FIR数字滤波器的基本结构
- 格式:ppt
- 大小:1.17 MB
- 文档页数:18
实验6FIR滤波器设计FIR (Finite Impulse Response)滤波器是一种数字滤波器,其输出信号仅取决于振荡器的输入以前的有限个值。
FIR滤波器设计的目的是通过调整滤波器的系数以实现所需的频率响应。
在FIR滤波器设计中,首先确定滤波器的类型和频率响应的规格。
常见的滤波器类型有低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
频率响应的规格由滤波器的截止频率、通带增益和阻带衰减等参数决定。
FIR滤波器的设计步骤如下:1.确定滤波器的类型和频率响应规格。
根据应用的需求,选择适当的滤波器类型和定义频率响应的参数。
2.确定滤波器的阶数。
阶数决定了滤波器的复杂度和性能。
一般而言,阶数越高,滤波器的性能越好,但计算复杂度也越高。
3.根据频率响应规格和系统设计的约束,选择一种滤波器设计方法。
常见的设计方法有窗函数法、频率采样法、最小均方误差法等。
4.设计滤波器的理想频率响应。
根据所选的设计方法,确定滤波器的理想频率响应。
这通常是一个分段线性函数,其中包括通带增益和阻带衰减。
5.将理想频率响应转换为时域的冲激响应。
这可以通过将理想频率响应进行反傅里叶变换来实现。
6.通过选择合适的窗函数,对冲激响应进行窗函数变换。
窗函数的选择是设计滤波器性能的重要因素。
7.通过窗函数变换得到滤波器的系数。
通过将窗函数变换应用于冲激响应,可以得到设计滤波器的系数。
这些系数确定了滤波器的时间响应和频率响应。
8.可选地,通过优化算法对滤波器的系数进行优化。
优化算法可以用来进一步改善滤波器的性能。
常用的优化算法包括加权最小二乘方法、梯度下降法等。
9.实现滤波器。
将设计好的滤波器系数应用于输入信号,得到滤波器输出。
可以使用编程语言或滤波器设计工具来实现滤波器。
10.验证滤波器的性能。
通过将滤波器应用于不同的输入信号,检验滤波器输出是否符合设计要求。
可以使用频谱分析工具和滤波器性能评估指标来评估滤波器的性能。
FIR滤波器设计是数字信号处理中重要的课题之一、设计一个性能良好的FIR滤波器需要对滤波器原理和设计方法有深入的了解,以及熟练的使用滤波器设计工具和编程工具。
FIR 数字滤波器的设计一、实验内容:设计一个FIR 滤波器。
其中窗函数选用凯赛窗,滤波器的长度可变(NF=2M )。
分别设计低通、高通、带通、带阻4种滤波器。
二、FIR 数字滤波器:1、FIR 数字滤波器的特点:是选择有限还是无限长的滤波器主要取决于每种类型滤波器的优点在设计问题中的重要性。
对于FIR 滤波器不存在完整的设计方程。
虽然可以直接用窗函数法,但是为了满足预定的技术指标有可能需要作一些迭代。
用完整的公式来设计IIR 滤波器只限于低通、高通、带通、带阻少数几种滤波器。
而且,这些逼近方法通常没有考虑滤波器的相位响应。
所以,虽然我们可以用相当简单的计算方法来得到幅度响应很好的椭圆低通滤波器,但是群延迟响应将会非常差,特别是在频带边缘处。
而FIR 滤波器可以有精确的线性位移。
而且,窗函数法和大多数算法设计法都有可能逼近比较任意的频率响应特性,但所遇到的困难要比在低通滤波器设计中遇到的稍大一些。
另外,FIR 滤波器的设计问题要比IIR 的有更多的可控之处。
2、窗函数的基本思想与特点:它是设计FIR 滤波器的最简单的方法、它的频率响应()[]j j nd dn H e h n eωω∞-=-∞=∑式中,[]d h n 是对应的冲激响应序列,它可以借助()j d H e ω表示为[]()12jj nd dh n H e e d πωωπωπ-=⎰。
这种系统具有非因果的和无限长的冲激响应。
得到这种系统的因果FIR 滤波器的最直接的方法是使用“窗口”截短该理想冲激响应。
通过在截短时保留冲激响应的中间部分,可以得到线性相位的FIR 滤波器。
3、凯赛窗简介: 它定义为其他,00,)(])]/)[(1([{][02/120Mn I n I n ≤≤--=βααβω 式中)(,∙=02/I M α表示第一类零阶修正贝赛尔函数。
凯赛窗有两个参数:β参数是0.40.1102(8.7),500.5842(21)0.07886(21),50210,21ααβαααα->⎧⎪=-+-≥≥⎨⎪<⎩其中,20log αδ=-是以分贝形式表示的阻带衰减。
fir和iir滤波器原理FIR(有限脉冲响应)滤波器和IIR(无限脉冲响应)滤波器是两种常见的数字滤波器类型。
它们在信号处理中有着广泛的应用,如音频处理、图像处理、数据压缩等。
本篇文章将详细介绍FIR和IIR滤波器的原理,包括其基本概念、数学模型、设计方法以及应用。
一、基本概念FIR滤波器是一种线性时不变滤波器,其输出仅取决于当前的输入和过去的FIR滤波器系数。
IIR滤波器则不同,它的输出不仅取决于当前的输入,还取决于过去的输出和滤波器系数。
二、数学模型1.FIR滤波器:FIR滤波器的传递函数可以表示为系统单位冲击响应的有限长度。
其数学模型为H(z)=∑nx(n)*z(-n),其中x(n)是输入信号,H(z)是输出信号,z(-n)是z的逆,n是滤波器阶数,∑是求和。
2.IIR滤波器:IIR滤波器的传递函数通常表示为一个线性微分方程。
其数学模型为H(z,θ)=∑θ(n)*z(-n)+u(n),其中H(z,θ)是输出信号,u(n)是输入信号,θ(n)是滤波器系数,z(-n)和∑是同FIR滤波器一样。
三、设计方法1.FIR滤波器设计:通常采用窗函数法、频率采样法和等波纹设计法。
窗函数法通过选择合适的窗函数来减少滤波器的相位失真;频率采样法通过采样频率来设计滤波器;等波纹设计法通过调整滤波器系数来使滤波器输出与输入信号的频谱保持一致。
2.IIR滤波器设计:IIR滤波器的设计方法相对复杂,包括零极点配对、长项法和映射法等。
通常需要根据特定需求来选择合适的设计方法,同时注意系统的稳定性、频率响应和稳定性失真等指标。
四、应用FIR和IIR滤波器在各种领域都有广泛应用,包括音频处理、图像处理、通信、数据压缩等。
FIR滤波器在音频处理中常用于消除音频信号中的噪声,改善音质;在图像处理中常用于降噪和图像增强。
IIR滤波器在通信中常用于消除干扰信号,改善通信质量;在数据压缩中常用于降低数据冗余,提高数据传输效率。
五、总结FIR和IIR滤波器是数字信号处理中的重要工具,它们各自有其特点和适用范围。
FIR滤波器FIR的结构FIR(Finite Impulse Response)滤波器:有限长单位冲激响应滤波器,是数字信号处理系统中最基本的元件,它可以在保证任意幅频特性的同时具有严格的线性相频特性,同时其单位抽样响应是有限长的,因而滤波器是稳定的系统。
因此,FIR滤波器在通信、图像处理、模式识别等领域都有着广泛的应用。
目录一、FIR滤波器的种类二、FIR的特点一、FIR滤波器的种类二、FIR的特点展开编辑本段一、FIR滤波器的种类目前,FIR滤波器的硬件实现有以下几种方式:1.1、数字集成电路FIR滤波器一种是使用单片通用数字滤波器集成电路,这种电路使用简单,但是由于字长和阶数的规格较少,不易完全满足实际需要。
虽然可采用多片扩展来满足要求,但会增加体积和功耗,因而在实际应用中受到限制。
1.2、DSP芯片FIR滤波器另一种是使用DSP芯片。
DSP芯片有专用的数字信号处理函数可调用,实现FIR滤波器相对简单,但是由于程序顺序执行,速度受到限制。
而且,就是同一公司的不同系统的DSP芯片,其编程指令也会有所不同,开发周期较长。
1.3、可编程FIR滤波器还有一种是使用可编程逻辑器件,FPGA/CPLD。
FPGA有着规整的内部逻辑块整列和丰富的连线资源,特别适合用于细粒度和高并行度结构的FIR 滤波器的实现,相对于串行运算主导的通用DSP芯片来说,并行性和可扩展性都更好。
编辑本段二、FIR的特点有限长单位冲激响应(FIR)滤波器有以下特点:(1) 系统的单位冲激响应h (n)在有限个n值处不为零;(2) 系统函数H(z)在|z|>0处收敛,极点全部在z = 0处(因果系统);(3) 结构上主要是非递归结构,没有输出到输入的反馈,但有些结构中(例如频率抽样结构)也包含有反馈的递归部分。
设FIR滤波器的单位冲激响应h (n)为一个N点序列,0 ≤n ≤ N —1,则滤波器的系统函数为H(z)=∑h(n)*z^-n就是说,它有(N—1)阶极点在z = 0处,有(N—1)个零点位于有限z平面的任何位置。