知识有哪些变压器基础知识有哪些第一章:通用部分1.1 什么是变压器?答:变压器是借助电磁感应,以相同的频率,在两个或更多的绕组之间,变换交流电压和电流而传输交流电能的一种静止电器。
1.2 什么是局部放电?答:局部放电是指高压电器中的绝缘介质在高压电的作用下,发生在电极之间但未贯通的放电。
1.3 局放试验的目的是什么?答:发现设备结构和制造工艺的缺陷,例如:绝缘内部局放电场过高,金属部件有尖角;绝缘混入杂质或局部带有缺陷,防止局部放电对绝缘造成损坏。
1.4 什么是铁损?答:变压器的铁损又叫空载损耗,它属于励磁损耗而与负载无关,它不随负载大小而变化,只要加上励磁电压后就存在,它的大小仅随电压波动而略有变化。
包括铁心材料的磁滞损耗、涡流损耗以及附加损耗三部分。
1.5 什么是铜损?答:负载损耗又称铜损,它是指在变压器一对绕组中,一个绕组流经额定电流,另一个绕组短路,其他绕组开路时,在额定频率及参考温度下,所汲取的功率。
1.6 什么是高压首端?答:与高压中部出头连接的2至3个饼,及附近的纸板、相间隔板等叫做高压首端(强调电气连接)。
1.7 什么是高压首头?答:普通220kV变压器高压线圈中部出头一直到高压佛手叫做高压首头(强调空间位置)。
1.8 什么是主绝缘?它包括哪些内容?答:主绝缘是指绕组(或引线)对地(如对铁轭及芯柱)、对其他绕组(或引线)之间的绝缘。
它包括:同柱各线圈间绝缘、距铁心柱和铁轭的绝缘、各相之间的绝缘、线圈与油箱的绝缘、引线距接地部分的绝缘、引线与其他线圈的绝缘、分接开关距地或其他线圈的绝缘、异相触头间的绝缘。
1.9 什么是纵绝缘?它包括哪些内容?答:纵绝缘是指同一绕组上各点(线匝、线饼、层间)之间或其相应引线之间以及分接开关各部分之间的绝缘。
它包括:桶式线圈的层间绝缘、饼式线圈的段间绝缘、导线线匝的匝间绝缘、同线圈引线间的绝缘、分接开关同触头间的绝缘。
1.10 高压试验有哪些?分别考核重点是什么?答:高压试验包含空载试验、负载试验、外施耐压试验、感应耐压试验、局部放电试验、雷电冲击试验。
变压器的基础知识一、变压器:就是一种静止的电机,它利用电磁感应原理将一种电压、电流的交流电能转换成同频率的另一种电压、电流的电能。
换句话说,变压器就就是实现电能在不同等级之间进行转换。
二、结构:铁心与绕组:变压器中最主要的部件,她们构成了变压器的器身。
铁心:构成了变压器的磁路,同时又就是套装绕组的骨架。
铁心由铁心柱与铁轭两部分构成。
铁心柱上套绕组,铁轭将铁心柱连接起来形成闭合磁路。
铁心材料:为了提高磁路的导磁性能,减少铁心中的磁滞、涡流损耗,铁心一般用高磁导率的磁性材料——硅钢片叠成。
硅钢片有热轧与冷轧两种,其厚度为0、35~0、5mm,两面涂以厚0、02~0、23mm的漆膜,使片与片之间绝缘。
绕组:绕组就是变压器的电路部分,它由铜或铝绝缘导线绕制而成。
一次绕组(原绕组):输入电能二次绕组(副绕组):输出电能她们通常套装在同一个心柱上,一次与二次绕组具有不同的匝数,通过电磁感应作用,一次绕组的电能就可传递到二次绕组,且使一、二次绕组具有不同的电压与电流。
其中,两个绕组中,电压较高的我们称为高压绕组,相应的电压较低的称为低压绕组。
从高、低压绕组的相对位置来瞧,变压器的绕组又可分为同心式、交迭式。
由于同心式绕组结构简单,制造方便,所以,国产的均采用这种结构,交迭式主要用于特种变压器中。
其她部件:除器身外,典型的油锓电力变压器中还有油箱、变压器油、绝缘套管及继电保护装置等部件。
三、额定值额定值就是制造厂对变压器在指定工作条件下运行时所规定的一些量值。
额定值通常标注在变压器的铭牌上。
变压器的额定值主要有:1、额定容量S N额定容量就是指额定运行时的视在功率。
以 V A 、kV A 或MV A 表示。
由于变压器的效率很高,通常一、二次侧的额定容量设计成相等。
2、额定电压U 1N 与U 2N正常运行时规定加在一次侧的端电压称为变压器一次侧的额定电压U 1N 。
二次侧的额定电压U 2N 就是指变压器一次侧加额定电压时二次侧的空载电压。
变压器基础知识变压器是一种电气设备,主要用于改变交流电的电压。
它是电力系统中非常重要的组成部分,广泛应用于发电、输电和配电系统中。
一、基本原理变压器的基本原理是电磁感应。
当交流电通过一个线圈时,会在线圈中产生一个交变磁场。
当另一个线圈靠近时,这个交变磁场会感应出电动势,从而在第二个线圈中产生电流。
这样,交流电的电能就被从第一个线圈传递到第二个线圈,实现了电压的变换。
二、结构组成变压器主要由两个线圈和一个铁芯组成。
铁芯通常由硅钢片叠压而成,用于增强磁路,减小磁通漏磁。
两个线圈分别称为原线圈和副线圈。
原线圈接入电源,副线圈则输出电压。
原线圈和副线圈之间通过磁场相互耦合,形成了电压变换的效果。
三、工作原理变压器的工作原理可以分为两种模式:步进模式和连续模式。
1. 步进模式:在步进模式下,变压器的输入和输出电压是以不连续的形式变化的。
当原线圈电流变化时,磁场也会随之变化,从而引起副线圈中的电动势变化,最终导致输出电压的变化。
2. 连续模式:在连续模式下,变压器的输入和输出电压是以连续的形式变化的。
当原线圈电流变化时,磁场也会相应地变化,但副线圈中的电动势不会立即变化,而是随着时间的推移逐渐变化,从而实现输出电压的稳定。
四、类型分类根据用途和结构的不同,变压器可以分为很多不同的类型。
常见的变压器类型包括:配电变压器、互感器、自耦变压器等。
1. 配电变压器:用于将高压输电线路的电压降低到适合家庭、工业和商业用电的电压。
2. 互感器:主要用于测量、保护和控制电力系统中的电流和电压。
3. 自耦变压器:在自耦变压器中,原线圈和副线圈是通过共用一部分线圈实现的,这种类型的变压器常用于电力系统中的电压调节。
五、应用领域变压器在电力系统中起着至关重要的作用。
它们被广泛应用于发电厂、变电站和配电系统中。
1. 发电厂:发电厂通过变压器将发电机产生的高电压变成适合输送的电压,然后送入输电系统。
2. 变电站:变电站是电力系统中的重要节点,变压器在变电站中用于升压、降压、分配电能等功能。
变压器的基础知识变压器是一种电力传输和转换设备,广泛应用于电力系统中。
它通过电磁感应原理实现了电压的升降转换。
本文将介绍变压器的基础知识,包括工作原理、结构和应用等方面。
一、工作原理变压器的工作原理是基于电磁感应现象。
当变压器的一侧通以交流电流时,产生的交变磁场会穿过另一侧的线圈,从而在该线圈中感应出电动势。
根据楞次定律,感应电动势的大小与磁场的变化率成正比。
通过合理设计线圈的匝数比,可以实现输入端电压和输出端电压的升降转换。
二、结构组成变压器主要由铁心、一次线圈和二次线圈组成。
铁心是由高导磁率的硅钢片叠压而成,以提高磁通的传导效率。
一次线圈位于铁心的输入端,通以输入电流;二次线圈位于铁心的输出端,输出电流经由其流出。
通过铁心的引导和线圈的匝数比例,可以实现输入输出电压的转换。
三、工作模式根据输入输出电压的关系,变压器可分为升压变压器和降压变压器两种工作模式。
升压变压器将输入电压升高到输出电压,适用于输电线路中远距离输送电能;降压变压器将输入电压降低到输出电压,适用于家庭和工业用电。
四、应用领域变压器被广泛应用于电力系统中。
在输电过程中,变压器起到调整电压、降低线路损耗和提高传输效率的作用。
在家庭和工业用电中,变压器被用于将高电压的输电线路电压降低到安全可靠的电压,以供给各类电器设备使用。
此外,变压器还应用于电力设备的测试、实验和研究等领域。
五、常见问题1. 变压器有哪些常见故障?常见的变压器故障包括短路故障、绝缘损坏、线圈过热和冷却系统故障等。
2. 变压器的效率如何衡量?变压器的效率可以通过输入功率和输出功率的比值来衡量,通常以百分比形式表示。
3. 变压器的额定容量是什么意思?变压器的额定容量是指其设计和制造时可以连续运行的功率上限,通常以千伏安(kVA)为单位。
六、总结变压器是电力系统中不可或缺的设备,通过电磁感应原理实现了电压的升降转换。
它具有结构简单、工作可靠、效率高等优点,被广泛应用于输电和配电系统中。
变压器基础知识1.什么叫变压器?变压器是一种用于交流电能转换的电气设备。
它可以把一种交流电压、交流电流的电能转换成相同频率的另一种交流电压、交流电流的电能。
2.变压器在电力系统中的主要作用是什么?变压器在电力系统中的主要作用是变换电压,以利于电能的传输。
电压经升压变压器升压后,可以减少线路损耗,提高送电经济性,达到远距离送电的目的;电压经降压变压器降压后,获得各级用电设备的所需电压,以满足用户使用的需要。
3.简述变压器的基本原理变压器几乎在所有的输变电系统中都要用到,变压器虽种类较多,但其工作原理相同,根据不同的使用场合(不同的用途),变压器的绕制工艺会有不同的要求。
变压器的功能主要有:电压变换、阻抗变换、隔离及稳压(磁饱和变压器)等。
变压器常用的铁心形状一般有E形和C形。
图1-1是变压器的基本工作原理,当一个正弦交流电压U1 加在初级线圈两端时,导线中就有交变电流I1并产生交变磁通φ1,沿着铁心穿过初级线圈和次级线圈形成闭合的磁路。
在次级线圈中感应出互感电势U2,同时φ1也会在初级线圈上感应出一个自感电势E1,E1的方向与所加电压U1的方向相反而幅度相近,从而限制了I1的大小。
为了保持磁通φ1的存在就需要有一定的电能消耗,并且变压器本身也有一定的损耗,尽管此时次级线圈没接负载,而初级线圈中仍有一定的电流,这个电流我们称为“空载电流”.图1-1 变压器的基本工作原理图如果变压器次级接上负载,次级线圈就产生电流I2,并因此而产生磁通φ2, φ2的方向与φ1相反,起了互相抵消的作用,使铁心中总的磁通量有所减少,从而使初级自感电势E1减少,其结果使I1增大,可见初级电流与次级负载有密切关系.当次级负载电流加大时, I1增加,并且φ1增加部分正好补充了被所抵消的那部分磁通,以保持铁心里总磁通量不变.如果考虑变压器的损耗,可以认为一个理想的变压器,次级负载消耗的电功率也就是初级人电源取得的电功率.变压器能根据需要通过改变次级线圈的圈数而改变次级电压,但是不能改变允许负载消耗的功率.4.简述电力变压器的基本构成电力变压器由器身、油箱、冷却装置、出线装置及调压装置等几部分组成:①器身包括铁心、绕组、绝缘结构及引线等;②油箱包括本体(箱盖、箱壁和箱底)和一些附件(放油阀门、小车、油样油门、接地螺栓及铭牌等);③冷却装置包括散热器和冷却器;④保护装置包括储油柜、油位计、安全气道、吸湿器、测温元件、净油器及气体继电器等;⑤出线装置包括高压套管、低压套管等;⑥调压装置即分接开关,分为无载调压和有载调压装置。
变压器的基础知识一、变压器的分类1、按照变压器的冷却方式分类冷却形式(一般用4各字母表示)字母代表的意义․对于变压器,一般用四个字母顺序代号标志其冷却方式。
第一个字母表示与绕组接触的内部冷却介质,其中:O代表矿物油或燃点不大于300℃的合成绝缘液体;K代表燃点大于300℃的绝缘液体;L代表燃点不可测出的绝缘液体。
․第二个字母表示内部冷却介质的循环方式,其中:N代表流经冷却设备和绕组内部的油流是自然的热对流循环;F代表冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环;D代表冷却设备中的油流是强迫循环,至少在主要绕组内的油流是强迫导向循环。
․第三个字母表示外部冷却介质,其中:A代表空气;W代表水。
․第四个字母表示外部冷却介质的循环方式,其中:N代表自然对流;F代表强迫循环(风扇、泵等)。
现在高电压、大容量变压器均采用变压器油作为变压器绕组内部的冷却介质,因此变压器冷却方式的字母表示第一个字母均为O。
油在变压器绕组内部的循环方式有三种:自然热对流循环;非导向强油循环;导向强油循环,分别用N、F、D表示。
变压器的外部冷却介质有空气和水,分别用A和W表示,现在变压器一般采用空气作为外部冷却介质,因此第三个字母一般为A。
空气有两种循环方式:自然对流和强迫循环,分别用N和F表示。
因此对于油浸式变压器,一般有以下几种冷却方式:․ONAN(油浸自冷式):通过油的自然热对流带走热量,没有其他冷却设备。
․ONAF(油浸风冷式):在油浸自冷式(ONAN)的基础上,另加风扇给油箱壁和油管或片散吹风,以加强散热作用。
․OFAF(强迫油循环非导向风冷式):用油泵将变压器上部的热油吸入冷却器,流过冷却管簇,将热量传给冷却管,由冷却管簇对空气放出热量。
空气侧则通过变压器风扇将空气吸入,使之流过空气管簇,吸收热量,吹出冷却器外,从而达到变压器冷却的目的。
流经绕组内部的油流是热对流循环。
․ODAF(强迫油循环导向风冷却式):用油泵将变压器上部的热油吸入冷却器,流过冷却管簇,将热量传给冷却管,由冷却管簇对空气放出热量。
变压器专业基础知识
变压器是电力系统中最基本的电力设备之一,用于将交流电的
电压从一个电平转换到另一个电平。
本文将介绍变压器的基础知识,包括基本原理、构造、工作原理和类型。
1. 基本原理
变压器的基本原理是磁感应定律和法拉第电磁感应定律。
当交
流电通过变压器中的一条线圈时,产生的磁感应力将导致在另一条
线圈中产生电动势,从而改变电压大小。
简单来说,变压器通过磁
场将电能从一端传输到另一端,从而改变电压大小。
2. 构造
变压器由铁芯和线圈组成。
铁芯是用来在变压器内部建立磁场的,一般由硅钢板制成,具有低磁导率和高电阻率。
线圈分为一次
线圈和二次线圈。
一次线圈接在输入电源上,二次线圈接在输出电
负载上。
由于铁芯的存在,一次线圈和二次线圈被隔离开了,因此
可以实现不同电压的传输。
3. 工作原理
在变压器内部,一次线圈被连接到交流电源,流过线圈的电流
将导致交变磁通量在铁芯内产生。
这个交变磁通量穿过二次线圈,
并在其中产生电动势。
根据法拉第电磁感应定律,这个电动势的大
小与磁通量的变化率有关,因此也与输入电压的大小成正比。
如果
二次线圈上有电负载,那么电势差将推动电流通过负载。
由于一次
和二次线圈的匝数比例,输出电压可以大于或小于输入电压。
1。
变压器专业基础知识1.两台变压器并列应具备哪些条件(1)变比相同;(2)短路阻抗相同;(3)接线组别相同;(4)相序相同;2.变压器的冷却方式有哪几种(1)油浸自冷;(2)油浸风冷;(3)强油循环风冷;(4)强油导向风冷.3.什么叫分级绝缘分级绝缘的变压器运行中要注意什么所谓分级绝缘,就是变压器的线圈靠近中性点部分的主绝缘,其绝缘水平比线圈端部的绝缘水平低.分级绝缘的变压器,一般都规定只许在中性点直接接地的情况下投入运行4.变压器合闸时为什么有激磁涌流变压器线圈中,励磁电流和磁通的关系,由磁化特性决定,铁芯愈饱合,产生一定的磁通所需要的励磁电流愈大.由于在正常情况下,铁芯中的磁通就已饱合,如在不利条件下合闸,铁芯中磁通密度较大值可达两倍的正常值,铁芯饱和将非常严重,使其导磁数减小,励磁电抗大大减小,因而励磁电流数值大增,由磁化特性决定的电流波形很尖,这个冲击电流可超过变压器额定电流的6--8倍.所以,由于变压器电,磁能的转换,合闸瞬间电压的相角,铁芯的饱合程度等,决定了变压器合闸时,有励磁涌流,励磁涌流的大小,将受到铁芯剩磁与合闸电压相角的影响.5.突然短路对变压器有何危害突然短路对变压器线圈的危害性有二:(1)使线圈受到强大的电磁力作用,可能毁坏;(2)使线圈严重发热.6.变压器运行中补油应注意哪些问题变压器缺油后的补油工作可以在变压器不停电的情况下进行.补油时应注意下列事项:(1)注意防止混油,新补入的油应经试验合格.(2)补油前应将重瓦斯保护改投信号位置,防止瓦斯保护误动使变压器跳闸.(3)补油后应注意检查瓦斯继电器,及时放出气体,待变压器空气排尽后,方可将重瓦斯保护重新投入跳闸位置.(4)补油量要适宜,油位与变压器当时的油温相适应.(5)禁止从变压器下部截门补油,以防将变压器底部沉淀物冲起进入线圈内,影响变压器的绝缘和散热.7.变压器在什么情况下必须立即停止运行发生下述情况之一时,应立即将变压器停运处理:(1)变压器内部音响很大,很不正常,有爆裂声;(2)在正常负荷和冷却条件下,变压器上层油温异常,并不断上升;(3)油枕或防爆筒喷油;(4)严重漏油,致使油面低于油位计的指示限度;(5)油色变化过甚,油内出现碳质;(6)套管有严重的破损和放电现象;(7)变压器范围内发生人身事故,必须停电时;(8)变压器着火;(9)套管接头和引线发红,熔化或熔断.8.中性点不接地系统的电压互感器高压侧熔断器一相熔断与系统单相接地现象的相同点与不同点有哪些相同点:两者都可发接地信号.不同点:高压侧保险断一相时的现象,是断相电压降低很多,其它两相为正常相电压.单相接地时的现象,是断相电压指示为零,其它两相升高3倍.9.新装或大修后的主变压器投入前,为什么要求做全电压冲击试验冲击几次新装或大修后的主变压器投入运行前,要做全电压冲击试验.此外,空载变压器投入电网时,会产生励磁涌流.励磁涌流一般可达6--8倍的额定电流,经0.5--1秒后可能衰减到0.25--0.5倍额定电流,但是全部衰减的时间较长,大容量的变压器需要几十秒.由于励磁涌流能产生很大的电动力,所以冲击试验也是为了考核变压器的机械强度和继电保护装置动作的可靠程度.规程中规定,新安装的变压器冲击试验5次,大修后的变压器冲击试验3次,合格后方可投入运行.10.高压厂用母线电压互感器停,送电的操作原则是什么(1)停电操作原则:a.高压厂用工作电源运行时,应停用高压厂用BZT回路低电压跳闸压板,以防电压互感器停电后造成高压厂用工作电源开关跳闸.b.拉开高压厂用母线低电压保护直流铅丝,以防电压互感器停电后,造成高压厂用母线低电压保护误动,使高压厂用电动机跳闸.c.拉开高压厂用母线电压互感器二次铅丝.d.拉开高压厂用母线电压互感器二次插件.e.将高压厂用母线电压互感器小车拉出或拉开高压厂用母线电压互感器的一次刀闸.f.短路用于低压厂用BZT回路的高压厂用母线电压监视继电器接点,不致使相应的低压厂用BZT装置失效.(2)送电操作原则:送电操作与停电操作顺序相反.11.高压厂用母线电压互感器停,送电操作应注意什么高压厂用母线电压互感器停电时应注意下列事项:(1)停用电压互感器时应首先考虑该电压互感器所带继电保护及自动装置,为防止误动可将有关继电保护及自动装置或所用的直流电源停用.(2)当电压互感器停用时,应将二次侧熔断器取下.(3)然后将一次侧熔断器取下.(4)小车式或抽匣式电压互感器停电时还应将其小车或抽匣拉出,其二次插件同时拔出.高压厂用母线电压互感器送电时应注意下列事项:(1)应首先检查该电压互感器所带的继电保护及自动装置确在停用状态.(2)将电压互感器的一次侧熔断器投入.(3)将小车式或抽匣式电压互感器推至工作位置.(4)将电压互感器的二次侧熔断器投入.(5)将小车式或抽匣式电压互感器的二次插件投入.(6)启用停用的继电保护及自动装置或它们的直流电源.(7)电压互感器本身检修在送电前还应按规定测高低压绕组的绝缘状况.12.厂用变压器(工作变压器和备用变压器)都在什么情况下可以强送电(1)厂用变压器事故跳闸,如果没有联动,可以将备用的变压器强行投入.(2)厂用变压器限时过流动作,在没有备用电源的情况下,可以强送一次,不成功不得再送.13.有载调压变压器在运行中调整分接头时应注意的事项有哪些(1)应对附加油箱的油位加强监视.(2)应认真检查和记录有载调压装置的操作次数.(3)远方电动调整与就地手动调整不能同时进行.(4)调整时应注意分接头位置指示器指示正确,数字位于显示孔中间.(5)调整操作需要得到领导的命令,不准随意进行.(6)调整操作需由两人进行.(7)有载调压的变压器附加油箱的瓦斯保护需经常投入.(8)远方电动调整时应以短促`瞬动来进行.(9)变压器过负荷时不可频繁操作有载分接开关.(10)就地手动调整时要按照特定的操作顺序进行.14.高压厂用变压器在什么情况下可以强送电。
1、空载电流、负载损耗、阻抗电压空载电流:当额定频率下的额定电压(分接电压),施加到一个绕组的端子,其它绕组开路时,流经该绕组线路端子的电流的方均根值。
其较小的有功分量用以补偿铁心的损耗,其较大的有功分量用以励磁,以平衡铁心的磁压降。
空载电流Io通常以额定电流的百分数表示。
变压器额定容量越大,Io越小。
负载损耗:在一对绕组中,当额定电流流经一个绕组的线路端子,且另一绕组短路时,在额定频率及参考温度下所吸取的有功功率。
负载损耗也称短路损耗,它与负载电流的平方成正比,是线圈发热的热源。
阻抗电压:双绕组变压器当二次绕组短路,一次绕组流通额定电流而施加的电压称阻抗电压。
阻抗电压大小与变压器的成本和性能、系统稳定性和供电质量有关。
2、局部放电局部放电:指引起导体之间的绝缘只发生局部桥接的一种放电,即在电场作用下,绝缘系统中有部分区域发生放电,而没有贯穿施加电压的导体之间,即尚未击穿。
局部放电产生的原因:绝缘体各部位承受的电场是不均匀的,而且电介质也是不均匀的。
另外在制造或使用过程中会残留一些气泡或其它杂质等,于是在绝缘体内部或表面就会出现某些区域的电场强度高于平均电场强度,某些区域的电场强度低于平均电场强度。
因此,某些区域就会首先发生放电,而其它区域仍保持绝缘的特性,这就形成了局部放电。
3、干式变压器局部放电有几种形式?(1)绕组内部放电,即层、匝间绝缘介质局部放电;(2)表面局部放电;(3)电晕放电。
4、干式变压器绕组散热有哪几种形式?(1)辐射:即绕组以红外线辐射波向周围温度较低的空间传播热量;(2)对流:是发热体通过温度较低运动着的空气而散热;(3)传导:是热源从温度较高处直接到温度较低处。
5、三相变压器接线Y,yn0和D,yn11有什么区别?(1)当变压器二次侧负载不对称时D,yn11接线比Y,yn0接线零位偏移小;(比Y,yn0零序阻抗小)(2)采用D,yn11接线方式可提高变压器过电流继电保护装置的灵敏度,简化保护接线;(3)采用D,yn11接线方式可提高低压干线保护装置的灵敏度,有利于保证各级保护装置的选择性和扩大馈电半径;(4)D,yn11接线的变压器,其二次零线电流不作限制。
变压器原理、质量等基础知识
作者:未知文章来源:未知点击数:669更新时间:2008-2-14
变压器的基本原理
变压器是利用线圈互感特性构成的一种元器件,几乎在所有的电子产品中都要用到。
它原理简单,但根据不同的使用场合(不同的用途),变压器的绕制工艺会有所不同。
变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等。
它是由一个初级线圈(线圈圈数n1)及一个次级线圈(线圈圈数n2)环绕着一个核心。
常用的铁心形状一般有E型和C型。
E1是初级电压,次级电压E2是? E2 = E1×(n2/n1)
上图是变压器的原理简体图,当一个正弦交流电压U1加在初级线圈两端时,导线中就有交变电流I1并产生交变磁通ф1,它沿着铁心穿过初级线圈和次级线圈形成闭合的磁路。
在次级线圈中感应出互感电势U2,同时ф1也会在初级线圈上感应出一个自感电势E1,E1的方向与所加电压U1方向相反而幅度相近,从而限制了I1的大小。
为了保持磁通ф1的存在就需要有一定的电能消耗,并且变压器本身也有一定的损耗,尽管此时次级没接负载,初级线圈中仍有一定的电流,这个电流我们称为“空载电流”。
如果次级接上负载,次级线圈就产生电流I2,并因此而产生磁通ф2,ф2的方向与ф1相反,起了互相抵消的作用,使铁心中总的磁通量有所减少,从而使初级自感电压E1减少,其结果使I1增大,可见初级电流与次级负载有密切关系。
当次级负载电流加大时I1增加,ф1也增加,并且ф1增加部分正好补充了被ф2 所抵消的那部分磁通,以保持铁心里总磁通量不变。
如果不考虑变压器的损耗,可以认为一个理想的变压器次级负载消耗的功率也就是初级从电源取得的电功率。
变压器能根据需要通过改变次级线圈的圈数而改变次级电压,但是不能改变允许负载消耗的功率。
下图是各种变压器的电路符号,从变压器的电路符号可以看出变压器的线圈结构。
图(a)所示变压器共有两组线圈,即1~2为一次线圈(又称为初级线圈,线圈又称为绕组),3~4位二次线圈(又称为次级线圈)。
电路符号中垂直的实线表示这一变压器有铁心。
图(b)所示变压器有两组次级线圈,即3~4为一组,5~6为另外一组。
另外电路符号中有实线的同时还有一条虚线,它表示变压器的初级和次级线圈之间设有一个屏蔽层,在使用中这一屏蔽层的一端要接线路中的地线(决不能两端同时接地),屏蔽层起抗干扰作用。
这种变压器多为电源变压器。
图(c)所示变压器在初级和次级线圈的一端画有一个小黑点,这是“同名端”的标记。
图(d)所示的变压器没有中间实线,表示这种变压器没有铁心,有时用一条虚线来表示变压器用的是磁芯(此时电路符号中是没有实线的),一般是高频或是中频变压器,这是过去的表示方式,现在规定当变压器有铁心或是磁芯时均用一条实线表示。
图(e)所示的变压器,它的次级线圈有抽头,即4脚是次级线圈3~5的抽头。
关于抽头有两种情况:一是中心抽头,即当3~4之间的匝数等于4~5之间的匝数时成为中心抽头;二是非中心抽头,此时3~4、4~5之间的匝数不等。
多绕组变压器同名端的判别
在使用多绕组变压器时,常常需要弄清各绕组引出线的同名端或异名端,才能正确地将线圈并联或串联使用。
按上图所示电路,任找一组绕组线圈接上~3V电池,然后将其余各绕组线圈抽头分别接在直流毫伏表或直流毫安表的正负接线柱上。
接通电源的瞬间,表的指针会很快摆动一下,如果指针向正方向偏转,则接电池正极的线头与接电表正接线柱的线头为同名端;如果指针反向偏转,则接电池正极的线头与接电表负接线柱的线头为同名端。
在测试时应注意以下两点:
若变压器的升压绕组(既匝数较多的绕组)接电池,电表应选用最小量程,使指针摆动幅度较大,以利于观察;若变压器的降压绕组(即匝数较少的绕组)接电池,电表应选用较大量程,以免损坏电表。
接通电源瞬间,指针会向某一个方向偏转,但断开电源时,由于自感作用,指针将向相反方向倒转。
如果接通和断开电源的间隔时间太短,很可能只看到断开时指针的偏转方向,而把测量结果搞错。
所以接。