第六讲 图论(精选)
- 格式:ppt
- 大小:2.10 MB
- 文档页数:1
图论知识点摘要:图论是数学的一个分支,它研究图的性质和应用。
图由节点(或顶点)和连接这些节点的边组成。
本文将概述图论的基本概念、类型、算法以及在各种领域的应用。
1. 基本概念1.1 节点和边图由一组节点(V)和一组边(E)组成,每条边连接两个节点。
边可以是有向的(指向一个方向)或无向的(双向连接)。
1.2 路径和环路径是节点的序列,其中每对连续节点由边连接。
环是一条起点和终点相同的路径。
1.3 度数节点的度数是与该节点相连的边的数量。
对于有向图,分为入度和出度。
1.4 子图子图是原图的一部分,包含原图的一些节点和连接这些节点的边。
2. 图的类型2.1 无向图和有向图无向图的边没有方向,有向图的每条边都有一个方向。
2.2 简单图和多重图简单图是没有多重边或自环的图。
多重图中,可以有多条边连接同一对节点。
2.3 连通图和非连通图在无向图中,如果从任意节点都可以到达其他所有节点,则称该图为连通的。
有向图的连通性称为强连通性。
2.4 树树是一种特殊的连通图,其中任意两个节点之间有且仅有一条路径。
3. 图的算法3.1 最短路径算法如Dijkstra算法和Bellman-Ford算法,用于在加权图中找到从单个源点到所有其他节点的最短路径。
3.2 最大流最小割定理Ford-Fulkerson算法用于解决网络流中的最大流问题。
3.3 匹配问题如匈牙利算法,用于解决二分图中的匹配问题。
4. 应用4.1 网络科学图论在网络科学中有广泛应用,如社交网络分析、互联网结构研究等。
4.2 运筹学在运筹学中,图论用于解决物流、交通网络优化等问题。
4.3 生物信息学在生物信息学中,图论用于分析蛋白质相互作用网络、基因调控网络等。
5. 结论图论是数学中一个非常重要和广泛应用的领域。
它不仅在理论上有着深刻的内涵,而且在实际应用中也发挥着关键作用。
随着科技的发展,图论在新的领域中的应用将会不断涌现。
本文提供了图论的基础知识点,包括概念、图的类型、算法和应用。
图论问题一. 基本概念1.图的定义:由若干个不同的顶点与连接其中某些顶点的边所组成的图形叫做图。
用G 表示图,用V 表示所有顶点的集合,E 表示所有边的集合,并且记作G=(V ,E ). 2.同构图:如果两个图G 与G '‘的顶点之间可以建立起一一对应,并且当且仅当G 的顶点v i 与v j 之间有k 条边相连时,G ’的相应顶点j i v v ''与之间也有k 条边相连,就认为G 与G '是相同的,称G 与G '是同构的图. 2.子图:如果对图G E E ,V V )E ,V (G )E ,V (G '⊆'⊆'''='=,则称有与是G 的子图. 3.其它有关概念:(1)若在一个图G 中的两个顶点j i v v 与之间有边e 相连,则称点j i v v 与是相邻的,否则就称j i v v 与是不相邻的.(2)如果顶点v 是边e 的一个端点,称点v 与边e 是相邻的.(3)如果顶点本身也有边相连,这样的边称为环.如果连接两个顶点的边可能不止一条,若两个顶点之间有k )2k (≥条边相连,则称这些边为平行边.(4)如果一个图没有环,并且没有平行边,这样的图称为简单图.竞赛中的图论问题涉及到的图一般都是简单图.(5)如果一个简单图中,每两个顶点之间都有一条边,这样的图称为完全图,通常将有n 个顶点的完全图记为n K .(6)在图G=(V ,E)中,顶点个数|V|和边数|E|都是有限的,则称图G 是有限图;如果|V|或|E|是无限的,则称G 为无限图.1v 2v 4v 3v 1v '2v 3'4v '1v ''2v ''3v ''4v ''1G 2G 3G二.例题精选1.设S 为平面上的一个有限点集(含点数不少于5),若其中若干个点涂红色,其余点涂上兰色,又设任何三个同色点不共线,求证:存在一个同色三角形,且它至少有一条边不含另一种颜色. 证明:无穷递降法2.若平面上有997个点,如果两点连成一条线段,且中点涂成红色,证明:平面上至少有1991个红点,试找到正好是1991个红点的特例.证明:设997个点中M 、N 之间的距离最大,以M 、N 为圆心,2MN为半径作圆,如图,设P 为其它995 个点中的任意一个点,则PM 、 PN 的中点R 、Q 都在圆M 、 N 内,且这些点个不相同,所以至少有995×2+1=1991个点.特例:在x 轴上横坐标依次为1,2,3,...,997的997个点,满足题设条件.3.正六边形被分为24个全等的三角形,在图中的19个结点处写上不同的数,证明:在24个三角形中,至少有7个三角形,其顶点处的三个数是按逆时针方向递增顺序书写的.证明:(1)正六边形的12(2)一个逆三角形有2条逆边,一个顺三角形有1条逆边;(3)除掉正六边形的边,图中有(24×3-12)÷2=30条边,没条边恰好是一个三角形的一条逆向边.综上,设24个三角形中有m 个逆三角形,n 个顺三角形,则有731224≥⇒⎪⎩⎪⎨⎧≥+=+m n m n m ,得证. RRRBBBMNPR QE 逆三角形顺三角形1231234.在正n 边形中,要求其每条边及每条对角线都染上任一种颜色,使得这些线段中任意两条有公共点的染不同颜色,为此,至少需要多少种颜色?的n 需要n 种颜色.当n=3 当n>3时,作正n 设MN 是另外一条边或对角线,若MN//BC ,则将MN 染成与BC 同色;若BC MN //,过A 引直线直线m//MN ,交圆于K ,则弧KN=弧AM ,所以K 也是正n 边形的顶点,即AK 是由A 出发的边或对角线,将MN 染成与AK 同色,所以n 种颜色足够了.5.某次大型活动有2003人参加,已知他们每个人都至少和其中的一个人握过手,证明:必有一个人至少和其中的两个人握过手. 证明:从5个点开始考虑奇数个点即可. 如图6.现有九个人,已知任意三人中总有两个人互相认识,证明:必有四人互相之间都认识. 证明:9个顶点的简单图,利用抽屉原理7.有n 名选手n 21A ,,A ,A 参加数学竞赛,其中有些选手是互相认识的,而且任何两个不相识的选手都恰好有两个共同的熟人,若已知选手21AA 与是互相认识,但他们没有共同的熟人,证明他们的熟人一样多.M NEP Q∙R∙1A 2A 3A 4A 5A KMNA1A 2A )(2A n )(1A n iA jA 1A 2A )(2A n )(1A n iA jA 'jA 'i A证明:的熟人一一对应与21A A8.有n (n>3)个人,他们之间有些人互相认识,有些人互相不认识,而且至少有一个人没有与其他人都认识,问与其他人都认识的人数的最大值是多少?解:作图G :用n 个点表示这n 个人,当两人认识,则在两相应顶点之间连一线,否则之间不连线.由于至少有一个人与其他人不认识,所以图G 中至少有两点之间没连线,设21A A 与之间没连线,则图G 的边数最多时,G 为21A A K n -,故最大值为n-2.9.次会议有n 名教授n 21A ,A ,A 参加,证明可以将这n 个人分为两组,使得每一个人A i 在另一组中认识的人数不少于他在同一组中认识的人数.证明:用n 个点n A A A ,,,21 表示这n 名教授,并在相互认识的人之间连一条边,且将同一组间的连线染成红色,不同组之间的线染成蓝色.将这n 个点任意分成两组,只有有限种分法.考虑在两组之间的蓝线条数S ,其中必存在一种分法,使S 达到最大值,此时有i A 在两组内引出的边的条数分别为),,2,1,(,n i l l l l i i i i ='≥',否则,若对i A 有'<i i l l ,将i A 调到另一组,S 增加了i i l l -'条,矛盾,得证.10.有三所中学,每所有学生n 名,每名学生都认识其他两所中学的n+1名学生,证明:从每所中学可以选出一名学生,使选出来的3名学生互相认识.证:用3n 个顶点表示这些学生,三所中学的学生组成的三个顶点集合分别记为A 、B 、C ,设M 和N 是两所不同学校的学生,而且是互相认识的,则在M 与N 之间连一线,得一个简单图.记A 中的元素x 在B 、C 中的相邻元素个数为k 和l ,则k+l =n+1.设k 与l 中大的记作m(x),让x 跑遍A ,m(x)的最大值记作A m ,同理记C B m m ,分别为集合B 、C 中的所有元素在另两个集合中相邻元素个数的最大值.记m 是A m ,C B m m ,中最大者,不妨设m=A m ,且的顶点相邻的顶点集和中和使得100,B x B A x ∈数为m ,于是C 中与000,11x C z m n x 与设相邻的顶点数为∈≥-+相邻.如果有中中的一个三角形.若是相邻,则与1000010B G z y x z B y ∆∈每一个y 与中相邻与.因此,相邻的顶点数与都不相邻,则A z m n z B z 000-≤的顶点数1)(1+=--+≥m m n n 与m 的最大性矛盾,得证.三.巩固练习1.有n 个药箱,每个药箱里有一种相同的药,每种药恰好在两个药箱里出现,问有多少种药?)1(21-n n 2.18个队进行比赛,每一轮中每一个队与另一个队比赛一场,并且在其他轮比赛中这两个已赛过的队彼此不再比赛,现在比赛已进行完8轮,证明一定有三个队在前8轮比赛中,彼此之间尚未比赛过.3.某次会议有n 名代表出席,已知任意的四名代表中都有一个人与其余的三个人握过手,证明任意的四名代表中必有一个人与其余的n-1名代表都握过手.4.空间18个点,任三点不共线,它们的两两连线染上红色或兰色,每条线段仅染一色.试证明其中一定存在一个同色的完全四边形.图论问题(二)用图论解决问题躲基本思路:把要考察的对象作为顶点,把对象之间是否具有我们所关注的某种关系作为顶点连边地条件.这样,就可以把一个具体问题化归成图论问题,用图论的理论和方法进行探讨,即使在图论中没有现成定理直接给出问题的解答,也可以(1)借助图论的分析方法拓宽解题思路;(2)把抽象的问题化为直观问题;(3)把复杂的逻辑关系问题化为简明的数量分析问题。
图论知识点总结•对应简单图的度序列,在同构意义下可能不止一个•简单图的度序列最大度一定要小于等于n-1•只要和为偶数就是图的度序列•若图中两点u与v间存在途径,则u与v间存在路•若过点u存在闭迹,则过点u存在圈•一个图是偶图当且仅当它不包含奇圈•无向图的顶点之间的连通关系一定是等价关系•有向图的顶点之间的单向连通关系不是等价关系•一个简单图G的n个点的度不能互不相同•无向图的邻接矩阵的行和对应顶点的度数•无向图的邻接矩阵的所有元素之和等于边数的2倍•无向图的邻接矩阵的平方的对角线元素等于对应顶点的度数•无向图的邻接矩阵的平方的对角线元素之和等于边数的2倍•无向图的邻接矩阵的特征值的平方和等于边数的2倍•若G是非连通的,则邻接矩阵相似于某个对角矩阵•树一定是连通无圈图•树G无环且任意两点之间存在唯一的路•树无回路但任意添加一条边后有回路•回路是边不重的圈的并•如果一个闭迹不是一个圈,那么它一定是没有重边的圈的并集。
•n阶树T的形心由一个点或两个相邻点组成。
•若T只有一个形心,则形心的权小于n/2•若T有两个形心,则形心的权等于n/2•树T的对偶图全是环•G是极大平面图的充要条件各面的次数均为3且为连通图每个n方体都有完美匹配由n方体的构造知:n方体有2n个顶点,每个顶点可以用长度为n的二进制码来表示,两个顶点连线当且仅当代表两个顶点的二进制码只有一位坐标不同。
划分顶点,把坐标之和为偶数的顶点归入X,否则归入Y。
X中顶点互不邻接,Y中顶点也如此。
所以n方体是偶图。
很容易验证n方体的每个顶点度数为n,所以n方体是n正则偶图。
因此,n方体存在完美匹配。
树T有完美匹配当且仅当对所有顶点v∈T,o(T-v)=1必要性:树T有完美匹配,由Tutte定理知o(T-v)≤|{v}|=1显然T是偶数阶的图,o(T-v)≥1.因此o(T‒v)=1。
充分性:对于T的任意顶点v,假设Tv是T-v仅有的奇分支,且Tv与v之间的边为uv。
第六章图论(Graph Theory)◎知识目标:掌握图的方法与原理;图的基本概念;最小树、最短路、最大流的概念、计算与应用;了解中国邮路问题与解法。
◎能力目标:通过学习,使学生掌握图的方法与原理,提高分析问题和解决问题的能力。
◎本章重点:最小树、最短路、最大流的计算与应用◎本章难点:最短路的应用、最大流的计算引例:哥尼斯堡七桥问题18世纪著名古典数学问题之一。
在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。
问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧拉于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。
有关图论研究的热点问题。
18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。
当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。
这就是哥尼斯堡七桥问题。
L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。
他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。
当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。
Konigsberg城中有一条名叫Preg el的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。
Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。
后来推论出此种走法是不可能的。
他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。
所以每行经一点时,计算两座桥(或线),从起点离开的线与最後回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。
第7章 图论图论是建立和处理离散型数学模型的重要数学工具,它已发展成具有广泛应用的一个数学分支。
图论的发展已有200多年的历史,它最早起源于一些数学游戏的难题研究。
1736年瑞士数学家欧拉(L.Eluer )发表了关于解决哥尼斯堡七桥问题的一篇文章,标志着图论的正式诞生。
从19世纪中叶到20世纪中叶,图论问题大量出现,如汉密尔顿图问题、四色猜想等。
这些问题的出现进一步促进了图论的发展。
1847年,克希霍夫(Kirchhoff )用图论分析电网络,这是图论最早应用于工程科学的一个例子。
随着计算机科学的迅猛发展,在现实生活中的许多问题,如交通网络问题,运输的优化问题,社会学中某类关系的研究,都可以用图论进行研究和处理。
图论在计算机领域中,诸如算法、语言、数据库、网络理论、数据结构、操作系统、人工智能等方面都有重大贡献。
本章主要介绍图论的基本概念、基本性质和一些典型应用。
7.1 图的基本概念7.1.1 图的基本概念1.图的定义图在现实生活中随处可见,如交通运输图、旅游图、流程图等。
此处我们只考虑由点和线所组成的图。
这种图能够描述现实世界的很多事情。
例如,用点表示球队,两队之间的连线代表二者之间进行比赛,这样,各支球队的比赛情况就可以用一个图清楚地表示出来。
到底什么是图呢?可用一句话概括:图是用点和线来刻划离散事物集合中的每对事物间以某种方式相联系的数学模型。
因为上述描述太过于抽象,难于理解,因此下面给出图作为代数结构的一个定义。
定义7.1.1 一个图(Graph )是一个三元组〈)(G V ,)(G E ,G ϕ〉,其中)(G V 是一个非空的节点集合,)(G E 是有限的边集合,G ϕ是从边集合E 到点集合V 中的有序偶或无序偶的映射。
例7.1.1 图G =〈)(G V ,)(G E ,G ϕ〉,其中)(G V =},,,{d c b a ,)(G E =},,,,,{654321e e e e e e ,),()(1b a e G =ϕ,),()(2c a e G =ϕ,),()(3d b e G =ϕ,),()(4c b e G =ϕ,),()(5c d e G =ϕ,),()(6d a e G =ϕ。