最新人教版高考数学一轮复习4.2平面向量的基本定理及其坐标表示公开课教学设计
- 格式:doc
- 大小:154.00 KB
- 文档页数:4
平面向量的基本定理及坐标表示自主梳理1.平面向量基本定理定理:如果e 1,e 2是同一平面内的两个________向量,那么对于这一平面内的任意向量a ,__________一对实数λ1,λ2,使a =______________.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组________.1.不共线 有且只有 λ1e 1+λ2e 2 基底 2.夹角(1)已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ叫做向量a 与b 的________.(2)向量夹角θ的范围是________,a 与b 同向时,夹角θ=____;a 与b 反向时,夹角θ=____.(3)如果向量a 与b 的夹角是________,我们说a 与b 垂直,记作________.2.(1)夹角 (2)[0,π] 0 π (3)π2a ⊥b3.平面向量的正交分解:把一个向量分解为两个____________的向量,叫做把向量正交分解.3.互相垂直4.平面向量的坐标表示:①在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,对于平面内的一个向量a ,有且只有一对实数x ,y 使a =x i +y j ,我们把有序数对______叫做向量a 的________,记作a =________,其中x 叫a 在________上的坐标,y 叫a 在________上的坐标.4.(x ,y ) 坐标 (x ,y ) x 轴 y 轴 ②设OA →=x i +y j ,则向量OA →的坐标(x ,y )就是________的坐标,即若OA →=(x ,y ),则A 点坐标为__________,反之亦成立.(O 是坐标原点)②终点A (x ,y )注意:要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向也有大小的信息. 5.平面向量的坐标运算(1) 向量加法、减法、数乘向量及向量的模已知向量a =(x 1,y 1),b =(x 2,y 2)和实数λ,那么a +b =________________________,a -b =________________________,λa =________________.|a |=____________.(x 1+x 2,y 1+y 2) (x 1-x 2,y 1-y 2) (λx 1,λy 1) x 21+y 21 (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.已知A (11x y ,),B (22x y ,),则AB →=OB →-OA →=(x 2,y 2)-(x 1,y 1)=(x 2-x 1,y 2-y 1),即一个向量的坐标等于表示此向量的有向线段的__________的坐标减去__________的坐标. |AB →|=______________. (2)终点 始点x 2-x 12+y 2-y 126.若a =(x 1,y 1),b =(x 2,y 2) (b ≠0),则a ∥b 的充要条件是________________________. x 1y 2-x 2y 1=0注意:.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.同时,a∥b 的充要条件也不能错记为x 1x 2-y 1y 2=0,x 1y 1-x 2y 2=0等.7.(1)P 1(x 1,y 1),P 2(x 2,y 2),则P 1P 2的中点P 的坐标为_____________________.(2)P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),则△P 1P 2P 3的重心P 的坐标为_______________.7.(1)⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22 (2)⎝ ⎛⎭⎪⎫x 1+x 2+x 33,y 1+y 2+y 331.基底的不唯一性只要两个向量不共线,就可以作为平面的一组基底,对基底的选取不唯一,平面内任意向量a 都可被这个平面的一组基底e 1,e 2线性表示,且在基底确定后,这样的表示是唯一的. 2.向量坐标与点的坐标的区别在平面直角坐标系中,以原点为起点的向量OA →=a ,点A 的位置被向量a 唯一确定,此时点A 的坐标与a 的坐标统一为(x ,y ),但应注意其表示形式的区别,如点A (x ,y ),向量a =OA →=(x ,y ). 当平面向量OA →平行移动到O 1A 1→时,向量不变即O 1A 1→=OA →=(x ,y ),但O 1A 1→的起点O 1和终点A 1的坐标都发生了变化.基础检测1.设平面向量a =(3,5),b =(-2,1),则a -2b =__________.(7,3)2.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为____.(-3,-5)3.已知向量a =(1,2),b =(-3,2),若k a +b 与b 平行,则k =________.04.在平面坐标系内,已知点A (2,1),B (0,2),C (-2,1),O (0,0).给出下面的结论:①直线OC 与直线BA 平行;②AB →+BC →=CA →; ③OA →+OC →=OB →;④AC →=OB →-2OA →.其中正确结论的个数是A.1B.2C.3D.45.若向量a =(1,1),b =(-1,1),c =(4,2),则c 等于 ( B )A.3a +bB.3a -bC.-a +3bD.a +3b6.若向量a =(x,3)(x ∈R ),则“x =4”是“|a |=5”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件A [由x =4知|a |=42+32=5;由|a |=x 2+32=5,得x =4或x =-4.故“x =4”是“|a |=5”的充分而不必要条件.]7.设a =⎝ ⎛⎭⎪⎫32,sin α,b =⎝⎛⎭⎪⎫cos α,13,且a∥b ,则锐角α为( )A .30°B .45°C .60°D .75°B [∵a ∥b ,∴32×13-sin αcos α=0,∴sin 2α=1,2α=90°,α=45°.] 8.已知向量a =(6,-4),b (0,2),OC →=c =a +λb ,若C 点在函数y =sin π12x 的图象上,则实数λ等于( ) A.52 B.32 C .-52 D .-32A [c =a +λb =(6,-4+2λ),代入y =sin π12x 得,-4+2λ=sin π2=1,解得λ=52.]9.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________.解析 a +b =(1,m -1),由(a +b )∥c , 得1×2-(m -1)×(-1)=0,所以m =-1.10.给定两个长度为1的平面向量OA →和OB →,它们的夹角为120° .如图所示,点C 在以O 为圆心的圆弧AB 上变动,若OC →=xOA→+yOB →,其中x ,y ∈R ,则x +y 的最大值是______. 解析 建立如图所示的坐标系,则A (1,0),B (cos 120°,sin 120°),即B (-12,32).设AOC ∠=α,则OA →= (cos α,sin α).∵OC →=xOA→+yOB →=(x,0)+⎝⎛⎭⎪⎪⎫-y 2,32y =(cos α,sin α). ∴⎩⎪⎨⎪⎧x -y2=cos α,32y =sin α.∴错误!∴x +y =3sin α+cos α=2sin(α+30°).∵0°≤α≤120°,∴30°≤α+30°≤150°. ∴x +y 有最大值2,当α=60°时取最大值. 探究点一 平面向量基本定理的应用例1如图,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d表示AB →,AD →.解 方法一 设AB →=a ,AD →=b ,则a =AN →+NB →=d +⎝ ⎛⎭⎪⎫-12b , ①b =AM →+MD →=c +⎝ ⎛⎭⎪⎫-12a . ②将②代入①得a =d +⎝ ⎛⎭⎪⎫-12⎣⎢⎡⎦⎥⎤c +⎝ ⎛⎭⎪⎫-12a∴a =43d -23c =23(2d -c ),代入②得b =c +⎝ ⎛⎭⎪⎫-12×23(2d -c )=23(2c -d ).∴AB →=23(2d -c ),AD →=23(2c -d ).方法二 设AB →=a ,AD→=b .因M ,N 分别为CD ,BC 的中点,所以BN →=12b ,DM →=12a ,因而⎩⎪⎨⎪⎧c =b +12ad =a +12b⇒⎩⎪⎨⎪⎧a =232d -c b =232c -d,即AB →=23(2d -c ),AD →=23(2c -d ). 变式训练1 (1)如图,平面内有三个向量OA →、OB →、OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ、μ∈R ),则λ+μ的值为________.解析 如右图,OC →=OD →+OE → =λOA →+μOB →在△OCD 中,∠COD =30°,∠OCD =∠COB =90°, 可求|OD →|=4,同理可求|OE →|=2, ∴λ=4,μ=2,λ+μ=6.(2)在△ABC 中,AD →=14AB →,DE ∥BC ,与边 AC 相交于点E ,△ABC 的中线AM 与DE 相交于点N ,如图,设AB→=a,AC→=b,试用a和b表示DN→.解∵AD→=14AB→,DE∥BC,M为BC中点,∴DN→=14BM→=18BC→=18(b-a).探究点二平面向量的坐标运算例 2 已知A(-2,4),B(3,-1),C(-3,-4).设AB→=a,BC→=b,CA→=c,且CM→=3c,CN→=-2b,(1)求3a+b-3c;(2) 求M、N的坐标及向量MN→的坐标.解由已知得a=(5,-5),b=(-6,-3),c=(1,8).(1)3a+b-3c=3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2) 设O为坐标原点,∵CM→=OM→-OC→=3c,∴OM→=3c+OC→=(3,24)+(-3,-4)=(0,20).∴M(0,20).又∵CN→=ON→-OC→=-2b,∴ON→=-2b+OC→=(12,6)+(-3,-4)=(9,2),∴N(9,2).∴MN→=(9,-18).变式训练2(1)已知点A(1,-2),若向量|AB→与a=(2,3)同向,|AB→|=213,则点B的坐标为________.解析∵向量AB→与a同向,∴设AB→=(2t,3t) (t>0).由|AB→|=213,∴4t2+9t2=4×13.∴t2=4.∵t>0,∴t=2.∴AB→=(4,6).设B为(x ,y ),∴⎩⎪⎨⎪⎧x -1=4,y +2=6.∴⎩⎪⎨⎪⎧x =5,y =4.(5,4)(2)已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),求第四个顶点的坐标.解 如图所示,设A (-1,0),B (3,0),C (1,-5), D (x ,y ). (1)若四边形ABCD 1为平行四边形,则AD 1→=BC →, 而AD 1→=(x +1,y ),BC →=(-2,-5).由AD 1→=BC →,得⎩⎪⎨⎪⎧x +1=-2,y =-5.∴⎩⎪⎨⎪⎧x =-3,y =-5.∴D 1(-3,-5).(2)若四边形ACD 2B 为平行四边形,则AB →=CD →2. 而AB →=(4,0),CD →2=(x -1,y +5).∴⎩⎪⎨⎪⎧x -1=4,y +5=0.∴⎩⎪⎨⎪⎧x =5,y =-5.∴D 2(5,-5).(3)若四边形ACBD 3为平行四边形,则AD →3=CB →. 而AD →3=(x +1,y ),CB →=(2,5),∴⎩⎪⎨⎪⎧x +1=2,y =5.∴⎩⎪⎨⎪⎧x =1,y =5.∴D 3(1,5).综上所述,平行四边形第四个顶点的坐标为(-3,-5)或(5,-5)或(1,5).探究点三 在向量平行下求参数问题例3 已知平面内三个向量:a =(3,2),b =(-1,2),c =(4,1).(1)求满足a =m b +n c 的实数m 、n ; (2)若(a +k c )∥(2b -a ),求实数k .(3)若d 满足(d -c )∥(a +b ),且|d -c |=5,求d . 解 (1)∵a =m b +n c ,m ,n ∈R ,∴(3,2)=m (-1,2)+n (4,1)=(-m +4n,2m +n ).∴⎩⎪⎨⎪⎧-m +4n =3,2m +n =2,解之得⎩⎪⎨⎪⎧m =59,n =89.(2)∵(a +k c )∥(2b -a ),且a +k c =(3+4k,2+k ),2b -a =(-5,2), ∴(3+4k )×2-(-5)×(2+k )=0,∴k =-1613.(3)设d =(x ,y ),d -c =(x -4,y -1), a +b =(2,4), 由题意得⎩⎪⎨⎪⎧4x -4-2y -1=0x -42+y -12=5,解得⎩⎪⎨⎪⎧x =3y =-1或⎩⎪⎨⎪⎧x =5y =3,∴d =(3,-1)或d =(5,3).变式训练3 (1)已知向量a =(3,1),b =(1,3),c =(k,7),若(a -c )∥b ,则k =________.解析 ∵a -c =(3,1)-(k,7)=(3-k ,-6),且(a -c )∥b ,∴3-k 1=-63,∴k =5.(2)已知a =(1,0),b =(2,1). ①求|a +3b |;②当k 为何实数时,k a -b 与a +3b 平行,平行时它们是同向还是反向?解 ① 因为a =(1,0),b =(2,1),所以a +3b =(7,3),∴|a +3b |=72+32=58.②k a -b =(k -2,-1),a +3b =(7,3), 因为k a -b 与a +3b 平行, 所以3(k -2)+7=0,即k =-13.此时k a -b =(k -2,-1)=⎝ ⎛⎭⎪⎫-73,-1,a +3b =(7,3),则a +3b =-3(k a -b ),即此时向量a +3b 与k a -b 方向相反.(3)已知点O (0,0),A (1,2),B (4,5),OP →=t 1OA →+t 2AB →, ①求点P 在第二象限的充要条件.②证明:当t 1=1时,不论t 2为何实数,A ,B ,P 三点共线; ③试求当t 1,t 2满足什么条件时,O ,A ,B ,P 能组成一个平行四边形.①解 OP→=t 1(1,2)+t 2(3,3)=(t 1+3t 2,2t 1+3t 2),P在第二象限的充要条件是⎩⎪⎨⎪⎧t 1+3t 2<02t 1+3t 2>0有解.∴-32t 2<t 1<-3t 2且t 2<0.②证明 当t 1=1时,有OP →-OA →=t 2AB →,∴AP →=t 2AB →,∴不论t 2为何实数,A ,B ,P 三点共线. ③解 由OP →=(t 1+3t 2,2t 1+3t 2),得点P (t 1+3t 2,2t 1+3t 2),∴O ,A ,B ,P 能组成一个平行四边形有三种情况.当OA →=BP →,有⎩⎪⎨⎪⎧t 1+3t 2-4=12t 1+3t 2-5=2⇒⎩⎪⎨⎪⎧t 1=2t 2=1;当OA →=PB→,有⎩⎪⎨⎪⎧t 1+3t 2-4=-12t 1+3t 2-5=-2⇒⎩⎪⎨⎪⎧t 1=0t 2=1;当OP →=BA →,有⎩⎪⎨⎪⎧t 1+3t 2=-32t 1+3t 2=-3⇒⎩⎪⎨⎪⎧t 1=0t 2=-1.点评:1.在解决具体问题时,合理地选择基底会给解题带来方便.在解有关三角形的问题时,可以不去特意选择两个基本向量,而可以用三边所在的三个向量,最后可以根据需要任意留下两个即可,这样思考问题要简单得多.2.平面直角坐标系中,以原点为起点的向量OA →=a ,点A 的位置被a 所唯一确定,此时a 的坐标与点A 的坐标都是(x ,y ).向量的坐标表示和以坐标原点为起点的向量是一一对应的,要把点的坐标与向量的坐标区分开,相等的向量坐标是相同的,但起点、终点的坐标可以不同,也不能认为向量的坐标是终点的坐标,如A (1,2),B (3,4),则AB →=(2,2).一、选择题1.已知a,b 是不共线的向量,若AB →=λ1a +b ,AC →=a +λ2b ,(λ1,λ2∈R ),则A 、B 、C 三点共线的充要条件为 ( )A .λ1=λ2=-1B .λ1=λ2=1C .λ1λ2-1=0D .λ1λ2+1=01.C [∵A 、B 、C 三点共线⇔AB →与AC →共线⇔AB →=k AC →⇔⎩⎪⎨⎪⎧λ1=k ,kλ2=1,∴λ1λ2-1=0.]2.若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m=(-1,1),n =(1,2)下的坐标为 ( D )A.(2,0)B.(0,-2)C.(-2,0)D.(0,2) 3.设两个向量a =(λ+2,λ2-cos 2α)和b =⎝ ⎛⎭⎪⎫m ,m2+sin α,其中λ、m 、α为实数.若a =2b ,则λm的取值范围是( )A .[-6,1]B .[4,8]C .(-∞,1]D .[-1,6]3.A [∵2b =(2m ,m +2sin α),∴λ+2=2m ,λ2-cos 2α=m +2sin α,∴(2m -2)2-m =cos 2α+2sin α,即4m 2-9m +4=1-sin 2α+2sin α.又∵-2≤1-sin 2α+2sin α≤2,∴-2≤4m 2-9m +4≤2,解得14≤m ≤2,∴12≤1m ≤4.又∵λ=2m -2, ∴λm =2-2m ,∴-6≤2-2m≤1.] 4.设0≤θ≤2π时,已知两个向量OP1→=(cos θ,sin θ),OP 2→=(2+sin θ,2-cos θ),则向量P 1P 2→长度的最大值是( )A. 2B. 3 C .3 2 D .23 5.在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →等于( )A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4) 二、填空题6.如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为______.6.2解析 方法一 若M 与B 重合,N 与C 重合, 则m +n =2.方法二 ∵2AO →=AB →+AC →=mAM→+nAN →,AO →=m 2AM →=m 2AM →.∵O 、M 、N 共线,∴m 2+n 2=1. ∴m +n =2.7.在平面直角坐标系xOy 中,四边形ABCD 的边AB ∥DC ,AD ∥BC .已知A (-2,0),B (6,8),C (8,6),则D 点的坐标为________.(0,-2)解析 设D 点的坐标为(x ,y ),由题意知BC→=AD→,即(2,-2)=(x +2,y ),所以x =0,y =-2,∴D (0,-2)8.在四边形ABCD 中,AB →=DC →=(1,1),1|BA →|·BA →+1|BC →|·BC →=3|BD →|·BD →,则四边形ABCD 的面积为________.3 S =|AB →|=|BC→|sin 60°=2×2×32= 3.三、解答题 9.(12分)已知A 、B 、C 三点的坐标分别为(-1,0)、(3,-1)、(1,2),并且AE →=13AC →,BF →=13BC →.求证:EF →∥AB →. 9.证明 设E 、F 两点的坐标分别为(x 1,y 1)、(x 2,y 2),则依题意,得AC→=(2,2),BC→=(-2,3),AB →=(4,-1).∴A E→=13AC →=⎝ ⎛⎭⎪⎫23,23,BF→=13BC →=⎝ ⎛⎭⎪⎫-23,1.∴A E→=(x 1,y 1)-(-1,0)=⎝ ⎛⎭⎪⎫23,23,BF→=(x 2,y 2)-(3,-1)=⎝ ⎛⎭⎪⎫-23,1.∴(x 1,y 1)=⎝ ⎛⎭⎪⎫23,23+(-1,0)=⎝ ⎛⎭⎪⎫-13,23,(x 2,y 2)=⎝ ⎛⎭⎪⎫-23,1+(3,-1)=⎝ ⎛⎭⎪⎫73,0.∴EF→=(x 2,y 2)-(x 1,y 1)=⎝ ⎛⎭⎪⎫83,-23.又∵AB →=(4,-1),∴4×⎝ ⎛⎭⎪⎫-23-(-1)×83=0,∴EF→∥AB →.10.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知向量m=(a ,b ),向量n =(cos A ,cos B ),向量p =(22sin B +C2,2sinA ),若m ∥n ,p 2=9,求证:△ABC 为等边三角形. 证明 ∵m ∥n ,∴a cosB =b cos A .由正弦定理,得sin A cos B =sin B cos A ,即sin(A -B )=0. ∵A 、B 为三角形的内角,∴-π<A -B <π.∴A =B . ∵p 2=9,∴8sin 2B +C 2+4sin 2A =9.∴4[1-cos(B +C )]+4(1-cos 2A )=9.∴4cos 2A -4cos A +1=0,解得cos A =12.又∵0<A <π,∴A =π3.∴△ABC 为等边三角形.11.如图,在边长为1的正△ABC 中,E ,F 分别是边AB ,AC 上的点,若AE →=mAB →,AF →=nAC→,m ,n ∈(0,1).设EF 的中点为M ,BC 的中点为N .(1)若A ,M ,N 三点共线,求证:m =n ; (2)若m +n=1,求MN 的最小值.11.解 (1)由A ,M ,N 三点共线,得A M→∥A N→,设A M→=λAN →(λ∈R ),即12(AE →+A F→)=12λ(AB →+AC →), 所以m AB →+nAC →=λ(AB →+AC →),所以m =n .(2)因为MN →=AN →-AM →=12(AB →-AC →)=12(AE →-AF →)=12(1-m )AB → +12(1-n )AC →, 又m +n =1,所以MN →=12 (1-m )AB → +12mAC →, 所以|MN →|2=14(1-m )2AB →2+14m 2AC →2+12(1-m )mAB→·AC →=14(1-m )2+14m 2+14(1-m )m =14(m -12)2+316.故当m =12时,|MN →|min =34. 一、选择题1.与向量a =(12,5)平行的单位向量为 (C )A.⎝ ⎛⎭⎪⎫1213,-513B.⎝ ⎛⎭⎪⎫-1213,-513C.⎝ ⎛⎭⎪⎫1213,513或⎝ ⎛⎭⎪⎫-1213,-513D.⎝ ⎛⎭⎪⎫±1213,±5132.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →等于 (B )A.(-2,7)B.(-6,21)C.(2,-7)D.(6,-21)3.已知向量a =(2,3),b =(-1,2),若(m a +n b )∥(a -2b ),则mn等于 ( C )A.-2B.2C.-12D.124.若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b 等于 ( A )A.(-3,6)B.(3,-6)C.(6,-3)D.(-6,3) 5.设向量a =(1,-3),b =(-2,4),c =(-1,-2).若表示向量4a 、4b -2c 、2(a -c )、d 的有向线段首尾相接能构成四边形,则向量d 为 ( D )A.(2,6)B.(-2,6)C.(2,-6)D.(-2,-6)二、填空题6.若平面向量a ,b 满足|a +b |=1,a +b 平行于y 轴,a =(2,-1),则b =___.(-2,0)或(-2,2)____________.7.△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若p =(a +c ,b ),q =(b -a ,c -a ),且p∥q ,则角C =__60°______.8.已知A (7,1)、B (1,4),直线y =12ax 与线段AB 交于C ,且AC →=2CB →,则实数a =___2_____.9.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为___12_____.10.设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),a >0,b >0,O 为坐标原点,若A 、B 、C 三点共线,则1a +2b的最小值是___8_____. 三、解答题11.a =(1,2),b =(-3,2),当k 为何值时,k a +b 与a -3b 平行?平行时它们是同向还是反向?解 k a +b =k (1,2)+(-3,2)=(k -3,2k +2),a -3b =(1,2)-3(-3,2)=(10,-4),当k a +b 与a -3b 平行时,存在唯一实数λ使k a +b =λ(a -3b ),由(k -3,2k +2)=λ(10,-4)得,⎩⎪⎨⎪⎧k -3=10λ,2k +2=-4λ.解得k =λ=-13,∴当k =-13时,k a +b 与a -3b 平行,这时k a +b =-13a +b =-13(a -3b ).∵λ=-13<0,∴k a +b 与a -3b 反向.12.如图所示,P 是△ABC 内一点,且满足PA →+2PB → +3PC →=0,设Q 为CP 延长线与AB 的交点,令 CP →=p ,试用p 表示PQ →.解 设PA →=a ,PB →=b ,由已知条件3CP →=PA →+2PB →,即3p =a +2b ,PQ →=λCP →=λ3(a +2b ),又PQ →=PA →+AQ →=PA →+μAB →=PA →+μ(PB →-PA→)=(1-μ)a +μb ,由平面向量基本定理⎩⎪⎨⎪⎧λ3=1-μ2λ3=μ.解得λ=1,因此PQ →=λCP →=p .13.如图,已知平行四边形ABCD 的顶点A (0,0),B (4,1),C (6,8).(1)求顶点D 的坐标;(2)若DE →=2EC →,F 为AD 的中点,求AE 与BF 的交点I 的坐标. 解 (1)设点D (x ,y ),因为AD →=BC →,所以(x ,y )=(6,8)-(4,1)=(2,7), 所以顶点D 的坐标为(2,7).(2)设点I (x ,y ),则有F 点坐标为⎝⎛⎭⎪⎫1,72,(x E -2,y E -7)=2(6-x E,8-y E )⇒E ⎝ ⎛⎭⎪⎫143,233,BF →=⎝⎛⎭⎪⎫-3,52,BI →=(x -4,y -1),BF →∥BI →⇒52(x -4)=-3(y -1),又AE →∥AI →⇒233x =143y ,联立方程组可得x =9152,y =299104, 则点I的坐标为⎝ ⎛⎭⎪⎫9152,299104.14.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A 、B 、M 三点都共线;(3)若t 1=a 2,求当OM →⊥AB→且△ABM 的面积为12时a 的值.8.(1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0,故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM→=(4t 2,4t 2+2). ∵AB →=OB →-OA →=(4,4), AM →=OM →-OA→=(4t 2,4t 2)=t 2(4,4)=t 2AB →,∴A 、B 、M 三点共线.(3)解 当t 1=a 2时,OM →=(4t 2,4t 2+2a 2).又AB →=(4,4),OM →⊥AB →,∴4t 2×4+(4t 2+2a 2)×4=0, ∴t 2=-14a 2,故OM →=(-a 2,a 2).又|AB →|=42,点M 到直线AB :x -y +2=0的距离d =|-a 2-a 2+2|2=2|a 2-1|.∵S △ABM =12,∴12|AB |·d =12×42×2|a 2-1|=12,解得a =±2,故所求a 的值为±2.。
第2讲 平面向量基本定理及坐标表示一、知识梳理 1.平面向量基本定理(1)定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标; ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1), |AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),a ∥b ⇔x 1y 2-x 2y 1=0. [提醒] 当且仅当x 2y 2≠0时,a ∥b 与x 1x 2=y 1y 2等价. 即两个不平行于坐标轴的共线向量的对应坐标成比例. 常用结论1.若a =(x 1,y 1),b =(x 2,y 2)且a =b ,则x 1=x 2且y 1=y 2. 2.已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点的坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22.3.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.二、习题改编1.(必修4P99例8改编)若P 1(1,3),P 2(4,0)且P 是线段P 1P 2的一个三等分点,则点P 的坐标为( )A .(2,2)B .(3,-1)C .(2,2)或(3,-1)D .(2,2)或(3,1)解析:选D.由题意得P 1P →=13P 1P 2→或P 1P →=23P 1P 2→,P 1P 2→=(3,-3).设P (x ,y ),则P 1P →=(x-1,y -3),当P 1P →=13P 1P 2→时,(x -1,y -3)=13(3,-3),所以x =2,y =2,即P (2,2);当P 1P →=23P 1P 2→时,(x -1,y -3)=23(3,-3),所以x =3,y =1,即P (3,1).故选D.2.(必修4P119A 组T8改编)已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则m n=( )A .-12B.12 C .-2D .2解析:选A.由向量a =(2,3),b =(-1,2),得m a +n b =(2m -n ,3m +2n ),a -2b =(4,-1).由m a +n b 与a -2b 共线,得-(2m -n )=4(3m +2n ),所以m n =-12.故选A.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)平面内的任何两个向量都可以作为一组基底.( ) (2)在△ABC 中,向量AB →,BC →的夹角为∠ABC .( ) (3)同一向量在不同基底下的表示是相同的.( )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( ) (5)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2 ,μ1=μ2.( ) 答案:(1)× (2)× (3)× (4)× (5)√ 二、易错纠偏常见误区(1)利用平面向量基本定理的前提是基底不能共线; (2)由点的坐标求向量坐标忽视起点与终点致误.1.设O 是平行四边形ABCD 的两条对角线AC ,BD 的交点,则给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为这个平行四边形所在平面的一组基底的是( ) A .①② B .①③ C .①④D .③④解析:选B.平面内任意两个不共线的向量都可以作为基底,如图:对于①,AD →与AB →不共线,可作为基底; 对于②,DA →与BC →为共线向量,不可作为基底; 对于③,CA →与DC →是两个不共线的向量,可作为基底;对于④,OD →与OB →在同一条直线上,是共线向量,不可作为基底. 2.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A .(-7,-4) B .(7,4) C .(-1,4)D .(1,4)解析:选A.法一:设C (x ,y ), 则AC →=(x ,y -1)=(-4,-3),所以⎩⎪⎨⎪⎧x =-4,y =-2,从而BC →=(-4,-2)-(3,2)=(-7,-4).故选A. 法二:AB →=(3,2)-(0,1)=(3,1), BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4).故选A.平面向量基本定理及其应用(师生共研)(1)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC→=b ,则DE →=( )A.13a +512bB.13a -1312b C .-13a -512bD .-13a +1312b(2)(2020·某某市第一次质量预测)如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=.【解析】 (1)DE →=DC →+CE →=13BC →+34CA → =13(AC →-AB →)-34AC → =-13AB →-512AC →=-13a -512b .(2)由题图可设CG →=xCE →(x >0),则CG →=x (CB →+BE →)=x ⎝⎛⎭⎪⎫CB →+12CD →=x 2CD →+xCB →.因为CG →=λCD →+μCB →,CD →与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.【答案】 (1)C (2)12运算遵法则 基底定分解(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.一般将向量“放入”相关的三角形中,利用三角形法则列出向量间的关系.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该组基底将条件和结论表示成向量的形式,再通过向量的运算来解决.注意同一个向量在不同基底下的分解是不同的,但在每组基底下的分解都是唯一的.1.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB →=a ,AC→=b ,则PQ →=( )A.13a +13b B .-13a +13bC.13a -13b D .-13a -13b解析:选A.由题意知PQ →=PB →+BQ →=23AB →+13BC →=23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b ,故选A.2.已知点A ,B 为单位圆O 上的两点,点P 为单位圆O 所在平面内的一点,且OA →与OB →不共线.(1)在△OAB 中,点P 在AB 上,且AP →=2PB →,若AP →=rOB →+sOA →,求r +s 的值; (2)已知点P 满足OP →=mOA →+OB →(m 为常数),若四边形OABP 为平行四边形,求m 的值. 解:(1)因为AP →=2PB →,所以AP →=23AB →,所以AP →=23(OB →-OA →)=23OB →-23OA →,又因为AP →=rOB →+sOA →, 所以r =23,s =-23,所以r +s =0.(2)因为四边形OABP 为平行四边形, 所以OB →=OP →+OA →, 又因为OP →=mOA →+OB →, 所以OB →=OB →+(m +1)OA →,依题意OA →,OB →是非零向量且不共线, 所以m +1=0, 解得m =-1.平面向量的坐标运算(师生共研)已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,→=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n 的值; (3)求M ,N 的坐标及向量MN →的坐标.【解】 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)因为m b +n c =(-6m +n ,-3m +8n ),所以⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1. (3)设O 为坐标原点,因为CM →=OM →-OC →=3c , 所以OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). 所以M (0,20).又因为→=ON →-OC →=-2b ,所以ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), 所以N (9,2).所以MN →=(9,-18).向量坐标运算问题的一般思路(1)向量问题坐标化:向量的坐标运算,使得向量的线性运算都可以用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来,通过建立平面直角坐标系,使几何问题转化为数量运算.(2)巧借方程思想求坐标:向量的坐标运算主要是利用加法、减法、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求出向量的坐标,求解过程中要注意方程思想的运用.1.已知O 为坐标原点,点C 是线段AB 上一点,且A (1,1),C (2,3),|BC →|=2|AC →|,则向量OB →的坐标是.解析:由点C 是线段AB 上一点,|BC →|=2|AC →|,得BC →=-2AC →.设点B 为(x ,y ),则(2-x ,3-y )=-2(1,2),即⎩⎪⎨⎪⎧2-x =-2,3-y =-4,解得⎩⎪⎨⎪⎧x =4,y =7.所以向量OB →的坐标是(4,7). 答案:(4,7)2.如图所示,以e 1,e 2为基底,则a =.解析:以e 1的起点为原点建立平面直角坐标系,则e 1=(1,0),e 2=(-1,1),a =(-3,1),令a =x e 1+y e 2,即(-3,1)=x (1,0)+y (-1,1),则⎩⎪⎨⎪⎧x -y =-3,y =1,所以⎩⎪⎨⎪⎧x =-2,y =1,即a =-2e 1+e 2.答案:-2e 1+e 2平面向量共线的坐标表示(多维探究) 角度一 利用向量共线求向量或点的坐标已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为.【解析】 因为在梯形ABCD 中,AB ∥CD ,DC =2AB ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x ,2-y ),AB →=(2,1)-(1,2)=(1,-1),所以(4-x ,2-y )=2(1,-1),即(4-x ,2-y )=(2,-2),所以⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).【答案】 (2,4)角度二 利用两向量共线求参数已知向量OA →=(k ,12),OB →=(4,5),OC →=(-k ,10),且A ,B ,C 三点共线,则k 的值是( )A .-23B.43C.12D .13【解析】 AB →=OB →-OA →=(4-k ,-7), AC →=OC →-OA →=(-2k ,-2).因为A ,B ,C 三点共线,所以AB →,AC →共线, 所以-2×(4-k )=-7×(-2k ),解得k =-23.【答案】 A(1)向量共线的两种表示形式设a =(x 1,y 1),b =(x 2,y 2),①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0,至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.(2)两向量共线的充要条件的作用判断两向量是否共线(平行),可解决三点共线的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.1.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =. 解析:因为a =(2,-1),b =(-1,m ), 所以a +b =(1,m -1). 因为(a +b )∥c ,c =(-1,2), 所以2-(-1)·(m -1)=0. 所以m =-1. 答案:-12.已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值. 解:(1)k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2).因为k a -b 与a +2b 共线,所以2(k -2)-(-1)×5=0, 即2k -4+5=0,得k =-12.(2)法一:因为A ,B ,C 三点共线, 所以AB →=λBC →,即2a +3b =λ(a +m b ),所以⎩⎪⎨⎪⎧2=λ3=mλ,解得m =32.法二:AB →=2a +3b =2(1,0)+3(2,1)=(8,3), BC →=a +m b =(1,0)+m (2,1)=(2m +1,m ).因为A 、B 、C 三点共线,所以AB →∥BC →.所以8m -3(2m +1)=0,即2m -3=0,所以m =32.思想方法系列8 坐标法解决平面向量的线性运算(2020·某某某某调研)在直角三角形ABC 中,∠A =90°,AB =3,AC =4,P 在△ABC斜边BC 的中线AD 上,则AP →·(PB →+PC →)的最大值为( )A.2516B.258C.254D .252【解析】 以A 为坐标原点,AB →,AC →的方向分别为x 轴、y 轴正方向建立平面直角坐标系,则B (3,0),C (0,4),BC 中点D ⎝ ⎛⎭⎪⎫23,2,则直线AD 的方程为y =43x .设P ⎝ ⎛⎭⎪⎫x ,43x ,所以PB →=⎝ ⎛⎭⎪⎫3-x ,-43x ,PC →=⎝ ⎛⎭⎪⎫-x ,4-43x ,AP→=⎝ ⎛⎭⎪⎫x ,43x ,AP →·(PB →+PC →)=-509x 2+253x =-509⎝ ⎛⎭⎪⎫x -342+258,所以当x =34时,AP →·(PB →+PC →)的最大值为258.故选B. 【答案】 B系要建得巧,题就解得妙坐标是向量代数化的媒介,而坐标的获得又要借助于直角坐标系,对于某些平面向量问题,若能建立适当的直角坐标系,往往能很快实现问题的转化.常见的建系方法如下:(1)利用图形中现成的垂直关系若图形中有明显互相垂直且相交于一点的两条直线(如矩形、直角梯形等),可以利用这两条直线建立坐标系;(2)利用图形中的对称关系图形中虽没有明显互相垂直交于一点的两条直线,但有一定对称关系(如:等腰三角形、等腰梯形等),可利用自身对称性建系.建立平面直角坐标系的基本原则是尽可能地使顶点在坐标轴上,或在同一象限.如图,在正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →,则λ+μ=.解析:法一:以AB ,AD 所在直线分别为x 轴,y 轴,建立平面直角坐标系,如图所示,设正方形的边长为1,则AM →=⎝ ⎛⎭⎪⎫1,12,BN →=⎝ ⎛⎭⎪⎫-12,1,AC →=(1,1).因为AC →=λAM →+μBN→=⎝ ⎛⎭⎪⎫λ-μ2,λ2+μ,所以⎩⎪⎨⎪⎧λ-μ2=1,λ2+μ=1,解得⎩⎪⎨⎪⎧λ=65,μ=25,所以λ+μ=85.法二:由AM →=AB →+12AD →,BN →=-12AB →+AD →,得AC →=λAM →+μBN →=⎝ ⎛⎭⎪⎫λ-μ2AB →+⎝ ⎛⎭⎪⎫λ2+μAD →,又AC →=AB →+AD →,所以⎩⎪⎨⎪⎧λ-μ2=1,λ2+μ=1,解得⎩⎪⎨⎪⎧λ=65,μ=25.所以λ+μ=85.答案:85[基础题组练]1.已知e 1=(2,1),e 2=(1,3),a =(-1,2).若a =λ1e 1+λ2e 2,则实数对(λ1,λ2)为( )A .(1,1)B .(-1,1)C .(-1,-1)D .(1,-1)解析:选B.因为e 1=(2,1),e 2=(1,3),所以a =λ1e 1+λ2e 2=λ1(2,1)+λ2(1,3)=(2λ1+λ2,λ1+3λ2).又因为a =(-1,2),所以⎩⎪⎨⎪⎧2λ1+λ2=-1,λ1+3λ2=2,解得⎩⎪⎨⎪⎧λ1=-1,λ2=1.故选B.2.(2020·某某某某三模)设向量e 1,e 2是平面内的一组基底,若向量a =-3e 1-e 2与b =e 1-λe 2共线,则λ=( )A.13 B .-13C .-3D .3解析:选B.法一:因为a 与b 共线,所以存在μ∈R ,使得a =μb ,即-3e 1-e 2=μ(e 1-λe 2).故μ=-3,-λμ=-1,解得λ=-13.故选B.法二:因为向量e 1,e 2是平面内的一组基底, 故由a 与b 共线可得,1-3=-λ-1,解得λ=-13.故选B.3.已知OB 是平行四边形OABC 的一条对角线,O 为坐标原点,OA →=(2,4),OB →=(1,3),若点E 满足OC →=3EC →,则点E 的坐标为( )A.⎝ ⎛⎭⎪⎫-23,-23B.⎝ ⎛⎭⎪⎫-13,-13C.⎝ ⎛⎭⎪⎫13,13D .⎝ ⎛⎭⎪⎫23,23 解析:选A.易知OC →=OB →-OA →=(-1,-1),则C (-1,-1),设E (x ,y ),则3EC →=3(-1-x ,-1-y )=(-3-3x ,-3-3y ),由OC →=3EC →知⎩⎪⎨⎪⎧-3-3x =-1,-3-3y =-1,所以⎩⎪⎨⎪⎧x =-23,y =-23,所以E ⎝ ⎛⎭⎪⎫-23,-23.4.(2020·某某豫水中学质检)已知在Rt △ABC 中,∠BAC =90°,AB =1,AC =2,D 是△ABC 内一点,且∠DAB =60°,设AD →=λAB →+μAC →(λ,μ∈R ),则λμ=( )A.233B.33C .3D .2 3解析:选A.如图,以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,则B 点的坐标为(1,0),C 点的坐标为(0,2),因为∠DAB =60°,所以设D 点的坐标为(m ,3m )(m ≠0). AD →=(m ,3m )=λAB →+μAC →=λ(1,0)+μ(0,2)=(λ,2μ),则λ=m ,且μ=32m ,所以λμ=233.5.设向量a =(1,2),b =(2,3),若向量λa +b 与向量c =(-4,-7)共线,则λ=.解析:因为a =(1,2),b =(2,3),所以λa +b =(λ,2λ)+(2,3)=(λ+2,2λ+3).因为向量λa +b 与向量c =(-4,-7)共线, 所以-7(λ+2)+4(2λλ=2. 答案:26.已知点A (2,3),B (4,5),C (7,10),若AP →=AB →+λAC →(λ∈R ),且点P 在直线x -2y =0上,则λ的值为.解析:设P (x ,y ),则由AP →=AB →+λAC →,得(x -2,y -3)=(2,2)+λ(5,7)=(2+5λ,2+7λ),所以x =5λ+4,y =7λP 在直线x -2y =0上,故5λ+4-2(7λ+5)=0,解得λ=-23.答案:-237.在平行四边形ABCD 中,E 和F 分别是CD 和BC 的中点.若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=.解析:选择AB →,AD →作为平面向量的一组基底, 则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=⎝ ⎛⎭⎪⎫12λ+μAB →+⎝ ⎛⎭⎪⎫λ+12μAD →,于是得⎩⎪⎨⎪⎧12λ+μ=1,λ+12μ=1,解得⎩⎪⎨⎪⎧λ=23,μ=23,所以λ+μ=43.答案:438.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线. 解:(1)OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2).点M 在第二或第三象限⇔⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0,解得t 2<0且t 1+2t 2≠0.故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明:当t 1=1时,由(1)知OM →=(4t 2,4t 2+2). 因为AB →=OB →-OA →=(4,4), AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →,所以A ,B ,M 三点共线.[综合题组练]1.若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为( )A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)解析:选D.因为a 在基底p ,q 下的坐标为(-2,2), 即a =-2p +2q =(2,4), 令a =x m +y n =(-x +y ,x +2y ),所以⎩⎪⎨⎪⎧-x +y =2,x +2y =4,即⎩⎪⎨⎪⎧x =0,y =2.所以a 在基底m ,n 下的坐标为(0,2).2.给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB ︵上运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是( )A .1 B. 2 C. 3D .2解析:选B.因为点C 在以O 为圆心的圆弧AB ︵上,所以|OC →|2=|xOA →+yOB →|2=x 2+y 2+2xyOA →·OB →=x 2+y 2,所以x 2+y 2=1,则2xy ≤x 2+y 2=1. 又(x +y )2=x 2+y 2+2xy ≤2, 故x +y 的最大值为 2.3.设OA →=(-2,4),OB →=(-a ,2),OC →=(b ,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b的最小值为.解析:由已知得AB →=(-a +2,-2),AC →=(b +2,-4), 因为A ,B ,C 三点共线,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λ(b +2),-2=-4λ,整理得2a +b =2, 所以1a +1b =12(2a +b )⎝ ⎛⎭⎪⎫1a +1b =12⎝ ⎛⎭⎪⎫3+2a b +b a ≥12⎝ ⎛⎭⎪⎫3+22a b ·b a =32+2(当且仅当a =2-2,b =22-2时等号成立).答案:32+ 24.(2020·某某某某二模)已知W 为△ABC 的外心,AB =4,AC =2,∠BAC =120°,设AW →=λ1AB →+λ2AC →,则2λ1+λ2=.解析:以A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,如图所示.根据已知条件可知A (0,0),B (4,0),C (-1,3). 根据外心的性质可知点W 在直线x =2上(如图所示).易知线段AC 中点的坐标为⎝ ⎛⎭⎪⎫-12,32,直线AC 的斜率为-3,故线段AC 的中垂线l的斜率为33(如图所示),方程为y -32=33⎝ ⎛⎭⎪⎫x +12. 令x =2,解得y =433,故W ⎝ ⎛⎭⎪⎫2,433.由AW →=λ1AB →+λ2AC →得⎝ ⎛⎭⎪⎫2,433=λ1(4,0)+λ2(-1,3),即⎩⎪⎨⎪⎧4λ1-λ2=2,3λ2=433,解得⎩⎪⎨⎪⎧λ1=56,λ2=43.所以2λ1+λ2=53+43=3.答案:3。
第二节 平面向量的基本定理及坐标表示平面向量的基本定理及向量的坐标运算 (1)了解平面向量基本定理及其意义. (2)掌握平面向量的正交分解及其坐标表示. (3)能用坐标对向量进行线性运算. (4)理解用坐标表示的平面向量共线的条件. 知识点一 平面向量的基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中不共线的向量e 1,e 2是表示这一平面内所有向量的一组基底.易误提醒 平面向量基本定理指出:平面内任何一个非零向量都可以表示为沿两个不共线的方向分离的两个非零向量的和,并且一旦分解方向确定后,这种分解是唯一的.这一点是易忽视的.[自测练习]1.如果e 1,e 2是平面α内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一组基底的是( )A .e 1与e 1+e 2B .e 1-2e 2与e 1+2e 2C .e 1+e 2与e 1-e 2D .e 1+3e 2与6e 2+2e 1解析:选项A 中,设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧1=λ,1=0,无解;选项B 中,设e 1-2e 2=λ(e 1+2e 2),则⎩⎪⎨⎪⎧λ=1,-2=2λ,无解;选项C 中,设e 1+e 2=λ(e 1-e 2),则⎩⎪⎨⎪⎧λ=1,1=-λ,无解;选项D 中,e 1+3e 2=12(6e 2+2e 1),所以两向量是共线向量.答案:D2.如图,在平行四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE →=( )A .b -12aB .b +12aC .a +12bD .a -12b解析:BE →=BA →+AD →+DE →=-a +b +12a =b -12a .答案:A知识点二 平面向量的坐标运算1.向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2), λa =(λx 1,λy 1),|a |= x 21+y 21.2.向量坐标的求法(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标. (2)设A (x 1,y 1),B (x 2,y 2),则A B →=(x 2-x 1,y 2-y 1), |A B →|=(x 2-x 1)2+(y 2-y 1)2.3.设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ∥b ⇔x 1y 2-x 2y 1=0. 易误提醒1.向量坐标不是向量的终点坐标,与向量的始点、终点有关系. 2.向量平移后坐标不变.3.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.[自测练习]3.(2015·西宁期末)若向量AB →=(1,2),BC →=(3,4),则AC →=( ) A .(2,2) B .(-2,-2) C .(4,6)D .(-4,-6)解析:本题考查向量的坐标运算.AC →=AB →+BC →=(4,6),故选C. 答案:C4.已知平面向量a =(1,2),b =(-2,m ),若a ∥b ,则2a +3b =( ) A .(-5,-10) B .(-2,-4) C .(-3,-6)D .(-4,-8)解析:由a ∥b 得m =-4,所以2a +3b =2(1,2)+3(-2,-4)=(-4,-8).答案:D考点一 平面向量基本定理及应用|1.(2015·杭州质检)设O 是△ABC 的外心(三角形外接圆的圆心).若AO →=13AB →+13AC →,则∠BAC 的度数等于( )A .30°B .45°C .60°D .90°解析:本题考查平面向量加法的几何意义、平面向量共线.取BC 的中点D ,连接AD ,则AB →+AC →=2AD →.由题意得3AO →=2AD →,又∵AD 为BC 的中线,∴O 为△ABC 的重心.又O 为外心,∴△ABC 为正三角形,∴∠BAC =60°,故选C.答案:C2.(2016·南昌模拟)如图,平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),即λ+μ的值为________.解析:如图,构成平行四边形,∵∠OCD =90°,|OC |=23,∠COD =30°,∴|CD |=23×33=2=|OE |=|μ|,|OD |=23cos 30°=|λ|=4,注意共线的条件和单位向量有λ+μ=6.答案:6应用平面向量基本定理表示向量的实质应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算,共线向量定理的应用起着至关重要的作用.当基底确定后,任一向量的表示都是唯一的.考点二 平面向量的坐标运算|(1)(2015·广东六校联考)已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a-2b +c =0,则c =( )A .(-23,-12)B .(23,12)C .(7,0)D .(-7,0)[解析] 由题意可得3a -2b +c =(23+x,12+y )=(0,0),所以⎩⎪⎨⎪⎧23+x =0,12+y =0,解得⎩⎪⎨⎪⎧x =-23,y =-12,所以c =(-23,-12),故选A. [答案] A(2)(2015·贵阳期末)已知正方形ABCD 的边长为1,AB →=a ,BC →=b ,AC →=c ,则|a +b +c |=________.[解析] 如图,建立平面直角坐标系, 则A (0,1),B (0,0),C (1,0), ∴AB →=a =(0,-1),BC →=b =(1,0),AC →=c =(1,-1), ∴a +b +c =(2,-2),|a +b +c |=2 2.[答案] 2 2平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解,并注意方程思想的应用.1.(2015·高考江苏卷)已知向量a =(2,1),b =(1,-2).若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.解析:由向量a =(2,1),b =(1,-2),得m a +n b =(2m +n ,m -2n )=(9,-8),则⎩⎪⎨⎪⎧ 2m +n =9,m -2n =-8,解得⎩⎪⎨⎪⎧m =2,n =5,故m -n =-3. 答案:-3考点三 平面向量共线的坐标表示|(1)在平面直角坐标系中,已知向量a =(1,2),a -12b =(3,1),c =(x,3),若(2a +b )∥c ,则x =( )A .-2B .-4C .-3D .-1[解析] 本题考查向量的坐标运算.依题意得b =2⎣⎡⎦⎤a -⎝⎛⎭⎫a -12b =(-4,2),2a +b =(-2,6),6x =-2×3=-6,x =-1,故选D.[答案] D(2)(2015·东营模拟)若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b 的值等于________.[解析] AB →=(a -2,-2),AC →=(-2,b -2),依题意,有(a -2)(b -2)-4=0,即ab -2a -2b =0,所以1a +1b =12.[答案] 12平面向量共线的坐标表示问题的常见三种类型及解题策略:(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,则利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.2.已知点A (1,3),B (4,-1),则与向量AB →同方向的单位向量为( ) A.⎝⎛⎭⎫35,-45 B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35 解析:∵A (1,3),B (4,-1), ∴AB →=(3,-4),又∵|AB →|=5,∴与AB →同向的单位向量为AB →|AB →|=⎝⎛⎭⎫35,-45. 答案:A14.坐标法在向量问题中的应用【典例】 给定两个长度为1的平面向量 OA → 和 OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心,1为半径的圆弧AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.[思路点拨] 建立平面直角坐标系,求出A ,B 的坐标,用三角函数表示出C 的坐标,最后转化为三角函数求最值.[解] 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B ⎝⎛⎭⎫-12,32. 设∠AOC =α⎝⎛⎭⎫α∈⎣⎡⎦⎤0,2π3,则C (cos α,sin α),由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以⎩⎨⎧x =cos α+33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin ⎝⎛⎭⎫α+π6. 又α∈⎣⎡⎦⎤0,2π3,所以当α=π3时,x +y 取得最大值2. [方法点评] 对于有些向量的应用问题,如果能够具备建系的条件,可适当建立坐标系,问题转化为向量的坐标运算更加简便.[跟踪练习] 向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=________.解析:以向量a 的终点为原点,过该点的水平和竖直的网格线所在直线为x 轴、y 轴建立平面直角坐标系,设一个小正方形网格的边长为1,则a =(-1,1),b =(6,2),c =(-1,-3).由c =λa +μb ,即(-1,-3)=λ(-1,1)+μ(6,2),得-λ+6μ=-1,λ+2μ=-3,故λ=-2,μ=-12,则λμ=4.答案:4A 组 考点能力演练1.(2015·郑州一模)设向量a =(x,1),b =(4,x ),若a ,b 方向相反,则实数x 的值是( ) A .0 B .±2 C .2D .-2解析:由题意可得a ∥b ,所以x 2=4,解得x =-2或2,又a ,b 方向相反,所以x =-2,故选D.答案:D2.(2015·抚顺二模)若向量a =(2,1),b =(-1,2),c =⎝⎛⎭⎫0,52,则c 可用向量a ,b 表示为( )A.12a +b B .-12a -bC.32a +12b D.32a -12b 解析:设c =x a +y b ,则⎝⎛⎭⎫0,52=(2x -y ,x +2y ),所以⎩⎪⎨⎪⎧ 2x -y =0,x +2y =52,解得⎩⎪⎨⎪⎧x =12,y =1,则c =12a +b ,故选A. 答案:A3.在△ABC 中,O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=xAM →,AC →=yAN →,则x +y =( )A .2B .1C .3D.52解析:因为M ,O ,N 三点共线,所以存在常数λ(λ≠0,且λ≠-1),使得MO →=λON →,即AO →-AM →=λ(AN →-AO →),所以AO →=11+λAM →+λ1+λAN →,又O 是BC 的中点,所以AO →=12AB →+12AC →=x 2AM →+y 2AN →,又AM →,AN →不共线,所以⎩⎪⎨⎪⎧x2=11+λ,y 2=λ1+λ,得x 2+y 2=11+λ+λ1+λ=1,即x +y =2.答案:A4.已知△ABC 是边长为4的正三角形,D ,P 是△ABC 内的两点,且满足AD →=14(AB →+AC →),AP →=AD →+18BC →,则△APD 的面积为( )A.34B.32C. 3 D .2 3解析:取BC 的中点E ,连接AE ,由于△ABC 是边长为4的正三角形,则AE ⊥BC ,AE →=12(AB →+AC →),又AD →=14(AB →+AC →),所以点D 是AE 的中点,AD = 3.取AF →=18BC →,以AD ,AF 为邻边作平行四边形,可知AP →=AD →+18BC →=AD →+AF →.而△APD 是直角三角形,AF =12,所以△APD 的面积为12×12×3=34.答案:A5.(2015·怀化一模)如图所示,在△ABC 中,D 为AB 的中点,F 在线段CD 上,设AB →=a ,AC →=b ,AF →=x a +y b ,则1x +2y的最小值为( )A .8+2 2B .8C .6D .6+2 2解析:因为D 为AB 的中点,所以AB →=2AD →,因为AF →=x a +y b ,所以AF →=2xAD →+yAC →,因为F 在线段CD 上,所以2x +y =1,又x ,y >0,所以1x +2y =(2x +y )⎝⎛⎭⎫1x +2y =4+y x +4x y ≥4+2y x ·4x y =8,当且仅当y =2x =12时取等号,所以1x +2y 的最小值为8. 答案:B6.已知S 是△ABC 所在平面外一点,D 是SC 的中点,若BD →=xAB →+yAC →+zAS →,则x +y +z =________.解析:依题意得BD →=AD →-AB →=12(AS →+AC →)-AB →=-AB →+12AC →+12AS →,因此x +y +z =-1+12+12=0. 答案:07.已知平面向量a ,b 满足|a |=1,b =(1,1),且a ∥b ,则向量a 的坐标是________. 解析:设a =(x ,y ).∵平面向量a ,b 满足|a |=1,b =(1,1),且a ∥b , ∴x 2+y 2=1,x ·y =0.解得x =y =±22.∴a =⎝⎛⎭⎫22,22或⎝⎛⎭⎫-22,-22. 答案:⎝⎛⎭⎫22,22或⎝⎛⎭⎫-22,-22 8.已知A (-3,0),B (0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.解析:由题意知OA →=(-3,0),OB →=(0,3),则OC →=(-3λ,3),由∠AOC =30°,知∠xOC =150°, ∴tan 150°=3-3λ,即-33=-33λ,∴λ=1.答案:19.已知A (-2,4),B (3,-1),C (-3,-4),设AB →=a ,BC →=b ,CA →=c ,有CM →=3c ,CN →=-2b ,求:(1)3a +b -3c ;(2)满足a =m b +n c 的实数m ,n ; (3)M ,N 的坐标及向量MN →的坐标.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8), (1)3a +b -3c=3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42). (2)∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,∵CM →=OM →-OC →=3c , ∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20), ∴M 的坐标为(0,20). 又CN →=ON →-OC →=-2b ,∴ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), ∴N 的坐标为(9,2).故MN →=(9-0,2-20)=(9,-18).10.(2015·皖南八校模拟)如图,∠AOB =π3,动点A 1,A 2与B 1,B 2分别在射线OA ,OB 上,且线段A 1A 2的长为1,线段B 1,B 2的长为2,点M ,N 分别是线段A 1B 1,A 2B 2的中点.(1)用向量A 1A 2→与B 1B 2→表示向量MN →;(2)求向量MN →的模.解:(1)MN →=MA 1→+A 1A 2→+A 2N →,MN →=MB 1→+B 1B 2→+B 2N →两式相加,并注意到点M ,N 分别是线段A 1B 1,A 2B 2的中点,得MN →=12()A 1A 2→+B 1B 2→. (2)由已知可得向量A 1A 2→与B 1B 2→的模分别为1与2,夹角为π3, 所以A 1A 2→·B 1B 2→=1,由MN →=12(A 1A 2→+B 1B 2→)得 |MN →|=14(A 1A 2→+B 1B 2→)2 =12A 1A 2→2+B 1B 2→2+2A 1A 2→·B 1B 2→=72. B 组 高考题型专练1.(2013·高考陕西卷)已知向量a =(1,m ),b =(m,2),若a ∥b ,则实数m 等于( )A .- 2 B. 2 C .-2或 2 D .0解析:由a ∥b ⇒m 2=1×2⇒m =2或m =- 2.答案:C2.(2015·高考四川卷)设向量a =(2,4)与向量b =(x,6)共线,则实数x =( )A .2B .3C .4D .6解析:由向量a =(2,4)与向量b =(x,6)共线,可得4x =2×6,解得x =3.答案:B3.(2015·高考全国卷Ⅰ)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( )A .(-7,-4)B .(7,4)C .(-1,4)D .(1,4)解析:设C (x ,y ),∵A (0,1),AC →=(-4,-3),∴⎩⎪⎨⎪⎧ x =-4,y -1=-3,解得⎩⎪⎨⎪⎧x =-4,y =-2,∴C (-4,-2),又B (3,2),∴BC →=(-7,-4),选A.答案:A4.(2015·高考北京卷)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.解析:由题中条件得MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →=xAB →+yAC →,所以x =12,y =-16. 答案:12 -165.(2015·高考湖北卷)已知向量 OA →⊥AB →,|OA →|=3,则OA →·OB →=________.解析:因为OA →⊥AB →,|OA →|=3,所以OA →·OB →=OA →·(OA →+AB →)=|OA →|2+OA →·AB →=|OA →|2=32=9.答案:9。
5.2 平面向量基本定理及坐标表示『考纲解读』1.了解平面向量的基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.『命题趋势』高考对此部分内容考查的热点与命题趋势为:1.平面向量是历年来高考重点内容之一,经常与三角函数、立体几何、解析几何、不等式等知识结合起来考查,在选择题、填空题与解答题中均有可能出现,平面向量的基本定理及坐标表示的考查,经常以选择题与填空题的形式单独考查,有时也在解答题中与其他知识结合起来考查,在考查平面向量知识的同时,又考查转化思想和分类讨论等思想,以及分析问题、解决问题的能力.『要点梳理』1.平面向量基本定理:设、是一平面内的两个不平行的向量,那么对平面内任意一向量,存在唯一的一对实数,使得=+.其中叫做这一平面内所有向量的一组基底.2.向量的直角坐标运算:设=,=,则+=;-=;=.3.两个结论:(1)两个向量=,=相等且;(2)在平面向量基本定理中,由两个基底,决定的向量=+与=+相等的条件是且,若=,则==0.『例题精析』考点一平面向量基本定理的应用例1.中,边上的高为,若,则( )A. B. C. D.变式训练1.△ABC中,点D在边AB上,CD平分∠ACB,若= a , = b , = 1 ,= 2, 则=()(A)a + b(B)a +b(C)a +b(D)a +b考点二向量坐标运算例2.已知向量,若为实数,,则=()A. B. C. D.变式训练2.设R,向量,且,则.(A)(B)(C)(D)10考点三平面向理基本定理例.在平行四边形ABCD中,M,N分别为DC,BC的中点,已知试用表示.答案例1.变式训练1.例2.变式训练2.例.。
平面向量基本定理及其坐标表示教案一、教学目标1. 理解平面向量的基本定理,掌握平面向量的分解。
2. 学会用坐标表示平面向量,理解向量坐标与向量运算之间的关系。
3. 能够运用平面向量基本定理及其坐标表示解决实际问题。
二、教学内容1. 平面向量的基本定理:任何一个平面向量都可以唯一地表示为两个不共线向量的线性组合。
2. 向量的分解:将一个向量表示为两个不共线向量的线性组合。
3. 向量的坐标表示:用坐标表示向量,掌握向量坐标的运算规则。
4. 向量运算与坐标表示:理解向量加法、减法、数乘在坐标表示下的具体运算。
三、教学重点与难点1. 重点:平面向量的基本定理,向量的分解,向量的坐标表示。
2. 难点:理解向量坐标与向量运算之间的关系,熟练运用平面向量基本定理及其坐标表示解决实际问题。
四、教学方法1. 采用讲授法,系统地讲解平面向量的基本定理及其坐标表示。
2. 利用多媒体演示,直观地展示向量的分解和坐标表示。
3. 结合例题,引导学生运用平面向量基本定理及其坐标表示解决问题。
4. 开展小组讨论,加强学生之间的互动交流。
五、教学安排1. 课时:2课时2. 教学过程:第一课时:1. 导入新课,介绍平面向量的基本定理。
2. 讲解向量的分解,引导学生理解平面向量基本定理。
3. 介绍向量的坐标表示,讲解坐标运算规则。
4. 课堂练习,巩固所学知识。
第二课时:1. 复习上节课的内容,回顾平面向量基本定理及其坐标表示。
2. 讲解向量加法、减法、数乘在坐标表示下的运算。
3. 结合例题,引导学生运用平面向量基本定理及其坐标表示解决实际问题。
4. 课堂练习,提高学生运用知识解决问题的能力。
5. 总结本节课的内容,布置课后作业。
六、教学评价1. 课后作业:布置有关平面向量基本定理及其坐标表示的练习题,巩固所学知识。
2. 课堂练习:评价学生在课堂上运用平面向量基本定理及其坐标表示解决问题的能力。
3. 小组讨论:评价学生在小组讨论中的参与程度和合作能力。
平面向量基本定理及其坐标表示教案一、教学目标1. 让学生理解平面向量的基本定理,掌握平面向量的坐标表示方法。
2. 培养学生运用向量知识解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队协作能力。
二、教学内容1. 平面向量的基本定理(1)定理:设有两个向量a 和b,如果存在实数x 和y,使得a = xb + yb,则称向量a 可以由向量b 和向量b 的线性组合表示。
(2)推论:设有两个向量a 和b,如果向量a 可以由向量b 和向量b 的线性组合表示,存在唯一实数对(x, y),使得a = xb + yb。
2. 平面向量的坐标表示(1)定义:在二维空间中,以原点O(0,0) 为起点,设向量a 的终点为点A(x, y),则向量a 的坐标表示为(x, y)。
(2)性质:设向量a 的坐标表示为(x, y),向量b 的坐标表示为(m, n),则向量a + b 的坐标表示为(x+m, y+n),向量a b 的坐标表示为(x-m, y-n)。
(3)运算规律:设向量a 和向量b 的坐标表示分别为(x1, y1) 和(x2, y2),则向量a + b 的坐标表示为(x1+x2, y1+y2),向量a b 的坐标表示为(x1-x2, y1-y2)。
三、教学方法1. 讲授法:讲解平面向量的基本定理及其坐标表示的定义、性质和运算规律。
2. 案例分析法:分析实际问题,引导学生运用向量知识解决问题。
3. 小组讨论法:分组讨论,培养学生的团队协作能力和逻辑思维能力。
四、教学步骤1. 导入新课:回顾平面向量的概念,引导学生思考如何表示平面向量。
2. 讲解基本定理:阐述平面向量的基本定理,并通过图形示例帮助学生理解。
3. 讲解坐标表示:介绍平面向量的坐标表示方法,讲解坐标表示的定义、性质和运算规律。
4. 案例分析:选取实际问题,引导学生运用向量知识解决问题。
5. 小组讨论:分组讨论,让学生运用所学知识分析问题,培养团队协作能力和逻辑思维能力。
4.2 平面向量的基本定及其坐标表示
典例精析
题型一 平面向量基本定的应用
【例1】如图▱ABC D 中,M,N 分别是DC ,BC 中点.已知AM =a,=b,试用a ,b 表示,AD 与AC 【解析】易知AM =AD +DM =+12, AN =+BN =+12
,[] 即⎪⎪⎩⎪⎪⎨⎧=+=+.21,21b a 所以AB =23(2b -a), AD =23
(2a -b). 所以=AB +AD =23
(a +b). 【点拨】运用平面向量基本定及线性运算,平面内任何向量都可以用基底表示.此处方程思想的运用值得仔细领悟.
【变式训练1】已知D 为△ABC 的边BC 上的中点,△ABC 所在平面内有一点P ,满足PA +BP +CP =0,则||AD PD 等于( ) A.13 B.12 C.1 D.2
【解析】由于D 为BC 边上的中点,
因此由向量加法的平行四边形法则,易知PB
+=2PD ,因此结合PA +BP +=0即得PA =2PD ,因此易得P ,A ,D
三点共线且D 是PA 的中点,所以||AD =1,即选C.
题型二 向量的坐标运算
【例2】 已知a =(1,1),b =(x ,1),u =a +2b ,v =2a -b.
(1)若u =3v ,求x ;(2)若u ∥v ,求x.[]
【解析】因为a =(1,1),b =(x ,1),
所以u =(1,1)+2(x ,1)=(1,1)+(2x ,2)=(2x +1,3),
v =2(1,1)-(x ,1)=(2-x ,1).
(1)u =3v ⇔(2x +1,3)=3(2-x ,1)[]
⇔(2x +1,3)=(6-3x ,3),
所以2x +1=6-3x ,解得x =1. (2)u ∥v ⇔(2x +1,3)=λ(2-x ,1)
⇔⎩⎨⎧=-=+λλ3),2(12x x
⇔(2x +1)-3(2-x)=0⇔x =1.
【点拨】对用坐标表示的向量说,向量相等即坐标相等,这一点在解题中很重要,应引起重视.
【变式训练2】已知向量an =(cos nπ7,sin nπ7
)(n ∈N*),|b|=1.则函y =|a1+b|2+|a2+b|2+|a3+b|2+…+|a141+b|2的最大值为 .
【解析】设b =(cos θ,sin θ),所以y =|a1+b|2+|a2+b|2+|a3+b|2+…+|a141+b|2=(a1)2+b2+2(cos π7,sin π7
)(cos θ,sin θ)+…+(a141)2+b2+2(cos 141π7,sin 141π7)(cos θ,sin θ)=282+2cos(π7
-θ),所以y 的最大值为284.
题型三 平行(共线)向量的坐标运算[]
【例3】已知△ABC 的角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b),
n =(sin B ,sin A),p =(b -2,a -2).
(1)若m ∥n ,求证:△ABC 为等腰三角形;
(2)若m ⊥p ,边长c =2,角C =π3
,求△ABC 的面积. 【解析】(1)证明:因为m ∥n ,所以asin A =bsin B.
由正弦定,得a2=b2,即a =b.所以△ABC 为等腰三角形.[]
(2)因为m ⊥p ,所以m ·p =0,即
a(b -2)+b(a -2)=0,所以a +b =ab.
由余弦定,得4=a2+b2-ab =(a +b)2-3ab ,
所以(ab)2-3ab -4=0.
所以ab =4或ab =-1(舍去).
所以S △ABC =12absin C =12×4×32
= 3.[] 【点拨】设m =(x1,y1),n =(x2,y2),则
①m ∥n ⇔x1y2=x2y1;②m ⊥n ⇔x1x2+y1y2=0.
【变式训练3】已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,向量m =(2cosC -1,-2),n =(cos C ,cos C +1).若m ⊥n ,且a +b =10,则△ABC 周长的最小值为( )
A.10-5 3
B.10+5 3
C.10-2 3
D.10+2 3
【解析】由m ⊥n 得2cos2C -3cos C -2=0,解得cos C =-12
或cos C =2(舍去),所以c2=a2+b2-2abcos C =a2+b2+ab =(a +b)2-ab =100-ab ,由10=a +b≥2ab ⇒ab≤25,所以c2≥75,即c≥53,所以a +b +c≥10+53,当且仅当a =b =5时,等号成立.故选B.
总结提高
1.向量的坐标表示,实际是向量的代表示,在引入向量的坐标表示后,即可使向量运算完全代,将与形紧密地结合起.向量方法是几何方法与代方法的结合体,
很多几何问题可转为熟知的向量运算.[]
2.向量的运算中要特别注意方程思想的运用.
3.向量的运算分为向量形式与坐标形式.向量形式即平行四边形法则与三角形法则,坐标形式即代入向量的直角坐标.。