频谱分析和数字滤波器
- 格式:pdf
- 大小:2.68 MB
- 文档页数:144
什么是频谱分析仪,频谱分析仪的工作原理是什么,频谱分析仪怎样使用?什么是频谱分析仪?频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。
它又可称为频域示波器、跟踪示波器、分析示波器、谐波分析器、频率特性分析仪或傅里叶分析仪等。
现代频谱分析仪能以模拟方式或数字方式显示分析结果,能分析1赫以下的甚低频到亚毫米波段的全部无线电频段的电信号。
仪器内部若采用数字电路和微处理器,具有存储和运算功能;配置标准接口,就容易构成自动测试系统。
频谱分析仪的工作原理以及应用方面推广:频谱分析仪的组成及工作原理图1所示为扫频调谐超外差频谱分析仪组成框图。
输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振(LO)信号混频将输入信号转换到中频(IF)。
LO 的频率由扫频发生器控制。
随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振比输入信号高的中频,并以对数标度放大或压缩。
然后用检波器对通过IF滤波器的信号进行整流,从而得到驱动显示垂直部分的直流电压。
随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。
该迹线示出了输入信号在所显示频率范围内的频率成分。
频谱仪各部分作用及显示信号分析输入衰减器:保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真。
混频器:完成信号的频谱搬移,将不同频率输入信号变换到相应中频。
在低频段(《3GHz)利用高混频和低通滤波器抑制镜像干扰;在高频段(》3GHz)利用带通跟踪滤波器抑制镜像干扰。
本振(LO):它是一个压控振荡器,其频率是受扫频发生器控制的。
其频率稳定度锁相于参考源。
扫频发生器:除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号,然后重复这个扫描不断更新迹线。
数字滤波器设计通信与电子信息当中,在对信号作分析与处理时,常会用到有用信号叠加无用噪声的问题。
这些噪声信号有的是与信号同时产生的,有的是在传输过程中混入的,在接收的信号中,必须消除或减弱噪声干扰,这是信号处理中十分重要的问题。
根据有用信号与噪声的不同特性,消除或减弱噪声,提取有用信号的过程就称为滤波。
滤波器的种类很多,实现方法也多种多样,本章利用Matlab来进行数字滤波器的设计。
数字滤波器是一离散时间系统,它对输入序列x(n)进行加工处理后,输出序列y(n),并使y(n)的频谱与x(n)的频谱相比发生某种变化。
由DSP理论得知,无限长冲激响应(IIR)需要递归模型来实现,有限长冲激响应(FIR)滤波器可以采用递归的方式也可采用非递归的方式实现。
本章把FIR 与IIR滤波器分别用Matlab进行分析与设计。
数字滤波器的结构参看《数字信号处理》一书。
数字滤波器的设计一般经过三个步骤:1(给出所需滤波器的技术指标。
2(设计一个H(Z),使其逼近所需要的技术指标。
3(实现所设计的H(Z)。
4.1 IIR数字滤波器设计设计IIR数字滤波器的任务就是寻求一个因果、物理可实现的系统函数H(z),jω使它的频响H(e)满足所希望得到的低通频域指标,即通带衰减A、阻带衰减A、 pr通带截频ω、阻带截频ω。
而其它形式的滤波器由低通的变化得到。
pr采用间接法设计IIR数字滤波器就是按给定的指标,先设计一个模拟滤波器,进而通过模拟域与数字域的变换,求得物理可实现的数字滤波器。
从模拟滤波器变换到数字滤波器常用的有:脉冲响应不变法和双线性变换法。
IIR滤波器的设计过程如下,,,数字频域指标模拟频域指标设计模拟滤波器H(S) 设计数字滤波器H(z) 1. 模拟滤波器简介模拟滤波器的设计方法已经发展得十分成熟,常用的高性能模拟低通滤波器有巴特沃斯型、切比雪夫型和椭圆型,而高通、带通、带阻滤波器则可以通过对低通进行频率变换来求得。
fir数字滤波器是的幅频
数字滤波器是一种用数字信号处理技术实现的滤波器,它可以对数字信号进行滤波处理,以实现信号的去噪、平滑、频率选择等功能。
数字滤波器的特性包括幅频响应、相频响应和群延迟等。
幅频响应(magnitude-frequency response)是指数字滤波器对不同频率信号的幅度响应特性。
在频域中,幅频响应描述了滤波器对不同频率成分的衰减或增益程度,从而揭示了滤波器在不同频率下的频率特性。
幅频响应可以帮助我们理解数字滤波器对信号的频率成分的处理方式,进而指导我们选择合适的滤波器类型和参数设置。
数字滤波器的幅频响应通常以图形的方式呈现,可以是幅度-频率曲线或者幅度-频率图。
通过分析幅频响应,我们可以了解数字滤波器在不同频率下的频率特性,包括通频带、阻频带、通带波纹、阻带衰减等参数,从而评估滤波器对信号的处理效果。
总之,幅频响应是数字滤波器的重要特性之一,它描述了滤波器对不同频率信号的幅度响应特性,对于理解和设计数字滤波器都具有重要意义。
数字降噪处理的简单逻辑原理
数字降噪处理的简单逻辑原理是通过对数字信号进行滤波操作,去除其中的噪声部分,从而提高信号的质量和清晰度。
以下是数字降噪处理的简单逻辑原理:
1. 采集信号:首先需要对含有噪声的数字信号进行采集,可以通过传感器、麦克风、摄像头等设备获取。
2. 分析频谱:对采集到的数字信号进行频谱分析,确定信号中噪声的频域特征。
在频谱图中,噪声通常呈现为低频或高频成分,与所需信号的频率范围不同。
3. 滤波处理:根据信号的频域特征,设计相应的数字滤波器进行降噪处理。
常用的滤波器有低通滤波器、高通滤波器、带通滤波器等。
通过滤波器的作用,可以选择性地去除噪声信号,保留所需信号。
4. 重构信号:降噪滤波器处理后,得到降噪后的信号,在频域上会减少或消除噪声成分。
可以对降噪后的信号进行重构,以得到清晰的信号结果。
5. 评估效果:最后需要对降噪后的信号进行评估,评估指标可以包括信噪比(SNR)、均方根误差(RMSE)等。
评估结果
可以指导进一步的优化和调整。
总的来说,数字降噪处理的简单逻辑原理是通过频谱分析、滤
波处理和信号重构等步骤,去除数字信号中的噪声成分,提高信号的质量和清晰度。
实验一图像信号频谱分析及滤波一:实验原理FFT不是一种新的变化,而是DFT的快速算法。
快速傅里叶变换能减少运算量的根本原因在于它不断地把长序列的离散傅里叶变换变为短序列的离散傅里叶变换,在利用的对称性和周期性使DFT运算中的有些项加以合并,达到减少运算工作量的效果。
为了消除或减弱噪声,提取有用信号,必须进行滤波,能实现滤波功能的系统成为滤波器。
按信号可分为模拟滤波器和数字滤波器两大类。
数字滤波器的关键是如何根据给定的技术指标来得到可以实现的系统函数。
从模拟到数字的转换方法很多,常用的有双线性变换法和冲击响应不变法,本实验主要采用双线性变换法。
双线性变换法是一种由s平面到z平面的映射过程,其变换式定义为:数字域频率与模拟频率之间的关系是非线性关系。
双线性变换的频率标度的非线性失真是可以通过预畸变的方法去补偿的。
变换公式有Ωp=2/T*tan(wp/2)Ωs=2/T*tan(ws/2)二:实验内容1.图像信号的采集和显示选择一副不同彩色图片,利用Windows下的画图工具,设置成200*200像素格式。
然后在Matlab软件平台下,利用相关函数读取数据和显示图像。
要求显示出原始灰度图像、加入噪声信号后的灰度图像、滤波后的灰度图像。
2.图像信号的频谱分析要求分析和画出原始灰度图像、加入噪声信号后灰度图像、滤波后灰度图像信号的频谱特性。
3.数字滤波器设计给出数字低通滤波器性能指标:通带截止频率fp=10000 Hz,阻带截止频率fs=15000 Hz,阻带最小衰减Rs=50 dB,通带最大衰减Rp=3 dB,采样频率40000Hz。
三:实验程序clear allx=imread('D:\lan.jpg');%原始彩色图像的数据读取x1=rgb2gray(x);%彩色图像值转化为灰度图像值[M,N]=size(x1);%数据x1的长度,用来求矩阵的大小x2=im2double(x1);%unit8转化为double型x3=numel(x2);%计算x2长度figure(1);subplot(1,3,1);imshow(x2);title('原始灰度图')z1=reshape(x2,1,x3);%将二维数据转化成一维数据g=fft(z1);%对图像进行二维傅里叶变换mag=fftshift(abs(g));%fftshift是针对频域的,将FFT的DC分量移到频谱中心K=40000;Fs=40000;dt=1/Fs;n=0:K-1;f1=18000;z=0.1*sin(2*pi*f1*n*dt);x4=z1+z;%加入正弦噪声f=n*Fs/K;y=fft(x4,K);z2=reshape(x4,M,N);%将一维图转换为二维图subplot(1,3,2);imshow(z2);title('加入噪声后')g1=fft(x4);mag1=fftshift(abs(g1));%设计滤波器ws=0.75*pi;wp=0.5*pi;fs=10000;wp1=2*fs*tan(wp/2);ws1=2*fs*tan(ws/2);rs=50;rp=3;% [n,wn]=buttord(wp/pi,ws/pi,rp,rs);% [bz,az]=butter(n,wn);[n,wn]=buttord(wp1,ws1,rp,rs,'s');[z,p,k]=buttap(n);[b,a]=zp2tf(z,p,k);[B,A]=lp2lp(b,a,wn);[bz,az]=bilinear(B,A,fs);[h,w]=freqz(bz,az,128,fs);L=numel(z2);z3=reshape(z2,1,L);x6=filter(bz,az,double(z3));x7=reshape(x6,M,N);subplot(1,3,3);imshow(x7);g2=fft(x6);mag2=fftshift(abs(g2));title('滤波后')%建立频谱图figure(2);subplot(1,3,1);plot(mag);title('原始Magnitude')subplot(1,3,2);plot(mag1);title('加噪声Magnitude')subplot(1,3,3);plot(mag2);title('滤波后Magnitude')figure(3);subplot(1,2,1)plot(w,abs(h));xlabel('f');ylabel('h');title('滤波器幅谱');subplot(1,2,2);plot(w,angle(h));title('滤波器相谱');四:实验结果与分析图一图二分析:由图二可以知道加入噪声后的幅值谱和原始图的幅值谱明显多了两条幅值线,而这两条幅值线就是我们对原始灰度图加入的正弦噪声,而相应的图一中的加噪声后的图与原始图相比,出现了明显的变化。
基于Matlab的信号分析与数字滤波器设计作者:赵子曦来源:《电脑知识与技术》2021年第29期摘要:对于信号的时域分析只能获取部分信息,因此在频域作出信号频谱以辅助分析显得十分重要。
在进行频谱分析后,会发现信号包含复杂噪声,因此使用软件设计滤波器去噪。
在Matlab的基础上,本文首先采用经典的傅里叶变换对各类信号进行频谱分析,然后用窗函数法设计FIR数字滤波器。
在声音信号上的实验证明,本文设计的FIR数字滤波器可以有效压制噪声,提取良好声音信号。
关键词:信号频谱分析; Matlab;滤波器;信号去噪中图分类号:TP311 文献标识码:A文章编号:1009-3044(2021)29-0114-02进入21世纪以来,计算机技术飞速发展,大数据、物联网、人工智能(AI:Artificial Intelligence)成为学界、工业界的研究热点,随之对信号分析技术提出了更高的要求,也带来了新的机遇。
在摩尔定律的基础上,计算机有限的算力在复杂数据的处理上显得吃力,而现代数据处理又十分追求更高的效率、更快的速度和更准确的结果。
Matlab是工程领域应用广泛的一款成熟软件,它拥有强大的矩阵运算能力和科学数据处理能力,可以处理十分微小的电路信号,因此使用Matlab进行信号分析与处理、数字滤波器设计等对于电路分析、小信号分析、波形重整具有十分重要的意义。
1信号频域分析1.1离散傅里叶变换与窗函数实际上,计算机存储的所有数据都是离散的,它们需要运用时域和频域都是离散的离散傅里叶变换(Discrete Fourier Transform,DFT)进行处理。
TD(Time-Domain)连续信号经采样后,通过快速傅里叶变换成为FD(Frequency-Domain)采样。
通过数学表达式绘图,不难看出输入DFT进行变换的时域信号和变换后输出的频域信号均为有限长序列,即主值序列。
在实际应用中常采用快速傅里叶变换计算DFT:连续周期、连续非周期、离散周期、离散非周期信号的频谱与 DFT之间的关系:时域上的信号是非周期的,则频域上的信号是连续的;时域上的信号是周期的,则频域上的信号是离散的;反之亦然。
声音谱分析与声音处理:声音频谱与滤波声音是我们日常生活中不可或缺的一部分,通过声音可以传达信息、产生情感,也给我们带来了丰富的音乐和娱乐体验。
然而,要深入了解声音的本质和进行声音处理,我们需要掌握声音谱分析与声音滤波的相关知识。
一、声音频谱分析声音的频谱是指将声波信号的频率分解并得到各个频率成分的过程。
通过声音频谱分析,我们可以了解声音的构成、频率分布以及声音功率等信息。
在声音频谱分析中,有一个重要的工具被广泛应用,那就是傅里叶变换。
傅里叶变换可以将一个时域信号转换为频域信号,将声音信号分解为不同频率的正弦波成分。
根据奈奎斯特定理,声音信号的采样频率要大于声音信号中最高频率的两倍,以避免频谱中的混叠。
因此,在进行声音频谱分析时,我们需要先对声音信号进行采样,然后使用傅里叶变换将其转换为频域信号。
通过观察声音频谱图,我们可以判断声音的音调、音量和频率分布。
例如,高音会在高频率范围内有较高的能量,低音则在低频率范围内能量较高。
声音频谱分析不仅适用于音乐和语音处理,还在音频编解码、语音识别等领域发挥着重要作用。
二、声音滤波声音滤波是指通过某种滤波器对声音信号进行处理,可以增强或减弱特定频率成分,改变声音的音色和效果。
常用的声音滤波方法包括低通滤波、高通滤波、带通滤波和带阻滤波等。
1. 低通滤波低通滤波器可以通过滤除高频信号,仅保留低频信号,从而实现声音信号的低音增强或噪音抑制。
低通滤波常用于音乐制作中的低音增强和语音通信中的噪音过滤。
2. 高通滤波高通滤波器则相反,滤除低频信号,增强高频信号。
高通滤波常用于音频处理中的尖锐音效增强和语音识别中的噪音过滤。
3. 带通滤波带通滤波器可以选择滤除或保留某一段频率范围的信号。
通过带通滤波,我们可以突出某一段频率范围内的声音特性,达到特定的音色效果。
4. 带阻滤波带阻滤波器与带通滤波器相反,可以选择滤除或保留某一段频率范围之外的信号。
带阻滤波常用于语音通信中的背景噪音去除以及音频制作中的特殊音效处理。
4.2经典数字滤波器原理数字滤波是数字信号分析中最重要的组成部分之一,与模拟滤波相比,它具有精度和稳定性高、系统函数容易改变、灵活性强、便于大规模集成和可实现多维滤波等优点。
在信号的过滤、检测和参数的估计等方面,经典数字滤波器是使用最广泛的一种线性系统。
数字滤波器的作用是利用离散时间系统的特性对输入信号波形(或频谱)进行加工处理,或者说利用数字方法按预定的要求对信号进行变换。
4.2.1数字滤波器的概念若滤波器的输入、输出都是离散时间信号,那么该滤波器的单位冲激响应h(n)也必然是离散的,这种滤波器称为数字滤波器。
当用硬件实现一个DF时,所需的元件是乘法器、延时器和相加器;而用MATLAB软件实现时,它仅仅需要线性卷积程序就可以实现。
众所周知,模拟滤波器(Analog Filter,AF)只能用硬件来实现,其元件有电阻R,电感L,电容C及运算放大器等。
因此,DF的实现要比AF容易得多,并且更容易获得较理想的滤波性能。
数字滤波器的作用是对输入信号进行滤波,就如同信号通过系统一样。
对于线性时不变系统,其时域输入输出关系是:(4-1)若y(n)、x(n)的傅里叶变化存在,则输入输出的频域关系是:(4-2)当输入信号x(n)通过滤波器h(n)后,其输出y(n)中不再含有的频率成分,仅使的信号成分通过,其中是滤波器的转折频率。
4.2.2经典数字滤波器的分类经典数字滤波器按照单位取样响应h(n)的时域特性可分为无限冲激响应(IIR,I nfinite Impulse Response)系统和有限冲激响应(FIR,Finite Impulse Respo nse)系统。
如果单位取样响应是时宽无限的h(n),则称之为IIR系统;而如果单位取样响应是时宽有限的h(n),,则称之为FIR系统。
数字滤波器按照实现的方法和结构形式分为递归型或非递归型两类。
递归型数字滤波器的当前输出y(n)是输入x(n)的当前值和以前各输入值x(n),x(n–1),….,及以前各输出值y(n),y(n–1),….的函数。
图1 任务一程序流程图1、音频信号采集道,只取第一个声道进行处理,接着使用sound函数以fs频率进行音频回放。
2、音频信号频域分析以采样间隔T划分时域并绘制出signal信号的时域波形;调用fft函数,对signal 进行快速傅里叶变换,用abs函数取傅里叶变换后结果的幅值进行幅频分析,绘制出频谱图。
在绘制频谱图时由于考虑到快速傅里叶变换的对称性,只取序列的前半部分进行观察分析。
3、音频信号分解为了实现音频信号的分解及合成,先对原信号的频谱图进行观察分析,发现原信号的主要能量集中在三个主要频率上,于是考虑用这三频率的正弦信号合成原信号。
为了求得这三个频率,先调用findpeaks函数找到频谱图上的各个局部极大值peak及其对应的位置locs,然后用sort对峰值点进行排序,找到最大的三个值,接着用find 函数找到这三个最大值在locs中的位置,也就知道了对应的频率。
这里有一个问题就是最小的峰值频率并不是在sort排序后的第三位而是在第四位,需要有一个调整;确定了主要谱线后,使用text函数进行峰值标注;4、音频信号合成接着将这三个谱线还原回时域正弦信号,幅度的比例等于对应频率上的幅度比例然后然后叠加,得到合成后的信号,绘制出时域波形,与原信号波形进行比较,接着对两个正弦信号进行fft,绘制出他们的频谱,然后对合成的信号进行fft,做出频谱图和原信号的频谱图进行比较.5、音频信号回放用sound函数进行原信号和合成信号的回放,比较差异。
实验内容二:任意音频信号的时域和频域分析及数字滤波器设计通过对任务具体内容的分析,可以建立出任务二程序框图如下,之后将对编程思想及思路进行介绍:图2任务二程序流程图1、音频信号采样自己录音频并另存为”ding.wav”后,先用audioread函数读取音频信号得到采样序列signal及对应采样频率fs,由于获取的音频信号是双声道,只取第一个声道进行处理。
2、时域采样使用audioread函数得到的采样序列signal及采样频率fs为过采样状态,此时我们对signal再进行等间隔采样,达到减少采样点数和降低采样频率的效果,进而实现合理采样状态signal2、fs2和欠采样状态signal1、fs1;使用sound函数分别对这两种采样状态进行回放。