将(4-7)式关系代入上式,得
H ( z)
N 11 2
h(n)
[zn
z(N 1n) ]
h(
N
1)
N 1
z2
(4-9)
n0
2
(4-8)(4-9)式中+号代表偶对称,-号代表奇对称。
当h(n)奇对称时,由于
h(n)
h(
N
1
n), 故h(
N 1) 2
0
下面的图19、图20分别画出N为偶数和N为奇数时 的线性相位FIR滤波器的结构。
W k N
WN( N k )
各并联支路的极点为
r
j 2 k
e N
,k
0,1, 2,
, N 1
为使系数为实数,可将共轭根合并,在z平面上 这些共轭根在半径为r的圆周上以实轴为轴成对 称分布,即 zN k zk
也就是 W (N k )
j 2 ( N k )
e N
(e
j
2 k N
)
WNk
27
4.3 有限长单位冲激响应(FIR)滤波器 的基本结构
级联型的每级对应一组由 (0i , 1i , 2i ) 参数决定的零点
6
4.3 有限长单位冲激响应(FIR)滤波器 的基本结构
三、线性相位的FIR滤波器结构: 在许多实际应用,如图像处理中,要求数字滤波器具
有线性相位 具有线性相位特性的滤波器传输函数H(ej)为
H(e j ) H() e j ()
则(4-12)式可写成:
1
N 1
H (z)
N
HC (z)
k 0
HK (z)
(4-13)
N 1
上式表明H(z)可看成是由 HC (z)和 HK (z) 两部分级 k 0