固体物理 第三章 晶格振动与晶体的热力学函数
- 格式:doc
- 大小:421.50 KB
- 文档页数:16
固体物理第三章晶格振动与晶体热学性质第三章晶格振动与晶体的热学性质晶格振动是描述原子在平衡位置附近的振动,由于晶体内原子间存在着相互作用力,各个原子的振动也不是孤立的,而是相互联系的,因此在晶体内形成各种模式的波。
只有当振动微弱时,原子间非谐的相互作用可以忽略,即在简谐近似下,这些模式才是独立的。
由于晶格的周期性条件,模式所取的能量值不是连续的而是分立的。
对于这些独立而又分立的振动模式,可以用一系列独立的简谐振子来描述。
和光子的情形相似,这些谐振子的能量量子称为声子。
这样晶格振动的总体就可以看成声子系综。
若原子间的非谐相互作用可以看作微扰项,则声子间发生能量交换,并且在相互作用过程中,某些频率的声子产生,某些频率的声子湮灭。
当晶格振动破坏了晶格的周期性,使电子在晶格中的运动受到散射而电阻增加,可以看作电子受到声子的碰撞,晶体中的光学性质也与晶格振动有密切关系,在很大程度上可以看作光子与声子的相互作用乃至强烈耦合。
晶格振动最早是用于研究晶体的热学性质,其对晶体的电学性质、光学性质、超导电性、磁性、结构相变等一系列物理问题都有相当重要的作用,是研究固体宏观性质和微观过程的重要基础。
ωη§3-1 简谐近似和简正坐标由原子受力和原子间距之间的关系可以看出,若离开平衡位置的距离在一定限度,原子受力和该距离成正比。
这时该振动可以看成谐振动.用n μϖ表示原子偏离平衡位置(格点)位移矢量,对于三维空间,描述N 个原子的位移矢量需要3N 个分量,表为)3,,2,1(N i i Λ=μ将体系的势函数在平衡位置附近作泰勒展开:高阶项+∑⎪⎪⎭⎫ ⎝⎛∂∂∂+∑∂∂+===j i N j i j i i N i i V V V V μμμμμμ031,2031021)(第一项为平衡位置的势能,可取为零,第二项为平衡位置的力,等于零。
若忽略高阶项,因为势能仅和位移的平方成正比,即为简谐近似。
23121i N i i m T μ&∑==引入合适的正交变换,将动能和势能用所谓的简正坐标表示成仅含平方∑==N j j ij i i Q a m 31μ项而没有交叉项,即:由分析力学,基本形式的拉格朗日方程为:)32,1(,N i q Q T Q T dt d i i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂其中)32,1(,1N i q f q i j N j j i Λϖϖ=∂∂⋅∑==μ朗日方程:)32,1(,0N i Q L Q L dt d i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂则正则方程为:)3,2,1(,02N i Q Q i i i Λ&&==+ω其解为:)sin(δω+=t A Q i i 当考察某一个j Q 时,则:)sin(δωμ+=t A m a j i iji 晶体参与的振动,且它们的振动频率相同。
黄昆固体物理习题解答第三章晶格振动与晶体的热学性质3.1 已知一维单原子链,其中第j个格波,在第个格点引起的位移为,μ= anj j sin(ωj_j+ σj) ,σj为任意个相位因子,并已知在较高温度下每个格波的平均能量为,具体计算每个原子的平方平均位移。
解:任意一个原子的位移是所有格波引起的位移的叠加,即μn= ∑ μnj=∑ a j sin(ωj t naq j+σj)j j(1)μ2 n =⎛⎜⎝∑μjnj⎞⎛⎟⎜⎠⎝∑μj*nj⎞⎟⎠= ∑μj2nj+ ∑ μ μnj*nj′j j′由于μ μnj⋅nj数目非常大的数量级,而且取正或取负几率相等,因此上式得第2 项与第一项μ相比是一小量,可以忽略不计。
所以2= ∑ μ 2njn j由于μnj是时间的周期性函数,其长时间平均等于一个周期内的时间平均值为μ 2 = 1 T∫0 2 ω+σ 1 2j aj sin( t naqjj j)dt a=j(2)T0 2已知较高温度下的每个格波的能量为KT,μnj的动能时间平均值为1 L T ⎡1 ⎛dμ⎞2 ⎤ρw a2 T 1= ∫ ∫dx0⎢ρnj⎥= j j∫0 2 ω+ σ= ρ 2 2 T⎜⎟dt L a sin( t naq)dt w Lanj T0 0 0 ⎢ 2 ⎝dt⎠⎥2T0 j j j j 4 j j其中L 是原子链的长度,ρ 使质量密度,T0为周期。
1221所以Tnj= ρ w La j j=KT(3)4 2μKT因此将此式代入(2)式有nj2 = ρ ωL 2 jμ所以每个原子的平均位移为2== ∑ μ 2= ∑KT= KT∑1n njρ ωL2ρLω2j j j j j3.2 讨论 N 个原胞的一维双原子链(相邻原子间距为 a),其 2N 格波解,当 M=m 时与一维单原子链的结果一一对应.解答(初稿)作者季正华- 1 -黄昆固体物理习题解答解:如上图所示,质量为M 的原子位于2n-1,2n+1,2n+3 ……质量为m 的原子位于2n,2n+2,2n+4 ……牛顿运动方程:..mμ2n= −β μ(22n−μ2n+1 −μ2n−1)..Mμ2n+1 = −β μ(22n+1 −μ2n+2 −μ2n)体系为N 个原胞,则有2N 个独立的方程i na q方程解的形式:iμ2n=Ae[ωt−(2 ) ] μ2n+1=Be[ω−(2n+1)aq]na qμ=将μ2n=Ae[ωt−(2 ) ]2n+1 Be i[ωt−(2n+1) aq]代回到运动方程得到若A、B 有非零的解,系数行列式满足:两种不同的格波的色散关系:——第一布里渊区解答(初稿)作者季正华- 2 -第一布里渊区允许 q 的数目黄昆 固体物理 习题解答对应一个 q 有两支格波:一支声学波和一支光学波。
固体物理第三章晶格振动与晶体的热力学函数第三章晶格振动与晶体的热力学函数一、填空体1. 若在三维空间中,晶体由N 个原胞组成,每个原胞有一个原子,则共有_ 3 N_个独立的振动,_ N__个波矢, 3N_支格波。
2. 体积为V 的ZnS 晶体,如果晶胞的体积为Ω,则晶格振动的模式书为24N/Ω 。
3. 三维绝缘体晶体的低温比热Cv 与温度T 的关系为Cv~T 3。
4. 某三维晶体由N 个原胞组成,每个原胞内有3个原子。
考虑晶体的晶格振动,其色散关系共有 9N 支,其中 3N 支声学波,包括 2N 支横声学波, 1N 支纵声学波;另有 6N 支光学波。
5. 二维绝缘体晶体的低温比热Cv 与温度T 的关系为Cv~T 2。
6. 一维绝缘体晶体的低温比热Cv 与温度T 的关系为Cv~T 。
7. 三维绝缘体晶体的低温平均内能与温度T 的关系为U~T 4。
8.二维绝缘体晶体的低温平均内能与温度T 的关系为U~T 3。
9. 一维绝缘体晶体的低温平均内能温度T 的关系为U~T 2。
10.绝缘体中与温度有关的内能来源于晶格振动能。
11.导体中与温度有关的内能来源于晶格振动能和价电子热运动动能。
12. 某二维晶体由N 个原胞组成,每个原胞内有2个原子。
考虑晶体的晶格振动,其色散关系共有4N 支,其中2N 支声学波,包括N 支横声学波, N 支纵声学波;另有 2N 支光学波。
13. 某一维晶体由N 个原胞组成,每个原胞内有3个原子。
考虑晶体的晶格振动,其色散关系共有 3N 支,其中 N 支声学波,包括 N 支横声学波, 0 支纵声学波;另有 2N 支光学波。
14.晶格振动的元激发为声子,其能量为ω ,准动量为 q。
15德拜模型的基本假设为:格波作为弹性波、介质是各向同性介质。
16.对三维体积为V 的晶体,波矢空间中的波矢密度为:3)2(Vπ ;对二维面积为S 的晶体,波矢空间中的波矢密度为:2)2(S π ;对一维长度为L 的晶体,波矢空间中的波矢密度为:π2L 。
第三章 晶格振动与晶体的热力学函数一、填空体1. 若在三维空间中,晶体由N 个原胞组成,每个原胞有一个原子,则共有_ 3 N_个独立的 振动,_ N__个波矢, 3N_支格波。
2. 体积为V 的ZnS 晶体,如果晶胞的体积为Ω,则晶格振动的模式书为24N/Ω 。
3. 三维绝缘体晶体的低温比热Cv 与温度T 的关系为Cv~T 3。
4. 某三维晶体由N 个原胞组成,每个原胞内有3个原子。
考虑晶体的晶格振动,其色散关系共有 9N 支,其中 3N 支声学波,包括 2N 支横声学波, 1N 支纵声学波;另有 6Nπ2L 。
二、基本概念 1. 声子晶格振动的能量量子。
2.波恩-卡门条件即周期性边界条件,设想在实际晶体外,仍然有无限多个相同的晶体相连接,各晶体中相对应的原子的运动情况都一样。
3.波矢密度波矢空间单位体积内的波矢数目,三维时为3c)2(V ,Vc 为晶体体积。
4. 模式密度单位频率间隔内模式数目。
5.晶格振动。
答:由于晶体内原子间存在着相互作用,原子的振动就不是孤立的,而要以波的形式在晶体中传播,形成所谓格波,因此晶体可视为一个互相耦合的振动系统,这个系统的运动就叫晶晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波.3. 晶体中声子数目是否守恒?答:频率为的格波的(平均) 声子数为,即每一个格波的声子数都与温度有关, 因此, 晶体中声子数目不守恒, 它是温度的变量.4. 温度一定,一个光学波的声子数目多呢, 还是声学波的声子数目多? 答:频率为 的格波的(平均) 声子数为.因为光学波的频率比声学波的频率高, ()大于(), 所以在温度一定情况下, 一个光学波的声子数目少于一个声学波的声子数目.5. 对同一个振动模式, 温度高时的声子数目多呢, 还是温度低时的声子数目多?的格波的因2cos qam qa dq d g βωυ==9. 周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大,q 的取值将会怎样?答:由于实际晶体的大小总是有限的,总存在边界,而显然边界上原子所处的环境与体内原子的不同,从而造成边界处原子的振动状态应该和内部原子有所差别。
考虑到边界对内部原子振动状态的影响,波恩和卡门引入了周期性边界条件。
其具体含义是设想在一长为Na 的有限晶体边界之外,仍然有无穷多个相同的晶体,并且各块晶体内相对应的原子的运动情况一样,即第j个原子和第Nt+j个原子的运动情况一样,其中t =1,2,3…。
q只能取一些分立的不同值。
如果晶体是无引入这个条件后,导致描写晶格振动状态的波矢q的取值将趋于连续。
限大,波矢10.下图表示一维双原子复式晶格振动的两支格波的色散关系。
请简要分析并判断:在长波极限下,图中哪一条曲线反映了初基元胞内两个原子的质心振动?图中哪一条曲线反映了初基元胞内两个原子的相对振动?做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数。
任何晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波。
14. 长声学格波能否导致离子晶体的宏观极化?答:长光学格波所以能导致离子晶体的宏观极化,其根源是长光学格波使得原胞内不同的原子(正负离子)产生了相对位移。
长声学格波的特点是, 原胞内所有的原子没有相对位移. 因此,长声学格波不能导致离子晶体的宏观极化。
15.爱因斯坦模型在低温下与实验存在偏差的根源是什么?1013, 属于答:按照爱因斯坦温度的定义, 爱因斯坦模型的格波的频率大约为Hz 光学支频率. 但光学格波在低温时对热容的贡献非常小, 低温下对热容贡献大的主要是长声学格波. 也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源。
16. 在甚低温下, 德拜模型为什么与实验相符? 答:在甚低温下, 不仅光学波得不到激发, 而且声子能量较大的短声学格波也未被激发,得到激发的只是声子能量较小的长声学格波. 长声学格波即弹性波. 德拜模型只考虑弹性波对热容的贡献. 因此, 在甚低温下, 德拜模型与事实相符, 自然与实验相符。
四、证明计算1. 证明一维单原子链的运动方程,在长波近似下,可以化成弹性波方程,)2()(2222ln l n u q a tu m ++-=∂∂β观上的质点位移u ,从宏观上看,原子的位置可视为准连续的,原子的分离a l n )(+可视为准连续坐标x ,即uAe Ae u t qx i t l n q i l n ===--++][])([ωω于是(2)化成22222x u v tu ∂∂=∂∂ 其中m av β=2. 在一维双原子链中,如1>>m M ,求证qa M sin 21βω=)cos 21(222qa M mm +=βω()()}]c o s [(12/12222qa m M m M m M m+++-++≈}]c o s 4)[(12/122qa M mm M m M m++-+≈β}c o s 42111{2qa M mm++≈β}c o s 1{22qa M m m +≈βqa M m m 22cos 12+=∴βω)c o s 21(22qa M mm +≈β220=-=M m A B ββ 故B =0, 重原子静止。
3.在一维无限长的简单晶格中,原子质量为M ,若只考虑近邻原子之间的相互作用,恢复力系数为β,试求格波的色散关系。
解:设原子的质量为 M ,第n 个原子对平衡位置的位移为un 第n+1和n-1个原子对平衡⎭⎝B 讨论当温度很高时,结果又会怎样? 证明:按照量子理论,一个谐振子的能级是ωε ⎪⎭⎫ ⎝⎛+=n n 21式中,ω为谐振子的角频率;n 取正整数。
在热平衡条件下,谐振子的平均能量为 ∑=n nn P εε式中nP 为谐振子处于能级n ε的几率。
若按玻耳兹曼统计计算,上式写成∑∑∞=∞=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+=00/21exp /21exp 21n B n B T k n T k n n ωωωε[]∑∞-/exp BT k n n ωω 在高温下,B ,有 ωω T k T k cth B B 22≈⎪⎪⎭⎫ ⎝⎛ 故得 T k B ≈ε可见,在高温下,一个量子谐振子的平均能量与经典理论的结论相同。
5.在一维无限长的简单晶格中,若考虑原子间的长程作用力,第 n 个与第 n +m 或 n-m 个原子间的恢复力系数为m β,试求格波的色散关系。
解:设原子的质量为 M ,第n 个原子对平衡位置的位移为un 第n+m 和n-m 个原子对平衡位置的位移分别为un+m 与 un-m ,则第n+m 和n-m 个原子对第n 个原子的作用力为)2()()(,n m n m n m m n n m n m n m m n u u u u u u u f -+=---=-+-+βββ第 n 个原子受力的总合为∑∑∞=-+∞=-+==11,)2(m n m n m n m m m n n u u u f F β因此第 n 个原子的运动方程为0z y x 解:2220z y x Cq Bq Aq ++=-ωω则 1020202=-+-+-Cq B q A q zy x ωωωωωω这是q 空间的一个椭球面,其体积为abc π34,而2/10Aa ωω-=,2/10Bb ωω-=,2/10Cc ωω-=q 空间内的波矢密度()33)2(2ππρVL q =⎪⎭⎫ ⎝⎛= ,故椭球内的总状态数N 为 ()2/302/131342ωωππ-⎪⎭⎫⎝⎛⋅=ABC V N所以)21sin()21cos()21sin(21)21cos()21sin(2122qa qa qa qa qa qa qa dq d m m m ωωωωω==222221)]21(sin 1[21)21cos(21ωωωωω-=-==m m m a qa a qa a dq d 模式密度为2222122122)(ωωπωωπω-=-=mm Na L D7. 已知一个频率为i ω的简谐振动在温度T 下的平均能量 121/-+=T k ii i B i e ωωωε 试用爱因斯坦模型求出由N 个原子组成的单原子晶体晶格振动的总能量,并求其在高温和低温极限情况下的表达式。
解:由N 个原子组成的单原子晶体共有3N 个自由度,独立晶格振动方式数也等于因斯坦模型下的零点振动能。
在低温极限下,x>>1,x x e e ≈-1,从(1)式得T E B E B x B E e Nk k Nxe x T Nk E /323)21(3Θ--Θ+Θ=+=8. 设晶格中每个振子的零点振动能为2ω,试用德拜模型求三维晶格的零点振动能解:状态密度()()32223v V V g ωπωωρ== 则()ωωπωωωρεωωd v V d E DD 3220002321 ⎰⎰==DD v V d v V ωωωπωωπ04320332163143 ==⎰ 432163D v V ω =解:按照德拜模型, 晶体中的声子数目N’为..是德拜温度,即高温时, 晶体中的声子数目与温度成正比. 低温时,,,即低温时, 晶体中的声子数目与T 3成正比.10. 有N 个相同原子组成的面积为S 的二维晶格,在德拜近似下计算比热,并论述在低温极限比热正比与2T 。
证明:在k 到k dk +间的独立振动模式对应于平面中半径n 到n dn +间圆环的面积2ndn π,且()22532222L s ndn kdk kdk d v ρωπρωωπππ===即则()()233220//22222333212121mDDB B x B B B B k Tk T x DDd s k T s k T k T k T s d x dxE E v ev e v e ωωωωρρρωωωωπππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=+==---⎰⎰⎰20,()v s ET E T C T T ∂→∝∴=∝∂3时,,,,,,12.有N 个相同原子组成的体积为L 的一维晶格,在德拜近似下计算比热,并论述在低温极限比热正比与T 。
.13. 在一维无限长的简单晶格中,原子质量为M ,若只考虑近邻原子之间的相互作用,恢复力系数为β,试求格波的色散关系。
解:设原子的质量为 M ,第n 个原子对平衡位置的位移为un 第n+1和n-1个原子对平衡位置的位移分别为un+1与 un-1,则第n+m 和n-m 个原子对第n 个原子的作用力为)2()()(4111n n n n n n n u u u u u u u f -+=---=-+-+βββ因此第 n 个原子的运动方程为)2(1122n n n nu u u t d u d M -+=-+β将格波的试解)(t qna i n Ae u ω-=代入运动方程,得计算色散关系为2cq =ω的模式密度一维的模式密度。