高数第七章习题课解答
- 格式:doc
- 大小:358.00 KB
- 文档页数:6
习题7-11. 下列向量的终点各构成什么图形?(1)空间中一切单位向量归结为共同的始点;(2)平行于同一平面的一切单位向量归结为共同的始点;(3)平行于同一直线的所有单位向量归结为同一始点;(4)平行于同一直线的所有向量归结为同一始点。
答:(1)单位球面 (2)单位圆 (3)两个点 (4)直线。
2. 设点O 是正六边形ABCDEF 的中心,在向量,,,,,,,,OA OB OC OD OE OF AB BC ,,,CD DE EF FA 中,哪些向量是相等的? 答:,OA EF =,OB FA =,OC AB =,OD BC =,OE CD =.OF DE =3.平面四边形,ABCD 点,,,K L M N 分别是,,,AB BC CD DA 的中点,证明:.KL NM =当四边形ABCD 是空间四边形时,上等式是否仍然成立?证明:连结AC, 则在∆BAC 中,21AC. 与方向相同;在∆DAC 中,21AC. NM 与AC 方向相同,从而KL =NM 且KL 与NM 方向相同,所以KL =NM .当四边形ABCD 是空间四边形时,上等式仍然成立。
4. 解下列各题:(1)化简()()()()2332;x y x y -+-+-a b a b(2)已知12312323,322,=+-=-+a e e e b e e e 求,,32+--a b a b a b.解:(1)()()()()2332x y x y -+-+-a b a b()()()()23322332x y x y x y x y =--++-++⎡⎤⎡⎤⎣⎦⎣⎦a b()()55x y x y --+-=a b;(2)()()123123123233225;+=+-+-+=++a b e e e e e e e e e()()12312312323322;-=+---+=-+a b e e e e e e e +e e()()()()123123123123323232322693644-=+---+=+---+a b e e e e e e e e e e e e 235.=+e e5.四边形ABCD 中,2,568AB CD =-=+-a c a b c,对角线,AC BD 的中点分别是,,E F 求.EF 解:()()111156823352222EF CD AB =+=+-+-=+-a b c a c a b c.6. 设ABC ∆的三条边,,AB BC CA 的中点分别为,,,L M N 另O 为任意一点,证明: .OA OB OC OL OM ON ++=++证明:(1)如果O 在ABC ∆内部(如图1),则O 把ABC ∆分成三个三角形OAB,OAC,OBC 。
第七章 无穷级数【基础练习题52】1. 根据级数收敛与发散的定义判定下列级数的收敛性:(1)1n ∞;(2)1111133557(21)(21)n n ; (3)11ln 1n n ∞. 2. 判定下列级数的收敛性:(1)1111+3693n; (2)13 ; (3)22331111111123232323n n. (4)23111111112322323323n n. 【基础练习题52解析】1.【解析】 (1)因为1)1,lim ,n n n S S ∞∞所以根据定义可知级数1n ∞发散.(2)由于1111(21)(21)22121n u n n n n,从而1111111111,23352121221n S n n n1lim ,2n n S 所以根据定义可知级数收敛. (3)341ln 2lnln ln ln(1)23n n S n n, 因lim n n S ∞∞,故级数发散. 2.【解析】(1)此级数的部分和1111111113693323n S n n,而111lim 123n n∞∞,故lim n n S ∞∞,即该级数发散.(2)此级数的一般项n u ,11lim lim 13nn n n u∞∞,不满足级数收敛的必要条件,故该级数发散.(3)此级数的一般项1123n n n u ,注意到112n n ∞与113n n ∞分别是公比12q 与13q 的等比级数,而1q ,故112n n ∞与113n n ∞均收敛. 根据收敛级数的性质可知,原级数11123n n n ∞收敛.(4)此级数的一般项1123n n u n ,又1111122n n n n ∞∞发散,113n n ∞收敛,根据级数的性质可知,原级数11123n n n∞发散.【基础练习题53】1. 用比较审敛法或极限形式的比较审敛法判定下列级数的收敛性:(1)111135(21)n ; (2)22212131112131nn ; (3)1112536(1)(4)n n . 2. 用比值审敛法判定下列级数的收敛性:(1)232333*********nnn ; (2)213n n n ∞;(3)12!n nn n n ∞. 3. 判定下列级数的收敛性:(1)233333234444nn;(2)11(2)n n n n ∞; (3. 4. 判定下列级数的收敛性:(1) 2111nn n n. (2)11ln 1nn.(3)1113n nn n. (4)211ln nn n.5. 设1ln 1nn u ,则级数 ( ) (A )1nn u和21nn u都收敛. (B )1nn u和21nn u都发散.(C )1nn u收敛而21nn u发散. (D )1nn u发散而21nn u收敛.6. 设有下列命题:○1若 1212)(n n n u u 收敛,则1n n u 收敛.○2若1n n u 收敛,则11000n n u 收敛.○3若1lim 1n n n u u ,则1n n u 发散.○4若 1)(n n n v u 收敛,则 1n n u ,1n n v 都收敛.则以上命题中正确的是 ( ) (A )○1○2. (B )○2○3. (C )○3○4. (D )○1○4. 【基础练习题53解析】1.【解析】(1)解法一 11 (1,2,)212n u n n n ,由于级数11n n ∞发散,故各项乘12后的级数112n n ∞也发散,由比较审敛法知原级数1121n n ∞发散. 解法二 因1121lim 12n n n∞,而11n n∞发散,故由极限形式的比较审敛法知原级数发散.(2)221111n n n u n n n n ,而11n n ∞发散,由比较审敛法知原级数发散.(3)因21(1)(4)lim 11n n n n ∞,211n n∞收敛,由极限形式的比较审敛法知原级数收敛.2.【解析】(1)因1113333lim limlim 1(1)22212n nn n n n n n n u n n n u n ∞∞∞,故级数发散. (2)因2221121(1)1(1)lim lim lim 13333n n n n n n nu n n n u n ∞∞∞,故级数收敛. (3)因11122(1)!2!lim lim lim 21(1)1e nn n n n n n n n nu n n n n n u n∞∞∞,故级数收敛. 3.【解析】 (1)1133limlim 144n n n nu n u n ∞∞,由比值审敛法知级数收敛.(2)11lim1(2)n n n n n ∞,而级数11n n∞发散,由极限形式的比较审敛法知原级数发散. (3)121lim lim 10n n n n u n∞∞,故级数发散. 4. 【解析】(1)记21n n u n,则n u 单调递减,且21lim lim 0,n n n n u n 由莱布尼茨判别法知,交错级数2111nn n n收敛. (2)记ln 1n u ,则n u单调递减,且lim lim ln 1ln10,n n n u由莱布尼茨判别法知,交错级数11ln 1nn收敛.(3)记3n n nu,则n u 单调递减,且lim lim 0,3n n n n n u 由莱布尼茨判别法知,交错级数1113n nn n收敛. (4)因为221111ln ln ln nnn n n n n,对于交错级数21ln nn n,记1ln n u n,则n u 单调递减,且1lim lim 0,ln n n n u n由莱布尼茨判别法知,交错级数21ln nn n收敛.对于正项级数21ln n n,因为11ln n n ,又21n n发散,故由正项级数比较审敛法知,级数21ln n n发散. 故由级数收敛的性质知,级数211ln nn n发散. 5.【答案】 C. 【解析】1nn u为交错级数,又满足莱布尼茨判别法的条件,故收敛.2211ln 1,n n n u又n时,221ln 1n ,且级数11n n发散,由比较审敛法的极限形式知,21nn u发散.6.【答案】 B.【解析】级数加括号后收敛不能推本身级数收敛,故○1错,反例可取通项 1nn u ; 级数加上,去掉或改变前有限项不改变级数的敛散性,故○2正确; 命题○3正确:由1lim 1n n n u u 知,1lim 1n n nu u ,故当n 充分大时,正数列n u 是单调递增的,故当n 时,n u 0,则n u 0,由级数收敛的必要条件知,1n n u 发散;命题○4显然结论反了,可取11,nn u v n n排除.【基础练习题54】1. 判定下列级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛?(1)11n ;(2)111(1)3n n n n∞; (3)12341111111111(1)3232323232n n; (4)21ln nn n n.2. 级数 111cos n n a n(常数0a ) ( )(A )发散.(B )条件收敛.(C )绝对收敛.(D )收敛性与a 有关.【基础练习题54解析】1.【解析】 (1)112(1)n n u n,11121nn n un∞∞是发散的;又1nn u∞是交错级数,满足1n n u u ,且lim 0n n u ∞,故由莱布尼茨定理知原级数收敛且条件收敛.(2)因1111lim lim 133n n n nu n u n ∞∞,由比较审敛法知级数1n n u ∞收敛,故原级数绝对收敛.(3)1(1)32n n n u ,因11132n nn n u ∞∞是公比1 (1)2q q 的等比级数,故收敛,从而原级数绝对收敛.(4)因为2211ln ln nn n n n n n,又11ln n n n ,且21n n发散,故由正项级数比较审敛法知,级数21ln nn n n发散.因为21ln nn n n为交错级数,令1ln n u n n,则n u 单调递减,且1lim lim 0,ln n n n u n n 由莱布尼茨判别法知,交错级数 21ln nn n n收敛. 综上,级数21ln nn n n条件收敛.2.【答案】 C.【解析】先判定是否绝对收敛,即判定正项级数 1111cos 1cos nn n a a n n的敛散性,因为n 时,22211cos ,22a a a n n n 又级数222211122n n a a nn收敛,由比较审敛法的极限形式知,级数11cos n a n收敛,即原级数绝对收敛.【基础练习题55】1. 求下列幂级数的收敛区间.(1)23232222225101n nx x x x n ;(2)221212n nn n x ∞; (3)1nn ∞;(4)1132nnnn x n. 2. 求下列幂级数的收敛域.(1)2323nx x x nx ;(2)2221(1)2nn x x x n; (3)23231323333nnx x x x n ;(4)211(1)21n nn x n ∞.3. 已知幂级数1nn n a x在1x 处条件收敛,则幂级数11nn n a x的收敛半径为 . 4. 已知幂级数11nn n a x在2x 处收敛,在0x 处发散,则幂级数11nn n a x的收敛域为 .【基础练习题55解析】1.【解析】(1)级数可表示为2121n nn x n,因为122211lim2,21n nn n n故收敛半径为112R,收敛区间为11,.22(2)记 2221,2n n nn u x x因为 221122212limlim ,2122nn n n n n n nn x u x x n u x x由正项级数比值审敛法知,212x时收敛,解得收敛区间为 .(3)记nn u x 因为1lim 5,n n n nu x x u x 由正项级数比值审敛法知,51x 时收敛,解得收敛区间为 4,6. (4)记1,32nn nn x u x n因为11111132limlim ,1332n n n n n n n nnn x n x u x x u x n由正项级数比值审敛法知,13x时收敛,解得收敛区间为 3,3 .2.【解析】(1)级数可表示为1nn nx,因为1lim1,n n n故收敛半径为11R,收敛区间为 1,1 ,又当1x 时,级数显然发散(不满足级数收敛的必要条件),故收敛域为 1,1 .(2)级数可表示为211(1)nnn x n,因为122(1)1lim1,(1)n nn n n故收敛半径为11R,收敛区间为 1,1 ,又当1x 时,级数2111(1)nn n收敛, 当1x 时,级数2111n n收敛, 故收敛域为 1,1 .(3)级数可表示为13nnn x n,因为 11131lim ,133n n n n n 故收敛半径为13R,收敛区间为 3,3 ,又当3x 时,级数11n n发散, 当3x 时,级数11nn n收敛,故收敛域为 3,3 .(4)记 21(1),21n nn x u x n 因为2311221(1)23lim lim ,(1)21n n n n n n n nx u x n x x u x n由正项级数比值审敛法知,21x 时收敛,解得收敛区间为 1,1 .又1x 时,级数11(1)21nn n ∞收敛,当1x 时,111(1)21n n n ∞收敛, 故收敛域为 1,1 .3.【解析】由阿贝尔定理知,幂级数1nnn a x的收敛半径为101R ,收敛区间为 1,1 .故幂级数 11nn n a x在111x ,即02x 时收敛,收敛区间为 0,2,收敛半径为1.4.【解析】由阿贝尔定理知,幂级数11nn n a x在121x ,即02x 内绝对收敛,在101x ,即02x x 或时发散,又幂级数在2x 处收敛,在0x 处发散,故收敛域为 0,2.【基础练习题56】求下列幂级数的和函数:(1)2(1)1212n n n n ∞; (2)1211(1)21n n n x n ∞; (3)1(1)nn n x ∞; (4)1(1)nn x n n ∞.【基础练习题56解析】(1)2(1)21()2n n nn u x x ,221()21lim lim ()2122n n n nu x xx n u x n ∞∞. 当212x 时,原级数收敛;当212x,因级数的一般项()n u x )u ∞,故级数发散. 因此原级数的收敛域为212x,即(.设和函数为()S x ,即2(1)121()2n nn n S x x∞,从0到x 积分并逐项积分:22121101002211()d 22221,(2212nxn n n n n n n x x S x x x x x xx x x∞∞∞上式两端对x 求导,得22222()2(2)x x S x x x,(x . (2)121(1)()21n n n u x x n ,221()21limlim()21n n n n u x n x x u x n ∞∞.当1x 时,级数收敛;当1x 时,因级数一般项()n u x 0 ()u ∞,故级数发散;当1x ,级数11(1)21n n n ∞与1(1)21nn n ∞是收敛的交错级数,因此原级数的收敛域为[1,1] .设和函数为()S x ,则1211(1)()21n n n S x x n ∞,且(0)0S .在(1,1) 内,上式两端对x 求导,得12222211()(1)(1)()1n n nnn n n n S x xxx x∞∞∞. 于是,201()()(0)()d d arctan 1xxS x S x S S x x x x x.又由于幂级数在1x 处收敛,且arctan x 在1x 处连续,故()arctan S x x , [1,1]x .(3)令1x t ,幂级数1nn nt∞的收敛域为(1,1) . 记其和函数为()t ,即有1111()nn n n n n t nt t ntt t∞∞∞21(1)t t t t t, (1,1)t . 于是原级数的和函数21()(1)(2)x S x x x, (0,2)x .(4)()nn n u x a x ,1(1)n a n n. 由1limlim 12n n n n a n a n ∞∞,得幂级数的收敛半径1R . 当1x 时,级数11(1)n n n∞与1(1)(1)n n n n ∞均收敛,故幂级数的收敛域为[1,1] .设和函数为()S x ,即1()(1)nn x S x n n ∞.当0x ,(0)0S ;当01x 时,11()(1)n n x xS x n n ∞,上式两端对x 求导,得1[()]nn x xS x n∞,再求导,得111[()]1n n xS x x x∞. 注意到0[()]0x xS x ,上式两端从0到x 积分,得0d [()]ln(1)1xxxS x x x,再积分,得()ln(1)d (1)ln(1)xxS x x x x x x ,于是,1()ln(1)1xS x x x, (1,0)(0,1)x .由于幂级数在1x 处收敛,故和函数分别在1x 处左连续与右连续,于是111(1)lim ()lim ln(1)11x x xS s x x x.因此111ln(1),[1,0)(0,1),()0,0,1,1.x x x S x x x【基础练习题57】1. 将函数1()f x x展开成(3)x 的幂级数. 2. 将函数21()32f x x x 展开成(4)x 的幂级数.3. 将函数11()ln 41xf x x展开成x 的幂级数.4. 将函数12()arctan 12xf x x展开成x 的幂级数.【基础练习题57解析】1.【解析】利用011n n x x ∞,(1,1)x 得01111113333331133133,(1,1),333nn x x x x x x∞ 即101(1)(3)3n nn n x x ∞,(0,6)x . 2.【解析】2111132(1)(2)12x x x x x x ,其中0111114413(4)33313nn x x x x∞, 4(1,1)3x ,即(7,1)x ;0111114422(4)22213nn x x x x∞, 4(1,1)2x ,即(6,2)x . 于是2110001141411(4),32223323n nnn n n n n x x x x x∞∞∞(7,1)(6,2)(6,2)x .3.【解析】11111212111111()ln ln 1ln 14141111,11411141211,1.421221n n n n n nn n n n n n x f x x x x x x x x n n x n x x x n n其中4.【解析】因为2222212014()1212112122141411411214,,,22nn n n n n n f x x x x x x x x x其中其中 故12021100()d arctan1214d π11214,.42122xx n n n n n n n n f x f f x xx xx x n其中又当12x 时,级数21211110001122142*********n n n n n n n n n n x n n n收敛,又12()arctan12x f x x 在12x 处连续,故展开范围可以包含端点12x ,即有 2110π11214,,.42122n n n n x f x x n【基础练习题58】1. 设 f x 是周期为1的周期函数,其在区间11,22上的定义为 11,0,211,0,2x x f x x x则 f x 的傅里叶级数在32x处收敛于 . 2. 将函数e ,0,()1,0x x f x x 展开成傅里叶级数.3. 将函数() (0)2xf x x展开成正弦级数. 4. 将函数2()2 (0)f x x x 分别展开成正弦级数和余弦级数.5. 将下列各周期函数展开成傅里叶级数(下面给出函数在一个周期内的表达式): (1)211()1 22f x x x;(2)21,0,()1,0 3.x x f x x【基础练习题58解析】1. 【解析】由迪利克雷收敛定理知,1122311110022222111002221111lim 1lim 10.2222x x S S f f f f x x【注】可画出 f x 的图形,辅助求解. 2.【解析】 设()x 是()f x 经周期延拓而得的函数,它在(,) 内连续,x 是()x 的间断点. 又()x 满足收敛定理的条件,故在(,) 内它的傅里叶级数收敛于()f x .0011e e d d xa x x,211(1)e e cos d cos d n x n a nx x nx x n(1,2,)n ,01e sin d sin d xn b nx x nx x21[1(1)e ]1(1)1n n n n n(1,2,)n . 故2211e 11(1)e (1)e 1(1)()cos sin 11n n n n n n f x nx nx n n n∞(,)x .3.【解析】 作(),(0,],()0,0,(),(,0).f x x x x f x x()x 是()f x 的奇延拓. 令()x 是()x 的周期延拓,则()x 满足收敛定理的条件,而在2 ()x k k Z 处间断,又在(0,] 上,()()x f x ,因此()x 的傅里叶级数在(0,] 上收敛于()f x .0 (0,1,2,)n a n ,200221sin d cos sin 222n x x b nx x nx nx n n1 (1,2,)n n, 故11()sin n f x nx n∞,(0,]x . 4.【解析】(1)展开成正弦级数令222, [0,],()2, (,0).x x x x x是()f x 的奇延拓,又()x 是()x 的周期延拓函数,则()x 满足收敛定理的条件,而在(21) ()x k k Z 处间断,又在[0,] 上()()x f x ,故它的傅里叶级数在[0, 上收敛于()f x .0n a (0,1,2,)n ,202sin d n b x nx x2230422cos sin cos x x nx nx nx n n n2334(1)(1)22n n n n n(1,2,)n , 故2331422()(1)sin nn f x nx n n n,[0,)x .(2)展开成余弦函数令2()2x x ,(,]x 是()f x 的偶延拓,又()x 是()x 的周期延拓函数,则()x 满足收敛定理的条件且处处连续,又在[0,] 上()()x f x ,故它的傅里叶级数在[0,] 上收敛于()f x .0n b (0,1,2,)n ,220042d 3a x x, 22082cos d (1)n n a x nx x n(0,1,2,)n . 故2212(1)()8cos 3nn f x nx n∞,[0,]x . 5.【解析】(1)函数()f x 是半周期12l的偶函数,故21 1220011222200122223301220(1,2,),211(1)d ,1622(1)cos d 4(1)cos(2)d 11221224sin(2)cos(2)sin(2)248(1)(1,2,),n n n b n a x x n x a x x x n x x x x n x n x n x n n n n n因()f x 满足收敛定理的条件且处处连续,故有1221111(1)()cos(2)12n n f x n x n∞,(,)x ∞∞. (2)函数()f x 的半周期3l .303033011()d (21)d d 133a f x x x x x, 30333011()cos d (21)cos d cos d 33333n n x n x n x a f x x x x x 226[1(1)]n n, (1,2,)n , 30333011()sin d (21)sin d sin d 33333n n x n x n x b f x x x x x16(1)n n, (1,2,)n . 因()f x 满足收敛定理的条件,其间断点为3(21)x k ,k Z ,故有1221166()[1(1)]cos (1)sin 233n n n n x n x f x n n∞, \{3(21)}x k k R Z .。
第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
习题1.在空间直角坐标系中,指出下列各点位置的特点.()0,5,0-A ;()0,3,3-B ;()3,0,6-C ;()0,0,4D ;()7,5,0-E ;()9,0,0F .【解】A 点在y 轴上;B 点在xoy 坐标面上;C 点在zox 坐标面上;D 点在x 轴上;E 点在yoz 坐标面上;F 点在z 轴上. 2.指出下列各点所在的卦限.()1,3,2-A ;()2,1,7--B ;()1,3,2---C ;()3,2,1--D .【解】A 点在第五卦限;B 点在第三卦限;C 点在第七卦限;D 点在第六卦限. 3.自点()2,3,1--M 分别作xoy 、yoz 、zox 坐标面和x 、y 、z 坐标轴的垂线,写出各垂足的坐标,并求出点M 到上述坐标面和坐标轴的距离.【解】()2,3,1--M 在xoy 坐标面上的垂足为()0,3,1-、在yoz 坐标面上的垂足为()2,3,0-、在zox 坐标面上的垂足为()2,0,1--;()2,3,1--M 在x 轴的垂足为()0,0,1-、在y 轴的垂足为()0,3,0、在z 轴的垂足为()2,0,0-;()2,3,1--M 到x 轴的距离为()132322=-+;()2,3,1--M 到y 轴的距离为()()52122=-+-;()2,3,1--M 到z 轴的距离为()103122=+-.3.已经点()2,1,3--M .求:(1)点M 关于各坐标面对称点的坐标;(2)点M 关于各坐标轴对称点的坐标;(3)点M 关于坐标原点的对称点的坐标. 【解】(1)()2,1,3--M 关于xoy 面对称点的坐标是(),2,1,3-; ()2,1,3--M 关于yoz 面对称点的坐标是(),2,1,3---;()2,1,3--M 关于zox 面对称点的坐标是(),2,1,3-.(2)()2,1,3--M 关于x 轴对称点的坐标是(),2,1,3;()2,1,3--M 关于y 轴对称点的坐标是(),2,1,3--;()2,1,3--M 关于z 轴对称点的坐标是(),2,1,3--.(3)()2,1,3--M 关于坐标原点的对称点的坐标是(),2,1,3-. 5.求点()5,3,4-A 到坐标原点和各坐标轴的距离.【解】 ()5,3,4-A 到坐标原点距离为()25534222=+-+;()5,3,4-A 到x 轴的距离为()345322=+-;()5,3,4-A 到y 轴的距离为415422=+; ()5,3,4-A 到z 轴的距离为()53422=-+.6.在y 轴上求与点()7,2,3-A 和()7,1,3-B 等距离的点. 【解】设所求点为()0,,0y C .据题意,有 BC AC =,即()()()()=-+-+--22270230y ()()()()22270130--+-+-y解得 23=y .所以,所求之点为.0,23,0⎪⎭⎫ ⎝⎛C 7.已知三角形ABC 的顶点坐标分别为()3,2,1A 、()3,10,7B 和()1,3,1-C ,试证明 ∠BAC 为钝角. 【解】AB 边长()()()103321017222=-+-+-==AB c ;AC 边长()()()()3312311222=-+-+--=b ; BC 边长()()()()1173110371222=-+-+--=a .由余弦定理知cos ∠BAC ()010321171032222222<⨯⨯-+=-+=bc a c b ,所以,∠BAC 为钝角.8.试在xoy 面上求一点,使它到()5,1,1-A 、()4,4,3B 和()1,6,4C 各点的距离相等.【解】设所求点为()0,,y x D .据题意,有 CD BD AD ==,即()()()()=-+--+-2225011y x ()()()222443-+-+-z y x()()()222164-+-+-=z y x解得 5,16-==y x .所以,所求之点为().0,5,16-D习题1.设平行四边形ABCD 的对角线向量b BD a AC ==,,试用a ,b 表示DA CD BC AB ,,,.【解】记平行四边形ABCD 的对角线的交点为O .()b a b a BD AC OD OC DC AB -=-=-=-==2121212121; 同理可求出,()b a a b OC BO BC +=+=+=212121;()a b AB CD -=-=21;()b a BC DA +-=-=21.2.已知向量n m a 23-=,n m a +=.试用向量n m ,表示b a 32-. 【解】b a 32-()()n m n m n m 733232-=+--=.3.设c b a u 2-+=,c b a v +--=3.试用向量c b a ,,表示v u 32-. 【解】v u 32-()()c b a c b a c b a 71153322-+=+----+=. 4.设ABCDEF 是一个正六边形,AF b AB a ==,,试用a ,b 表示EF DE CD BC ,,,.【解】记六边形ABCDEF 的对角线的交点为O .则四边形ABOF 、CDEO 、DEFO 及ABCO 均为平行四边形.由向量加法的平行四边形法则知,b a AF AB AO BC +=+==; b AF CD ==;a BA BA AO DE -=-===;().b a BC EF +-=-=5.设向量k a j a i a a z y x ++=,,若它满足下列条件之一:(1)a 垂直于z 轴;(2)a 垂直于xoy 面;(3)a 平行于yoz 面.那么它的坐标有什么有何特征? 【解】(1)因为a 垂直于z 轴,故0.=k a ,即0=z a ;(2)因为a 垂直于xoy 面,故a 平行于z 轴,从而a ∥{}1,0,0=k ,所以,0==y x a a .(3)a 平行于yoz 面,故垂直于x 轴,从而.a 0=i ,所以,0=x a . 6.已知向量{}7,4,4-=AB ,它的终点坐标为()7,1,2-B ,求它的起点坐标. 【解】设起点()z y x A ,,,则{}z y x AB ----=7,1,2,根据已知条件,有77,41,42=--=--=-z y x ,解得 .0,3,2==-=z y x 所以,起点坐标为 ()0,3,2-A .7.已知向量{}1,1,6-=a ,{}0,2,1=b .求 (1)向量b a c 2-=; (2)向量c 的方向余弦; (3)向量c 的单位向量. 【解】(1)c {}{}{}{}{}{}1,3,401,41,260,4,21,1,60,2,121,1,6--=----=--=--=.(2()()26134222=-+-+=.故,⎭⎬⎫⎩⎨⎧--==261,263,2640c c ,所以,向量c 的方向余弦为.261cos ,263cos ,264cos -=-==γβα(3).向量c 的单位向量为⎭⎬⎫⎩⎨⎧--±261,263,264.8.试确定m 和n 的值,使向量k n j i a ++-=32和k j i m b 26+-=平行. 【解】因为a ∥b ,所以2632nm =-=-,解得 .1,4-==n m9.已知向量{}12,9,8-=b 及点()7,1,2-=A ,由点A 作向量AM 34=, 且AM 与b 的方向相同.求向量AM 的坐标表达式及点M 的坐标.【解】设()z y x M ,,,则{}7,1,2-+-=z y x AM .据题意知AM ∥b 且与b 同向,因此有λ=--=+=-1279182z y x ,① 且 0>λ. ② 由①式得 λλλ127,91,82=-++=-z y x .又已知34=,故有 ()()()341298222=++λλλ. ③③式化简得4115628922=⇒=λλ,解得 2=λ或2-=λ(舍).所以,.17,17,18-===z y x因此AM {}24,18,16-=,()17,17,18-=M .10.已知点()4,2,1--A 和点()z B ,2,6-9=,求z 的值.【解】()(){}{}4,4,74,22,16+-=------=z z AB .9=,得()()9447222=++-+z ,化简得082=+z z ,解之,得 0=z 或.8-=z11.已知点()1,2,41M 和点()2,0,32M ,计算向量21M M 的模、方向余弦和方向角. 【解】{}{}1,2,112,20,4321--=---=M M ;()()2121222=+-+-=.因为{}⎭⎬⎫⎩⎨⎧--=--==21,22,211,2,12121021M M M M .所以21M M 的方向余弦是.21cos ,22cos ,21cos =-=-=γβα 方向角为.3cos ,43,32πγπβπα===12.求与下列向量a 同方向的单位向量0a . (1){}1,4,2-=a ;(2)k j i a ++-=32. 【解】(1()21142222=+-+=,所以{}⎭⎬⎫⎩⎨⎧-=-==211,214,2121,4,22110a a .(2()14132222=++-=,所以.141,143,1421410⎭⎬⎫⎩⎨⎧-==a a 习题1.设向量k j i a 23--=,k j i b -+=2.求:(1)b a .;(2)b a ⨯;(3)()()b a 32⨯-;(4)()b a 2⨯;(5)向量b a ,的夹角. 【解】(1)()()()3122113.=-⨯-+⨯-+⨯=b a ;(2)k j i j b a 7521++=-=⨯;(3)()()()1836.63.2-=⨯-=-=-b a b a ;(4)()()k j i b a b a 1421022++=⨯=⨯;(5)()()14213222=-+-+=()6121222=-++=,故21236143.,cos =⨯==⎪⎪⎭⎫ ⎝⎛∧b a b a ,所以向量b a ,的夹角为.2123arccos ,=⎪⎪⎭⎫ ⎝⎛∧b a2.设向量a ,b ,c 为单位向量,且满足0=++c b a ①.求:a c c b b a ...++. 【解】由①式得()0.=++c b a a ;()0.=++c b a b ; ()0.=++c b a c .即0..=++c a b a ; ②0..=+c b a b ; ③0..=++b c a c ; ④ 将②、③、④相加得()03...2=+++a c c b b a所以,.23...-=++a c c b b a3.已知点()2,1,1-A ,()2,6,5-B ,()1,3,1-C 求: (1)同时与AB 及AC 垂直的单位向量; (2)ABC ∆的面积. 【解】(1)AB AC⨯{}16,12,151612153405=++=--=k j i kj .25161215222=++=. 所以,同时与AB 及AC 垂直的单位向量为{}⎭⎬⎫⎩⎨⎧±=±=⨯±2516,2512,25116,12,15251AC AB .(2)ABC ∆的面积225==. 4.设{}2,5,3-=a ,{}4,1,2=b ,则当实数λ与μ有什么关系时,能使b a μλ+与z 轴垂直?【解】{}μλμλμλμλ42,5,23+-++=+b a .要使b a μλ+与z 轴垂直,只须b a μλ+与{}1,0,0=k 垂直,于是有()042.=+-=+μλμλk b a ,即 .2μλ=5.设质量为100kg 的物体从点()8,1,31M 沿直线移动到点()2,4,1M ,计算重力所做的功.【解】{}6,3,21--==M M s ,{}{}980,0,01008.9,0,0=⨯-=F .所以,{}{}58806,3,2.980,0,0.=---==s F W (焦耳).6.已知{}3,2,1-=a ,{}1,4,2-=b ,{}0,2,4=c ,b a ⨯是否与c 平行?【解】{}0,5,1005104221--=+--=--=⨯k j i j i b a ;因为c b a 52-=⨯,所以,b a ⨯与c 平行.7.求一个单位向量使其同时垂直向量{}0,1,1=a 和{}1,1,0=b .【解】{}1,1,111-=+-==⨯k j i j b a .()3111222=+-+=. 所以同时垂直向量a 和b 向量的单位向量为 {}1,1,131-±=⨯±b .习题1.求过点()1,0,3-且与平面012573=-+-z y x 平行的平面方程.【解】已经平面的法向量为{}5,7,3-=n .据题意知,所求平面的法向量可也取作n .所以据平面的点法式方程,所求平面即为 ()()()()0150733=--+---z y x . 化简得 04573=-+-z y x .2.求过点()6,9,20-M 且与连接坐标原点O 及0M 的线段0OM 垂直的平面方程. 【解】据题意知,所求平面的法向量可也取作{}6,9,20-==OM n .所以据平面的点法式方程,所求平面即为 ()()()()0669922=----+-z y x . 化简得 0121692=--+z y x .3.求过点()1,1,1-、()2,2,2--和()2,1,1-三点的平面方程. 【解】据平面的三点式方程,所求平面为()()()0121111121212111=---------------z y x . 即 ()()()0161913=++-+--z y x . 化简得 023=--z y x .4.求平面0522:=++-z y x π与坐标面xoy 、yoz 及zox 的夹角的余弦. 【解】平面π的法向量为{}1,2,2-=n ;xoy 面的法向量为{}1,0,0=k . 由公式,平面π与xoy31=;同理, 平面π与yoz32=; 平面π与zox32-=.5.求点()1,2,1平面01022:=-++z y x π的距离. 【解】12211012221222=++-⨯+⨯+=d .6.求两平行平面0:11=+++D Cz By Ax π与0:22=+++D Cz By Ax π之间的距离.【解】在1π上任取一点()1111,,z y x M ,则1M 到2π的距离d 就是所求1π与2π之间的距离.由点到平面的距离公式得 2222111CB A D Cz By Ax d +++++=. ①又11π∈M ,故有 0:11111=+++D Cz By Ax π,即1D Cz By Ax -=++. ②将②代入①,立得 22212CB A D D d ++-=.7.一平面通过()1,1,11M 和()11,02-M 两点,且垂直于平面0=++z y x .求该平面方程.【解】已知平面0=++z y x 的法向量为{}1,1,1=n ,{}2,0,121--=M M .据题意,可取所求平面的法向量为{}1,1,2211120121--=--=--=⨯k j i kj in M M . 所以,所求平面方程为()()()011.11.2=-----z y x ,即 02=--z y x .8.求满足下列条件的平面方程:(1)过点()2,1,3--和z 轴;(2)过点()2,0,4-及()7,1,5且平行于x 轴;(3)过点()3,5,2-,且平行于zox 面;(4)过点()1,0,1-且同时平行于向量k j i a ++=2,j i b -=.【解】(1)根据题意,可设所求平面的一般式方程为0:=+By Ax π. ①又将点()2,1,3--的坐标代入①,得03=+-B A ,即 A B 3=.因此,所求平面π为.03=+Ay Ax ②注意到0≠A (否则π的法向量为零向量),所以②两边除以A ,得到 03:=+y x π.(2)根据题意,可设所求平面的一般式方程为0:=++D Cz By π. ①又将点()2,0,4-及()7,1,5的坐标分别代入①,得⎩⎨⎧=++=+-.07,02D C B D C ,故 ⎩⎨⎧-==.9,2C B C D .因此,所求平面π为.029=++-C Cz Cy ②注意到0≠C (否则π的法向量为零向量),所以②两边除以C ,得到 029:=++-z y π.(3)根据题意,可设所求平面的一般式方程为0:=+D By π. ①又将点()3,5,2-的坐标代入①,得05=+-D B ,即 B D 5=.因此,所求平面π为.05=+B By ②注意到0≠B (否则π的法向量为零向量),所以②两边除以B ,得到 05:=+y π.(4)根据题意,可设所求平面的一般式方程为0:=+++D Cz By Ax π. ① 其法向量为{}C B A n ,,=.将点()1,0,1-的坐标代入①,得0=+-D C A . ② 又因为π同时平行于向量k j i a ++=2,j i b -=,故n 同时垂直于向量k j i a ++=2,j i b -=,于是有.02=++C B A ③ .0=-B A ④ ②、③、④联立得到A D A C AB 4,3,-=-==因此①成为043:=--+A Az Ay Ax π . ⑤ 注意到0≠A (否则π的法向量为零向量),所以⑤两边除以A ,得到 043:=--+z y x π.9.平面在y 、z 轴上的截距分别为30,10,且与{}3,1,2=r 平行,求该平面方程.【解】根据题意,可设所求平面的一般式方程为0:=+++D Cz By Ax π. ① 其法向量为{}C B A n ,,=.因为π在y 、z 轴上的截距分别为30,10,故π过点()0,30,0及(),10,0,0.将此两点坐标代入①得030=+D B . ②及 010=+D C . ③又已知π与{}3,1,2=r 平行,故n 垂直于向量r ,于是有032=++C B A . ④②、③、④联立得到B A BC BD 5,3,30-==-=.因此①成为03035:=-++-B Bz By Bx π. ⑤注意到0≠B (否则π的法向量为零向量),所以⑤两边除以B ,得到 03035:=-++-z y x π.10.指出下列各平面的特殊位置,并画出各平面.(1)013=-x ;(2)012=-+z y ;(3)02=+z x ;(4)135=-+z y x .【解】(1)因方程中z y ,前面的系数为零,故平面013=-x 平行于yoz 面;(2)因方程中x 前面的系数为零,故平面012=-+z y 平行于x 轴;(3)因方程中没有常数项,且y 前面的系数为零,故平面02=+z x 通过y 轴;012=-+z y 02=+z x ;(4)135=-+z y x 可化为113151=-++z y x ,故135=-+z y x 是在x 轴、y 轴、z 轴上的截距分别为51、31和1-的平面. 习题1.用点向式方程及参数式方程表示直线⎩⎨⎧=++=+-.42,1:z y x z y x L 【解】任取方程组的一组解⎪⎩⎪⎨⎧===.1,1,1z y x 则有,L 过点()1,,1,10M .可取直线的方向为{}3,1,232121121-=++-=-=⨯k j i j in n . 所以,所求直线L 的点向式方程为 311121-=-=--z y x . 进一步,L 的参数式方程为⎪⎩⎪⎨⎧+=+=-=.31,1,21t z t y t x2.求过()1,2,31-P 、()2,0,12-P 两点的直线方程.【解】可取直线的方向为 {}1,2,421-==P P s . 故所求直线为.112243-=+=--z y x 3.求过点()3,1,4-且平行于直线51123-==-z y x 的直线方程.【解】根据题意知,可取所求直线的方向为{}5,1,2=s .故所求直线为 .531124-=+=-z y x 4.求过()1,32-且垂直于平面0132=+++z y x 的直线方程.【解】可取直线的方向为 {}1,3,2=s .故所求直线为.113322-=+=-z y x 5.求过点()2,1,00M 且与直线21111z y x =--=-垂直相交的直线方程. 【解】 过点()2,1,0且与直线21111z y x =--=-垂直的平面π为 ()()()02210.1:=-+---z y x π.即 032:=-+-z y x π . ① 化直线21111z y x =--=-为参数式得 ⎪⎩⎪⎨⎧=-=+=.2,1,1t z t y t x ②将②代入①,有()()()032211=-+--+t t t . ③ 解得 21=t . 故直线21111z y x =--=-与平面π的交点为⎪⎭⎫ ⎝⎛1,21,231M . 因此所求直线的方向为 ⎭⎬⎫⎩⎨⎧--==1,21,2310M M s ∥{}2,1,3-. 故所求直线为.221130-=-=--z y x6. 过点()0,2,10-M 向平面012=+-+z y x 作垂线,求垂足坐标.【解】 过点()0,2,10-M 且与平面012=+-+z y x 垂直的直线L 为 .102211:--=-=+z y x L ① 化直线L 为参数式得⎪⎩⎪⎨⎧-=+=+-=.,22,1t z t y t x ②将②代入平面012=+-+z y x 方程中,得()()()012221=+--+++-t t t . ③解得 32-=t . 故垂足坐标为⎪⎭⎫ ⎝⎛-32,32,351M . 7.求直线⎩⎨⎧=-+-=-+-,0123,09335:1z y x z y x L 与⎩⎨⎧=-++=+-+.01383,02322:2z y x z y x L 的夹角θ. 【解】1L 的方向为{}1,4,34323351-=-+=--=k j i j is ; 2L 的方向为{}10,5,101051083222-=+-==k j i j is ∥{}2,1,2-. 因为()()0211423.21=⨯-+-⨯+⨯=s s ,所以1L 与2L 垂直,从而2πθ=.8.求直线21121:+=-=-z y x L 与平面02:=+-z y x π的夹角θ. 【解】1L 的方向为{}2,1,2-=s ,平面π的法向量为{}2,1,1-=n . ()()7221112.=⨯+-⨯-+⨯=n s .()3212222=+-+=. ()6211222=+-+=.故637sin ⨯==θ,所以,637arcsin ⨯=θ.9.求过点()2,0,10-M 且垂直于平面032:=+-z y x π的直线方程.【解】根据题意知,所求直线L 的方向向量即为平面π之法向量,即 {}3,12-=s . 所以,由点向式方程知,所求直线为321021:+=--=-z y x L . 10.设平面π过直线130211:1--=-=-z y x L ,且平行于直线11122:2z y x L =-=+,求平面π的方程.【解】显然面π过点()3,,2,10M . 可取面π的法向量为{}1,3,13120121-=+-==⨯=k j i j is s n . 所以,平面π的方程为 ()()()03.12.31.1=-+---z y x .化简得023:=++-z y x π.11.求过点()1,2,10P 和直线⎩⎨⎧=--=-.032,6:z y x z x L 的平面π的方程. 【解】直线L 的参数方程为⎪⎩⎪⎨⎧-=+-==.6,9,:x z x y x x L显然L 过点()6,9,01-P ,且L 的方向为{}1,11-=s .根据题意,可取平面π的法向量为{}6,6,0660117110--=--=--=⨯=k j i j is P P n ∥{}1,1,0. 所以,平面π的方程为 ()()()01.12.11.0=-+-+-z y x .化简得03:=-+z y π.习题1.指出下列方程在平面解析几何与空间解析几何中分别表示何种几何图形.(1)1=-y x ;(2)x y 22=;(3)122=-y x ;(4)1222=+y x . 【解】(1)1=-y x 在平面解析几何中表示一条直线,在空间解析几何中表示一张平行于z 轴的平面;(2)x y 22=在平面解析几何中表示一条抛物线,在空间解析几何中表示一张抛物柱面;(3)122=-y x 在平面解析几何中表示一条双曲线,在空间解析几何中表示一张双曲柱面;(4)1222=+y x 在平面解析几何中表示一条椭圆曲线,在空间解析几何中表示一张椭圆柱面.2.写出下列曲线绕指定坐标轴旋转一周而得到的旋转曲面的方程.(1)zox 面上的抛物线x z 52=绕x 轴旋转一周;(2)xoy 面上的双曲线369422=-y x 绕y 轴旋转一周;(3)yoz 面上的直线0132=+-z y 绕z 轴旋转一周.【解】(1)zox 面上的抛物线x z 52=绕x 轴旋转一周得到的曲面是 ()x z y 5222=+±,即 x z y 522=+.(2)xoy 面上的双曲线369422=-y x 绕y 轴旋转一周得到的曲面是 ()36942222=-+±y z x ,即36494222=+-z y x .(3)yoz 面上的直线0132=+-z y 绕z 轴旋转一周而得到的曲面是 ()013222=+-+±z y x ,即()()222134-=+z y x . 3.说明下列旋转曲面是怎样形成的.(1)1994222=++z y x ;(2)14222=+-z y x ;(3)1222=--z y x ; 【解】(1)1994222=++z y x 由曲线⎪⎩⎪⎨⎧==+,0,19422z y x 绕x 轴旋转一周而形成;或由曲线⎪⎩⎪⎨⎧==+,0,19422y z x 绕x 轴旋转一周而形成. (2)14222=+-z y x 由曲线⎪⎩⎪⎨⎧==-,0,1422z y x 绕y 轴旋转一周而形成;或由曲线⎪⎩⎪⎨⎧==-,0,1422x y z 绕y 轴旋转一周而形成. (3)1222=--z y x 由曲线⎩⎨⎧==-,0,122z y x 绕x 轴旋转一周而形成;或由曲线⎩⎨⎧==-,0,122y z x 绕x 轴旋转一周而形成. 4.指出下列各方程所表示的曲面.(1)14416916222=++z y x ;(2)144944222=+-z y x ;(3)z y x 729422=-;(4)16922=+z y ;(5)22z y x --=;(6)224y z x =+;(7)36249222=++z y x ;(8)444222=-+x y z .【解】(1)原方程可化为()1169222=++y z x . 所以,原方程表示的是旋转椭球面.(2)原方程可化为 1163838222=+-z y x . 所以,原方程表示的是双叶双曲面.(3)原方程可化为81822y x z -= 所以,原方程表示的是双曲抛物面,即马鞍面.(4)原方程可化为 11691622=+z y . 所以,原方程表示的是椭圆柱面.(5)原方程可化为()22z y x +-=.所以,原方程表示的是旋转抛物面.(6)原方程可化为4122z y x -=.所以,原方程表示的是双曲抛物面,即马鞍面. (7)原方程可化为11894222=++z y x . 所以,原方程表示的是椭球面. (8)原方程可化为1141222=-+x z y . 所以,原方程表示的是单叶双曲面.习题1.求球心在()3,2,1,半径为3的球面与平面5=z 的交线方程(写出一般式方程和参数式方程),并求出该曲线绕z 轴旋转一周而成的旋转曲面的方程. 【解】(一)球心在()23,1,半径为3的球面方程为 ()()()9321222=-+-+-z y x .故球面与平面5=z 的交线的一般式方程为()()()⎩⎨⎧==-+-+-Γ.5,9321:222z z y x即()()⎩⎨⎧==-+-Γ.5,521:22z y x化为参数式方程为[]π2,0.5,sin 52,cos 51:∈⎪⎪⎩⎪⎪⎨⎧=+=+=Γt z t y t x .(二)利用公式()()()()()[][]()πθβαθθ2,0,,.,sin ,cos 2222∈∈⎪⎪⎩⎪⎪⎨⎧=+=+=t t z z t y t x y t y t x x .Γ绕z 轴旋转一周而成的旋转曲面的方程为 [][]()πθπθθ2,0,2,0.5,sin sin 54cos 5210,cos sin 54cos 5210∈∈⎪⎪⎩⎪⎪⎨⎧=++=++=t z t t y t t x .2.分别求出母线平行于x 轴、y 轴且通过曲线()()⎪⎩⎪⎨⎧=+-=++Γ2,01,162:222222z y x z y x 的柱面方程. 【解】(一)(1)、(2)联立消去x ,得 16322=-z y .所以,母线平行于x 轴且通过曲线Γ的柱面为16322=-z y . (二)(1)、(2)联立消去y ,得 162322=+z x .所以,母线平行于x 轴且通过曲线Γ的柱面为162322=+z x . 3.指出下列方程所表示的曲线.(1)⎩⎨⎧==++;3,25222x z y x (2)⎩⎨⎧==++;1,3694222y z y x(3)⎩⎨⎧-==+-;3,254222x z y x (4)⎩⎨⎧==+-+.4,08422y x z y【解】(1)表示平面3=x 上的圆周曲线1622=+z y ;(2)表示平面1=y 上的椭圆19323222=+zx ;(3)表示平面3-=x 上的双曲线141622=-y z ; (4)表示平面4=y 上的抛物线642-=x z .4.求()()⎪⎩⎪⎨⎧=++=++Γ2,21,:2222222Rz z y x R z y x 在三个坐标面上的投影曲线. 【解】(一)(1)、(2)联立消去z 得 22243R y x =+. 所以,Γ在xoy 面上的投影曲线为⎪⎩⎪⎨⎧==+.0,43222z R y x (二)(1)、(2)联立消去y 得 R z 21=. 所以,Γ在zox 面上的投影曲线为.23.0,21R x y R z ≤⎪⎩⎪⎨⎧== (三)(1)、(2)联立消去x 得 R z 21=. 所以,Γ在yoz 面上的投影曲线为.23.0,21R y x R z ≤⎪⎩⎪⎨⎧== 5.画出下列各曲面所围立体的图形. (1)0,22==z x y 及1224=++zy x ; (2)0,,222==+=z y x y x z 及1=x . 【解】略.6.求由球面224y x z --= ①和锥面()223y x z += ②所围成的立体在xoy 面上的投影区域.【解】联立①、②消去z 得 122=+y x 故Γ在xoy 面上的投影曲线为⎩⎨⎧==+.0,122z y x所以,球面和锥面所围成的立体在xoy 面上的投影区域为(){}1|,22≤+=y x y x D . 7.写出圆锥面22:y x z S +=的参数方程.【解】().20,0.,sin ,cos πθθθ≤≤+∞<<⎪⎩⎪⎨⎧===r r z r y r x习题1.设向量值函数()k t j t i t t r ++=sin cos ,求()t r t 4lim π→. 【解】()t r t 4lim π→k j i k t j t i t t t t 42222lim sin lim cos lim 444ππππ++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=→→→. 2.设空间曲线C 的向量函数为(){}t t t t t r 62,34,122--+=,R t ∈.求曲线C 在与20=t 相应的点处的单位切向量.【解】因(){}64,4,2-='t t t r ,故C 相应20=t 的点处的切向量为(){}2,4,42='r .C 相应20=t 的点处的单位切向量为(){}.31,32,322,4,4612⎭⎬⎫⎩⎨⎧±=±='r 3.求曲线32,,:t z t y t x ===Γ在点)1,1,1(0M 处的切线方程和法平面方程. 【解】0M 对应参数1=t .Γ在0M 点处的切线方向为 ()()(){}|1,,='''=t t z t y t x s {}{}3,2,13,2,1|12===t t t .所以,Γ在0M 点处的切线方程为 312111-=-=-z y x . 法平面为()()()01.31.21.1=-+-+-z y x ,即 0632=-++z y x .4.在曲线32,,:t z t y t x ===Γ上求一点,使在该点处的切线平行于平面y x 2:+π4=+z .【解】平面y x 2+4=+z 的法向量为{}1,2,1=n .在Γ上任取一点()0000,,z y x M ,并设0M 对应参数0t t =.Γ在0M 点处的切线方向为()()(){}000,,t z t y t x s '''={}{}20023,2,13,2,1|0t t t t t t ===.由题意,欲使0M 点处的切线与平面π平行,只须s 与n 垂直,为此令200341.0t t n s ++==,即0341200=++t t .解之得, 10-=t 或 310-=t .所以,所求点为()1,1,10---M 或⎪⎭⎫⎝⎛-271,91,310M .5.求曲线⎰=tu udu e x C 0cos :,t t y cos sin 2+=,t e z 31+=在0=t 处的切线方程和法平面方程.【解】参数0=t 对应曲线C 上的点()2,1,00M .C 在0M 点处的切线方向为 ()()(){}|,,='''=t t z t y t x s {}{}3,2,13,sin cos 2,cos |3=-==t tt e t t t e .所以,Γ在0M 点处的切线方程为 322110-=-=-z y x . 法平面为()()()02.31.20.1=-+-+-z y x ,即 0832=-++z y x .6.已知(){}t t t t r 2,1,12-+=表示空间一质点在时刻t 的位置,求质点在时刻t 的速度和加速度向量,并求质点在指定时刻1=t 的速率和运动方向. 【解】(一)时刻t 的速度向量为()()()()(){}2,2,12,1,12t t t t t r t v =⎭⎬⎫⎩⎨⎧''-'+='=; 时刻t 的加速度向量为()()()()(){}{}0,2,02,2,1='''=''=t t r t a .(二)1=t 的速度为(){}2,2,11=v )32211222=++=. 1=t 的速度为(){}2,2,11=v()⎭⎬⎫⎩⎨⎧=32,32,311.复习题71.填空题(1)设b a ,为非零向量,若0.=b a ,则必有a ⊥b .(2)设b a ,为非零向量,若0=⨯b a ,则必有a ∥b .(3)若直线l 的方向向量s 与平面π的法向量n 互相平行,则直线l 与平面π必 垂直.(4)点()1,5,3P 到平面07623=+++z y x 的距离732. (5)若动()z y x M ,,到定点()5,0,0的距离等于它到x 轴的距离,则该动点的轨迹方程为25102-=-z x .(6)直线⎪⎩⎪⎨⎧+=--=+=.31,1,2t z t y t x 与平面0765=-+-z y x 的位置关系是相交但不垂直.【解】直线l 的方向向量为{}3,1,1-=s .平面的法向量为{}6,5,1-=n .因为024.≠=n s ,且s 与n s .的坐标分量不成比例, 所以直线l 与平面π相交. 2.判断题.(1)若c a b a ..=,则必有c b =.(⨯)【解】取i a =,j b =,k c =,即知上述命题是错误的 . (2)若c a b a ⨯=⨯,则必有c b =.(⨯)【解】取i a =,j b =,k c =,即知上述命题是错误的 . (3)若c a b a ..= ① 且c a b a ⨯=⨯ ② ,则必有c b =.(⨯)【解】取0=a ,j b =,k c =,即知上述命题是错误的 .【书后答案有误】. 【注意:如果假定c b a ,,均为非零向量,则上述命题是正确的,其理由如下: 由①式得 ()0.=-c b a ,说明a 与c b -垂直;由②式得 ()0=-⨯c b a ,说明a 与c b -平行. 因为a 为非零向量,故c b -必为零向量,从而c b =. (4)设b a ,为非零向量,则必有a b b a ..=.(√) (5)设b a ,为非零向量,则必有a b b a ⨯=⨯..(⨯)3.已知直线⎩⎨⎧=+--=+++.03102,0123:z y x z y x l 平面024:=+-z y x π,则直线l 与平面π的位置关系为(B )A. 平行于平面π C. 在平面π上B. 垂直于平面π D. 与平面π斜交.【解】在直线l 上任取一点⎪⎭⎫⎝⎛-0,71,7100M .直线l 的方向向量为k j i j i n n s 71428123121-+-=-=⨯=∥{}1,2,4-. 平面的法向量为{}1,2,4-=n .因为s ∥n ,所以直线l 与平面π垂直.4.设c b a u 2+-=,c b a v ---=3,试用c b a ,,表示v u 32-. 【解】v u 32-()c b a 22+-=()c b a ----33c b a 775++=.5.设点C 为线段AB 上一点,且AC CB 2=,O 为AB 外一点,记OA a =,OB b =,OC c =,试用b a ,来表示c .【解】由题意知,a b OA OB AB -=-=,a b AB AC 313131-==. 所以,a b a a b OA AC AO AC c 32313131+=+⎪⎭⎫ ⎝⎛-=+=-=.6.已知k j i a +-=32,k j i b 3+-=,j i c 2-=.计算: (1)()()b c a c b a ..-; (2)()()c b b a +⨯+. 【解】(1)()()8311312.=⨯+-⨯-+⨯=b a ; ()()8302312.=⨯+-⨯-+⨯=c a .所以,()()()()k j k j b c b c b c a c b a 24838888..--=--=-=-=-.(2)k j i j ib a +--=--=⨯581132;k j i j ic a -+=--=⨯22132;k j i j ic b -+=--=⨯362111. 所以,()()c b b b c a b a c b b a ⨯+⨯+⨯+⨯=+⨯+()k j i +--=58 ()k j i -++2 ()k j i -++36 k j --=. 【或者这样做:k j i b a 443+-=+,k j i c b 332+-=+. 所以()()c b b a +⨯+.3243k j j i--=--=】 7.已知{}2,1,2=a ,{}10,1,4-=b ,a b c λ-=,且a ⊥c ,求实数λ. 【解】{}λλλλ210,1,24----=-=a b c .因为a ⊥c ,所以 ()()()λλλ210211242.0-⨯+--⨯+-⨯==c a ,即0927=-λ .解之得 .3=λ8.设{}1,2,3-=a ,{}2,1,1-=b ,求:(1)()()b a 72⨯;(2)i a ⨯. 【解】(1)k j i j i b a 5731123--=-=⨯{}5,7,3--=. 所以,()()b a 72⨯()b a ⨯=14{}{}70,98,425,7,314--=--=.(2){}2,1,020001123--=--=-=⨯k j i kji i a . 9.3=,1=6π=,计算:(1)b a +与b a -之间的夹角;(2)以b a 2+与b a 3-为邻边的平行四边形的面积.【解】232313,.cos .=⨯⨯=⎪⎪⎭⎫ ⎝⎛=∧b a b a . ① (1+()71232322=+⨯+===;-()11232322=+⨯-===; ()()().213 (2)2=-=-=-+b b a a b a b a设b a +与b a -之间的夹角为θ,则有()(72172cos =⨯==b a b a θ,所以72arccos =θ.(2+()1314234322=⨯+⨯+===;-()319236322=⨯+⨯-===; ()()().2916233.6..3.222-=⨯--=--=-+b b b a a a b a b a设b a 2+与b a 3-之间的夹角为θ,则有()(392931329cos -=⨯-==θ,故 2613539291cos 1sin 22=⎪⎪⎭⎫⎝⎛-=-=θθ. 所以由三角形的面积公式知,以b a 2+与b a 3-为邻边的平行四边形的面积为.32526135313sin 2=⨯⨯=⎥⎦⎤⨯-+=θS10.已知点()0,0,1A 及()1,2,0B ,试在z 轴上求一点C ,使ABC ∆的面积最小. 【解】过点()0,0,1A 及()1,2,0B 直线l 的方向即为{}1,2,1-==AB s .l 的方程为 1211:zy x l ==--. 设点()z C,0,0,则{}2,1,22101---=--=⨯z z ji s AC . 点C 距l 的距离为()()()6212222-+-+-==z z d 65245152+⎪⎭⎫ ⎝⎛-=z明显地,当51=z 时,d 取到最小值55254=.所以,ABC ∆的面积最小值为 53055262155221=⨯⨯==∆S ABC . 所求点.51,0,0⎪⎭⎫ ⎝⎛C11.求过点()2,1,3--且与平面01235=-+-z y x 平行的平面方程. 【解】可取所求平面的法向量与已知平面相同,即为{}3,5,1-=n . 所以,所求平面方程为()()()0231.53.1=+++--z y x ,即 .0235=-+-z y x12.求过点()1,2,1且垂直于平面0=+y x 和05=+z y 的平面方程. 【解】可取所求平面的法向量为k j i j in n n 5501121+-==⨯=. 所以,所求平面方程为()()()0152.11.1=-+---z y x ,即 .045=-+-z y x 13.求满足下列条件的平面方程.(1)过点()2,1,1--M 和()1,1,3N 且垂直于平面0532:=-+-z y x π; (2)过点()3,3,2-M 且平行于xoy 面. 【解】(1)可取所求平面的法向量为k j i j is MN n 63122122--=-=⨯=∥{}2,1,4--. 所以,所求平面方程为()()()02.21.11.4=+-+--z y x ,即 .0924=---z y x(2)根据题意,可设所求平面的一般式方程为 .0=+D Cz将点()3,3,2-M 的坐标代入平面方程得.03=+D C 即 ()03≠-=C C D . 所以,所求平面为 .03=-C Cz 化简得.03=-z14.求过点()3,0,2-且与直线⎩⎨⎧=+-+=-+-.01253,0742:z y x z y x l 垂直的平面方程.【解】直线l 的方向为k j i j in n s 111416532121++-=-=⨯=. 所以,所求平面方程为()()()03.110142.16=++-+--z y x ,即 .065111416=+++-z y x15.求过点()1,3,20-M 和直线⎩⎨⎧=+-=--.062,0165:z y y x l 的平面方程.【解】化直线l 的为参数式方程⎪⎩⎪⎨⎧+==+=.62,,165:y z y y y x l .因此直线l 过点()6,0,161M .可取所求平面的法向量为{}1,3,131531410--=--==⨯=k j i j is M M n . 所以,所求平面方程为()()()01.13.32.1=--+--z y x ,即 .0103=---z y x 【书后答案有误】. 16.求过点()1,1,1M 且与直线42135:-=+=-zy x l 平行的直线方程. 【解】根据题意知,可取所求直线的方向为{}4,2,3-=s .所以,所求直线为412131--=-=-z y x . 17.求过点()4,2,00M 且与两平面12:1=+z x π和23:2=-z y π都平行的直线方程.【解】根据题意知,可取所求直线的方向为{}1,3,232100121-=++-==⨯=k j i j in n s . 所以,所求直线为143220-=-=--z y x . 18.求下列旋转曲面方程.(1)⎩⎨⎧==.0,22x y z 绕y 轴旋转一周; (2)⎪⎩⎪⎨⎧==+.0,1422y z x 绕z 轴旋转一周. 【解】(1)由公式,知⎩⎨⎧==.0,22x y z 绕y 轴旋转一周生成曲面 ()y zx 2222=+±,即 222z xy += ,为椭圆抛物面.(2)由公式,知⎪⎩⎪⎨⎧==+.0,1422y z x 绕z 轴旋转一周生成曲面 ()142222=++±z yx ,即 14222=++z y x ,为椭球面. 19.指出下列各方程所表示的是何种曲面.(1)11694222=++z y x ; (2)94322y x z +=; (3)64416222=-+z y x ; (4)3694222-=+-z y x . 【解】(1)表示椭球面; (2)表示椭圆抛物面;(3)可化为164164222=-+z y x ,故(3)表示单叶双曲面; (4)可化为14369222-=-+z y x ,故(4)表示双叶双曲面. 20.求曲线⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=Γ.,1,1:2t z t t y t t x ① 对应于1=t 处的切线方程.【解】将1=t 代入① ,得切点坐标为⎪⎭⎫⎝⎛1,2,21.又切向量为()|12,1,1=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧'⎪⎭⎫ ⎝⎛+'⎪⎭⎫ ⎝⎛+=t tt t t t s ()⎭⎬⎫⎩⎨⎧-=⎭⎬⎫⎩⎨⎧-+==2,1,412,1,11|122t t t t ∥{}8,4,1-. 所以,曲线Γ对应于1=t 处的切线方程为8142121-=--=-z y x .。
第七章 线性变换1.判别下面所定义的变换那些是线性的,那些不是:1〕在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2〕在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3〕在P 3中,A ),,(),,(233221321x x x x x x x +=; 4〕在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5〕在P[x ]中,A )1()(+=x f x f ;6〕在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7〕把复数域上看作复数域上的线性空间,A ξξ=.8〕在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1>当0=α时,是;当0≠α时,不是. 2>当0=α时,是;当0≠α时,不是.3>不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A<)α.4>是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx =k A )(α,故A 是P 3上的线性变换.5>是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换.6>是.因任取][)(],[)(x P x g x P x f ∈∈则.A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f .7>不是,例如取a=1,k=I,则A <ka>=-i , k<A a>=i, A <ka >≠k A <a>. 8>是,因任取二矩阵Y X ,nn P⨯∈,则A <=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,A <k X >=k BXC k kXB ==)()(A X ,故A 是nn P⨯上的线性变换.2.在几何空间中,取直角坐标系oxy,以A 表示将空间绕ox 轴由oy 向oz 方向旋转90度的变换,以B 表示绕oy 轴向ox 方向旋转90度的变换,以C 表示绕oz 轴由ox 向oy 方向旋转90度的变换,证明:A 4=B 4=C 4=E,AB ≠BA,A 2B 2=B 2A 2,并检验<AB >2=A 2B 2是否成立. 解 任取一向量a=<x,y,z>,则有 1) 因为A a=<x,-z,y>, A 2a=<x,-y,-z>,A 3a=<x,z,-y>, A 4a=<x,y,z>,B a=<z,y,-x>, B 2a=<-x,y,-z>,B 3a=<-z,y,x>, B 4a=<x,y,z>,C a=<-y,x,z>, C 2a=<-x,-y,z>,C 3a=<y,-x,z>, C 4a=<x,y,z>, 所以A 4=B 4=C 4=E.2) 因为AB <a>=A <z,y,-x>=<z,x,y>,BA <a>=B <x,-z,y>=<y,-z,-x>, 所以AB ≠BA.3>因为A 2B 2<a>=A 2<-x,y,-z>=<-x,-y,z>,B 2A 2<a>=B 2<x,-y,-z>=<-x,-y,z>, 所以A 2B 2=B 2A 2.3) 因为<AB >2<a>=<AB ><AB <a>>_=AB <z,x,y>=<y,z,x>,A 2B 2<a>=<-x,-y,z>, 所以<AB >2≠A 2B 2.3.在P[x] 中,A ')(f x f =),(x B )()(x xf x f =,证明:AB-BA=E. 证 任取∈)(x f P[x],则有<AB-BA >)(x f =AB )(x f -BA )(x f =A <))(x xf -B <'f ))(x =;)(xf x f +)(x -'xf )(x =)(x f所以 AB-BA=E.4.设A,B 是线性变换,如果AB-BA=E,证明:A kB-BA k=k A 1-k <k>1>.证 采用数学归纳法.当k=2时A 2B-BA 2=<A 2B-ABA>+<ABA-BA 2>=A<AB-BA>+<AB-BA>A=AE+EA=2ª,结论成立. 归纳假设m k =时结论成立,即A mB-BA m=m A 1-m .则当1+=m k 时,有A 1+m B-BA1+m =<A1+m B-A m BA>+<A m BA-BA1+m >=A m<AB-BA>+<A mB-BA m>A=A mE+mA1-m A=)1(+m A m.即1+=m k 时结论成立.故对一切1>k 结论成立. 5.证明:可逆变换是双射.证 设A 是可逆变换,它的逆变换为A1-.若a ≠b ,则必有A a ≠A b,不然设Aa=A b,两边左乘A1-,有a=b,这与条件矛盾.其次,对任一向量b,必有a 使A a=b,事实上,令A 1-b=a 即可.因此,A 是一个双射.6.设1ε,2ε, ,n ε是线性空间V 的一组基,A 是V 上的线性变换.证明:A 是可逆变换当且仅当A 1ε,A 2ε, ,A n ε线性无关.证 因A <1ε,2ε, ,n ε>=<A 1ε,A 2ε, ,A n ε>=<1ε,2ε, ,n ε>A,故A 可逆的充要条件是矩阵A 可逆,而矩阵A 可逆的充要条件是A 1ε,A 2ε, ,A n ε线性无关,故A 可逆的充要条件是A 1ε,A 2ε, ,A n ε线性无关.. 7.求下列线性变换在所指定基下的矩阵:1) 第1题4>中变换A 在基1ε=<1,0,0>,2ε=<0,1,0>,3ε=<0,0,1>下的矩阵;2) [o; 1ε,2ε]是平面上一直角坐标系,A 是平面上的向量对第一和第三象限角的平分线的垂直投影,B 是平面上的向量对2ε的垂直投影,求A,B,AB 在基1ε,2ε下的矩阵; 3) 在空间P [x]n 中,设变换A 为)()1()(x f x f x f -+→, 试求A 在基i ε=!1)1()1(i i x x x +-- <I=1,2, ,n-1>下的矩阵A ; 4) 六个函数1ε=eaxcos bx ,2ε=eaxsin bx ,3ε=x e axcos bx ,4ε=x eaxsin bx ,1ε=221x e ax cos bx ,1ε=21e ax 2x sin bx ,的所有实数线性组合构成实数域上一个六维线性空间,求微分变换D 在基i ε<i=1,2, ,6>下的矩阵; 5) 已知P3中线性变换A 在基1η=<-1,1,1>,2η=<1,0,-1>,3η=<0,1,1>下的矩阵是⎪⎪⎪⎭⎫ ⎝⎛-121011101,求A 在基1ε=<1,0,0>,2ε=<0,1,0>,3ε=<0,0,1>下的矩阵; 6) 在P 3中,A 定义如下:⎪⎩⎪⎨⎧--=-=-=)9,1,5()6,1,0()3,0,5(321ηηηA A A , 其中⎪⎩⎪⎨⎧-==-=)0,1,3()1,1,0()2,0,1(321ηηη, 求在基1ε=<1,0,0>,2ε=<0,1,0>,3ε=<0,0,1>下的矩阵; 7) 同上,求A 在1η,2η,3η下的矩阵.解 1>A 1ε=<2,0,1>=21ε+3ε,A 2ε=<-1,1,0>=-1ε+2ε,A 3ε=<0,1,0>=2ε,故在基1ε,2ε,3ε下的矩阵为⎪⎪⎪⎭⎫ ⎝⎛-001110012.2〕取1ε=〔1,0〕,2ε=〔0,1〕,则A 1ε=211ε+212ε,A 2ε=211ε+212ε,故A 在基1ε,2ε下的矩阵为A=⎪⎪⎪⎪⎭⎫⎝⎛21212121. 又因为B 1ε=0,B 2ε=2ε,所以B 在基1ε,2ε下的矩阵为B =⎪⎪⎭⎫⎝⎛1000,另外,〔AB 〕2ε=A 〔B 2ε〕=A 2ε=211ε+212ε,所以AB 在基1ε,2ε下的矩阵为AB =⎪⎪⎪⎪⎭⎫⎝⎛210210. 3〕因为 )!1()]2([)1(,,!2)1(,,11210----=-===-n n x x x x x x n εεεε, 所以A 0110=-=ε,A 01)1(εε=-+=x x , A )!1()]2([)1()!1()]3([)1(1---------=-n n x x x n n x x x n ε=)!1()]3([)1(----n n x x x {)]2([)1(---+n x x }=2-n ε,所以A 在基0ε,1ε, ,1-n ε下的矩阵为A =⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛011010 .4〕因为D 1ε=a 1ε-b 2ε,D 2ε=b 1ε-a 2ε,6ε, D 3ε=1ε+a 3ε-b 4ε, D 4ε=2ε+b 3ε+a 4ε, D 5ε=3ε+a 5ε-b 6ε, D 6ε=4ε+b 5ε+a 6ε,所以D 在给定基下的矩阵为D =⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000000100001000010001a b b a a b b a ab b a. 5〕因为<1η,2η,3η>=<1ε,2ε,3ε>⎪⎪⎪⎭⎫⎝⎛--111101011,所以 <1ε,2ε,3ε>=<1η,2η,3η>⎪⎪⎪⎭⎫⎝⎛---101110111=<1η,2η,3η>X,故A 在基1ε,2ε,3ε下的矩阵为B =X 1-AX=⎪⎪⎪⎭⎫ ⎝⎛--111101011⎪⎪⎪⎭⎫ ⎝⎛-121011101⎪⎪⎪⎭⎫ ⎝⎛---101110111=⎪⎪⎪⎭⎫⎝⎛--203022211. 6〕因为<1η,2η,3η>=<1ε,2ε,3ε>⎪⎪⎪⎭⎫⎝⎛--012110301,所以A <1η,2η,3η>=A <1ε,2ε,3ε>⎪⎪⎪⎭⎫ ⎝⎛--012110301,但已知A <1η,2η,3η>=<1ε,2ε,3ε>⎪⎪⎪⎭⎫ ⎝⎛----963110505,故A <1ε,2ε,3ε>=<1ε,2ε,3ε>⎪⎪⎪⎭⎫ ⎝⎛----963110505⎪⎪⎪⎭⎫ ⎝⎛--0121103011-=<1ε,2ε,3ε>⎪⎪⎪⎭⎫ ⎝⎛----963110505⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---717172717672737371=<1ε,2ε,3ε>⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----72471872772757472072075. 7〕因为<1ε,2ε,3ε>=<1η,2η,3η>⎪⎪⎪⎭⎫ ⎝⎛--0121103011-,所以A <1η,2η,3η>=<1η,2η,3η>⎪⎪⎪⎭⎫ ⎝⎛--0121103011-⎪⎪⎪⎭⎫⎝⎛----963110505 =<1η,2η,3η>⎪⎪⎪⎭⎫ ⎝⎛---011101532.8.在P22⨯中定义线性变换A1<X >=⎪⎪⎭⎫⎝⎛d c b a X,A 2<X >=X ⎪⎪⎭⎫⎝⎛d c b a , A 2<X >=⎪⎪⎭⎫ ⎝⎛d c b a X ⎪⎪⎭⎫ ⎝⎛d c b a ,求A 1, A 2, A 3在基E 11, E 12, E 21, E 22下的矩阵. 解 因A 1E 11=a E 11+c E 12, A 1E 12=a E 12+c E 22,A 1E 21=b E 11+d E 21, A 1E 22= b E 21+d E 22,故A 1在基E 11, E 12, E 21, E 22下的矩阵为A 1=⎪⎪⎪⎪⎪⎭⎫⎝⎛d cdc b a b a 00000000. 又因A 2E 11=a E 11+b E 12, A 2E 12= c E 11+d E 12, A 2E 21= a E 21+b E 22, A 2E 22= c E 21+d E 22,故A 2在基E 11, E 12, E 21, E 22下的矩阵为A 2=⎪⎪⎪⎪⎪⎭⎫⎝⎛d b c a db ca 00000000.又因A 3E 11= a 2E 11+ab E 12+ac E 21+bc E 22, A 3E 12= ac E 11+ad E 12+c 2E 21+cd E 22, A 3E 21= ab E 11+b 2E 12+ad E 21+bd E 22, A 3E 22 = bc E 11+bd E 12+cd E 21+d 2E 22,故A 3在基E 11, E 12, E 21, E 22下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛=22223d bdcd bc cd ad c ac bd b adab bc ab aca A . 9.设三维线性空间V 上的线性变换A 在基321,,εεε下的矩阵为A=⎪⎪⎪⎭⎫ ⎝⎛333231232221131211a a a a a a a a a , 1) 求A 在基123,,εεε下的矩阵; 2) 求A 在基321,,εεεk 下的矩阵,其中且; 3) 求A 在基3221,,εεεε+下的矩阵. 解 1>因A 3ε=333εa +a +223ε13a 1ε, A 2ε=+332εa +222εa 112εa ,A 1ε=+331εa +221εa 111εa ,故A 在基123,,εεε下的矩阵为⎪⎪⎪⎭⎫⎝⎛=1112132122233132333a a a a a a a a a B . 2>因 A 1ε=111εa ++)(221εk ka 331εa , A <k 2ε>=k 112εa +)(222εk a +332εka , A 3ε=13a 1ε+ka 23<2εk >+333εa , 故A 在321,,εεεk 下的矩阵为 ⎪⎪⎪⎪⎭⎫ ⎝⎛=3332312322211312112a ka a k a a k aa ka a B . 3>因A <21εε+>=<1211a a +><31εε+>+<12112221a a a a --+>2ε+<3231a a +>3ε, A 2ε=12a <21εε+>+<1222a a ->2ε+332εa , A 3ε=13a <21εε+>+<1323a a ->2ε+333εa ,故A 基3221,,εεεε+下的矩阵为⎪⎪⎪⎭⎫⎝⎛+----+-=333232311323122212112221131212113a a a a a a a a a a a a a a a a B . 10. 设A 是线性空间V 上的线性变换,如果Aε1-k ≠0,但A εk =0,求证:ε,A ε,, A ε1-k <k >0>线性无关.证 设有线性关系0121=+++-εεεk k A l A l l ,用A1-k 作用于上式,得1l A ε1-k =0<因A 0=εn 对一切n k ≥均成立>,又因为Aε1-k ≠0,所以01=l ,于是有01232=+++-εεεk k A l A l A l ,再用A 2-k 作用之,得2l Aε1-k =0.再由,可得2l =0.同理,继续作用下去,便可得021====k l l l ,即证ε,A ε,, Aε1-k <k >0>线性无关.11.在n 维线性空间中,设有线性变换A 与向量ε使得A ε1-n 0≠,求证A 在某组下的矩阵是⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0101010 . 证 由上题知,ε,A ε,A ε2,, Aε1-n 线性无关,故ε,A ε,A ε2,, A ε1-n 为线性空间V的一组基.又因为A ⋅+⋅+⋅=010εεεA A ε2+⋅+0 Aε1-n ,A <A ε>=ε⋅0+⋅0 A ε+⋅1 A ε2+⋅+0 A ε1-n ,…………………………… A 〔Aε1-n 〕=ε⋅0+⋅0 A ε+⋅0 A ε2+⋅+0 A ε1-n ,故A 在这组基下的矩阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0101010 . 12. 设V 是数域P 上的维线性空间,证明:与V 的全体线性变换可以交换的线性变换是数乘变换.证 因为在某组确定的基下,线性变换与n 级方阵的对应是双射,而与一切n 级方阵可交换的方阵必为数量矩阵kE,从而与一切线性变换可交换的线性变换必为数乘变换K.13. A 是数域P 上n 维线性空间V 的一个线性变换,证明:如果A 在任意一组基下的矩阵都相同,那么是数乘变换.证 设A 在基n εεε,,,21 下的矩阵为A=<ij a >,只要证明A 为数量矩阵即可.设X 为任一非退化方阵,且<n ηηη,,21>=<n εεε,,,21 >X, 则12,,,n ηηη也是V 的一组基,且A 在这组基下的矩阵是AX X 1-,从而有AX=XA,这说明A 与一切非退化矩阵可交换. 若取⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n X 211,则由A 1X =1X A 知ij a =0<i ≠j>,即得A=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn a a a2211, 再取2X =⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0001100001000010由A 2X =2X A,可得nn a a a === 2211.故A 为数量矩阵,从而A 为数乘变换.14.设321,,εεε,4ε是四维线性空间V 的一组基,已知线性变换A 在这组基下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201,1) 求A 在基42112εεη+-=,4443343222,,3εηεεηεεεη=+=--=下 的矩阵; 2) 求A 的核与值域;3) 在A 的核中选一组基,把它扩充为V 的一组基,并求A 在这组基下的矩阵; 4) 在A 的值域中选一组基, 把它扩充为V 的一组基, 并求A 在这组基下的矩阵. 解 1>由题设,知<4321,,,ηηηη>=<321,,εεε,4ε>⎪⎪⎪⎪⎪⎭⎫⎝⎛---2111011000320001,故A 在基4321,,,ηηηη下的矩阵为B=AX X 1-=12111011000320001-⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201⎪⎪⎪⎪⎪⎭⎫⎝⎛---2111011000320001 =⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----87103403403163831031034322332. 2> 先求A1-<0>.设∈ξ A1-<0>,它在321,,εεε,4ε下的坐标为<1χ,432,,χχχ>,且A ε在321,,εεε,4ε下的坐标为<0,0,0,0,>,则⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201⎪⎪⎪⎪⎪⎭⎫ ⎝⎛4321x x x x =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0000.因rank<A>=2,故由⎩⎨⎧=+++-=++032024321431x x x x x x x , 可求得基础解系为X 1=)0,1,23,2('--,X 2=)1,0,2,1('--. 若令1α=<321,,εεε,4ε>X 1,2α=<321,,εεε,4ε>X 2, 则12,αα即为A 1-<0>的一组基,所以A1-<0>=12(,)L αα.再求A 的值域A V.因为A 1ε=43212εεεε++-, A 2ε=432222εεε-+, A 3ε=432152εεεε+++, A 4ε3ε=4321253εεεε-++,rank<A>=2,故A 1ε ,A 2ε, A 3ε, A 4ε的秩也为2,且A 1ε ,A 2ε线性无关,故A 1ε ,A 2ε可组成A V 的基,从而A V=L<A 1ε ,A 2ε>.4) 由2>知12,αα是A 1-<0>的一组基,且知,1ε2ε,12,αα是V 的一组基,又<,1ε2ε, a 1, a 2>=<321,,εεε,4ε>⎪⎪⎪⎪⎪⎭⎫⎝⎛---10000100223101201, 故A 在基,1ε2ε,12,αα下的矩阵为B=11000100223101201-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---10000100223101201=⎪⎪⎪⎪⎪⎭⎫⎝⎛-00220021001290025.4> 由2>知A 1ε=43212εεεε++-, A 2ε=432222εεε-+ 易知A 1ε, A 2ε,43,εε是V 的一组基,且<A 1ε, A 2ε,43,εε>=<321,,εεε,4ε>⎪⎪⎪⎪⎪⎭⎫⎝⎛--1021012100210001, 故A 在基A 1ε, A 2ε,43,εε下的矩阵为C=11021012100210001-⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛---2122552131211201⎪⎪⎪⎪⎪⎭⎫⎝⎛--1021012100210001 =⎪⎪⎪⎪⎪⎭⎫⎝⎛000000002231291225. 15. 给定P 3的两组基⎪⎩⎪⎨⎧===)1,1,1()0,1,2()1,0,1(321εεε⎪⎩⎪⎨⎧--=-=-=)1,1,2()1,2,2()1,2,1(321ηηη, 定义线性变换A : A i ε=i η<i =1,2,3>,1) 写出由基321,,εεε到基321,,ηηη的过度矩阵; 2) 写出在基321,,εεε下的矩阵; 3) 写出在基321,,ηηη下的矩阵.解 1>由<321,,ηηη>=<321,,εεε>X,引入P 3的一组基1e =<1,0,0>, 2e =<0,1,0>, 3e =<0,0,1>,则<321,,εεε>=<1e ,2e ,3e >⎪⎪⎪⎭⎫ ⎝⎛101110121=<1e ,2e ,3e >A,所以<321,,ηηη>=<1e ,2e ,3e >⎪⎪⎪⎭⎫ ⎝⎛----111122221=<1e ,2e ,3e >B=<1e ,2e ,3e >A 1-B, 故由基321,,εεε到基321,,ηηη的过度矩阵为X= A 1-B=1101110121-⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----111122221=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---252112323123232. 2>因A <321,,εεε>=<321,,ηηη>=<321,,εεε>⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---252112323123232, 故A 在基321,,εεε下的矩阵为A=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---252112323123232. 4) 因A <321,,ηηη>=A <321,,εεε>X=<321,,ηηη>X,故A 在基321,,ηηη下的矩阵仍为X..16.证明⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ21与⎪⎪⎪⎪⎪⎭⎫⎝⎛n i ii λλλ21相似,其中<n i i i ,,,21 >是1,2,n , 的一个排列.证 设有线性变换A ,使A )21,,,(n εεε =)21,,,(n εεε ⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21=)21,,,(n εεε D 1, 则A < ,,21i i εε,n i ε>=< ,,21i i εε,n i ε>⎪⎪⎪⎪⎪⎭⎫⎝⎛n i ii λλλ21=< ,,21i i εε,n i ε>D 2, 于是D 1与D 2为同一线性变换A 在两组不同基下的矩阵,故⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ21与⎪⎪⎪⎪⎪⎭⎫⎝⎛n i ii λλλ21相似. 17.如果A 可逆,证明AB 与BA 相似. 证 因A 可逆,故A1-存在,从而A1-<AB>A=< A 1-A>BA=BA,所以AB 与BA 相似.18.如果A 与B 相似,C 与D 相似,证明:0000A B B D ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭与相似.证 由已知,可设B=X 1-AX, D=Y 1-CY ,则⎪⎪⎭⎫ ⎝⎛--1100Y X ⎪⎪⎭⎫⎝⎛C A 00⎪⎪⎭⎫ ⎝⎛Y X0=⎪⎪⎭⎫⎝⎛D B 00,这里⎪⎪⎭⎫ ⎝⎛--1100Y X =⎪⎪⎭⎫⎝⎛Y X001-,故⎪⎪⎭⎫ ⎝⎛C A 00与⎪⎪⎭⎫⎝⎛D B 00相似. 19.求复数域上线性变换空间V 的线性变换A 的特征值与特征向量.已知A 在一组基下的矩阵为:1>A=⎪⎪⎭⎫ ⎝⎛2543 2>A=⎪⎪⎭⎫ ⎝⎛-00a a 3>A=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------111111*********1 4>A=⎪⎪⎪⎭⎫⎝⎛---121101365 5>A=⎪⎪⎪⎭⎫ ⎝⎛001010100 6>A=⎪⎪⎪⎭⎫ ⎝⎛---031302120 7>A=⎪⎪⎪⎭⎫ ⎝⎛----284014013解 1>设A 在给定基1ε,2ε下的矩阵为A,且A 的特征多项式为A E -λ=2543----λλ=2λ-5λ-14=<7-λ><2+λ>,故A 的特征值为7,-2.先求属于特征值λ=7的特征向量.解方程组⎩⎨⎧=+-=-0550442121x x x x ,它的基础解系为⎪⎪⎭⎫ ⎝⎛11,因此A 的属于特征值7的全部特征向量为k 1ξ <k 0≠>,其中1ξ=1ε+2ε.再解方程组⎩⎨⎧=--=--0450452121x x x x ,它的基础解系为⎪⎪⎭⎫ ⎝⎛-54,因此A 的属于特征值-2的全部特征响向量为k 2ξ<k 0≠>,其中2ξ=41ε-52ε.2>设A 在给定基1ε,2ε下的矩阵为A,且当a=0时,有A=0,所以AE -λ=λλ00=2λ, 故A 的特征值为1λ=2λ=0.解方程组⎩⎨⎧=+=+0000002121x x x x ,它的基础解系为⎪⎪⎭⎫ ⎝⎛01,⎪⎪⎭⎫⎝⎛10,因此A 的属于特征值0的两个线性无关特征向量为1ξ=1ε,2ξ=2ε,故A 以V 的任一非零向量为其特征向量.当a ≠0时,AE -λ=λλa a -=2λ+a 2=<ai +λ><ai -λ>,故 A 的特征值为1λ=ai ,2λ= -ai .当1λ=ai 时,方程组⎩⎨⎧=+=-002121aix ax ax aix 的基础解系为⎪⎪⎭⎫⎝⎛-1i ,故A 的属于特征值ai 的全部特征向量为k 1ξ<k 0≠>,其中1ξ=-1εi +2ε.当2λ= -ai 时,方程组⎩⎨⎧=-=--002121aix ax ax aix 的基础解系为⎪⎪⎭⎫⎝⎛1i ,故A 的属于特征值-ai 的全部特征向量为k 2ξ <k 0≠>,其中2ξ=1εi +2ε.3>设A 在 给定基1ε,2ε,3ε,4ε下的矩阵为A,因为A E -λ=<2-λ>3<2+λ>,故A 的特征值为1λ=2λ=2,243-==λλ.当2=λ时,相应特征方程组的基础解系为X ⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1001,0101,0011321X X ,故A 的属于特征值2的全部特征向量为11εk +22k ε+k33ε <k 321,,k k 不全为零>,其中1ξ=1ε+2ε,2ξ=1ε+3ε,3ξ=1ε+4ε.当2-=λ时,特征方程组的基础解系为X =4⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1111,故A 的属于特征值-2的全部特征向量为k 4ξ <k 0≠>,其中4ξ=1ε-2ε-43εε-. 4) 设A 在给定基321,,εεε下的矩阵为A,因A E -λ==+-----12111365λλλ43-λ422++λλ=<2-λ><31--λ><31+-λ>,故A 的特征值为1λ=2,2λ=3λ.当1λ=2时, 方程组⎪⎩⎪⎨⎧=+--=-+=+--032020363321321321x x x x x x x x x 的基础解系为⎪⎪⎪⎭⎫⎝⎛-012,故A 的属于特征值2的全部特征向量为k 1ξ <k 0≠>,其中1ξ=12ε-2ε.当λ=1+3时, 方程组⎪⎩⎪⎨⎧=++--=-++=+-+-0)32(20)31(036)34(321321321x x x x x x x x x 的基础解系为⎪⎪⎪⎭⎫⎝⎛--3213,故A的属于特征值1+3的全部特征向量为k 2ξ <k 0≠>,其中2ξ=13ε-2ε+<23->3ε.当λ=1-3时, 方程组⎪⎩⎪⎨⎧=-+--=--+=+---0)32(20)31(036)34(321321321x x x x x x x x x 的基础解系为⎪⎪⎪⎭⎫ ⎝⎛+-3213,故A的属于特征值13-的全部特征向量为k 3ξ <k 0≠>,其中3ξ=13ε-2ε+<23+>3ε. 5) 设A 在给定基321,,εεε下的矩阵为A,因A E -λ=λλλ0101010---=<1-λ>2<1+λ>,故A 的特征值为1,1321-===λλλ.当121==λλ,方程组⎩⎨⎧=+-=-003131x x x x 的基础解系为,101⎪⎪⎪⎭⎫ ⎝⎛010⎛⎫⎪⎪ ⎪⎝⎭,故A 的属于特征值1的全部特征向量为112212(,)k k k k ξξ+不全为零,其中311εεξ+=,22εξ=.当13-=λ时,方程组⎪⎩⎪⎨⎧=--=-=--002031231x x x x x 的基础解系为101⎛⎫ ⎪⎪ ⎪-⎝⎭,故A 的属于特征值-1的全部特征向量为)0(3≠k k ξ,其中313εεξ-=. 6) 设A 在给定基321,,εεε下的矩阵为A,因A E -λ==---λλλ313212)14(2+λλ=)14)(14(i i +-λλλ,故A 的特征值为i i 14,14,0321-===λλλ.当01=λ时,方程组⎪⎩⎪⎨⎧=+=-=--0303202213132x x x x x x 的基础解系为312⎛⎫⎪- ⎪ ⎪⎝⎭,故A 的属于特征值0的全部特征向量为)0(1≠k k ξ,其中321123εεεξ+-=.当i 142=λ时,该特征方程组的基础解系为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+-+101432146ii ,故A 的属于特征值i 14的全部特征向量为)0(2≠k k ξ,其中321210)1432()146(εεεξ-+-++=i i .当i 14-=λ时,该特征方程组的基础解系为⎪⎪⎪⎪⎪⎭⎫⎝⎛----101432146ii ,故A 的属于特征值i 14-的全部特征向量为)0(3≠k k ξ,其中321310)1432()146(εεεξ---+-=i i .7) 设A 在给定基321,,εεε下的矩阵为A,因A E -λ=28414013+-+--λλλ=<1-λ>2<2+λ>,故A 的特征值为2,1321-===λλλ.当121==λλ,该特征方程组的基础解系为3620⎛⎫ ⎪- ⎪ ⎪⎝⎭,故A 的属于特征值1的全部特征向量为)0(1≠k k ξ,其中32112063εεεξ+-=.当23-=λ,该特征方程组的基础解系为001⎛⎫ ⎪⎪ ⎪⎝⎭,故A 的属于特征值-2的全部特征向量为)0(2≠k k ξ,其中32εξ=.20.在上题中,哪些变换的矩阵可以在适当的基下变成对角形?在可以化成对角形的情况下,写出相应的基变换的过度矩阵T,并验算T1-AT.解已知线形变换A 在某一组基下为对角形的充要条件是有n 个线形无关的特征向量,故上题中1>~6>可以化成对角形,而7>不能.下面分别求过渡矩阵T. 1) 因为12(,)ξξ=<21,εε>⎪⎪⎭⎫⎝⎛-5141,所以过渡矩阵T=⎪⎪⎭⎫⎝⎛-5141,T 1-AT=⎪⎪⎪⎪⎭⎫ ⎝⎛-91919495⎪⎪⎭⎫ ⎝⎛2543⎪⎪⎭⎫ ⎝⎛-5141=⎪⎪⎭⎫ ⎝⎛-2007. 2)0,a =当时已是对角型.⎪⎪⎭⎫ ⎝⎛-=≠11),(),(,02121i i a εεξξ有时当,过渡矩阵T=⎪⎪⎭⎫⎝⎛-11i i , T 1-AT=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎭⎫⎝⎛-ai ai i i a a i i001100212212. 3>因为<4321,,,ξξξξ>=<4321,,,εεεε>⎪⎪⎪⎪⎪⎭⎫⎝⎛---1100101010011111,过渡矩阵T=⎪⎪⎪⎪⎪⎭⎫⎝⎛---1100101010011111, T 1-AT=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-2222. 4>因为<),,321ξξξ=<⎪⎪⎪⎭⎫ ⎝⎛+----32320111332),,321εεε, 过渡矩阵T=⎪⎪⎪⎭⎫ ⎝⎛+----32320111332,T ⎪⎪⎪⎭⎫⎝⎛-+=-313121AT .5>因为 <),,321ξξξ=<321,,εεε>⎪⎪⎪⎭⎫⎝⎛-101010101,过渡矩阵T=⎪⎪⎪⎭⎫⎝⎛-101010101,11100011011002201001001001011100101001022T AT -⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪== ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭-⎪⎝⎭.6>因为 <⎪⎪⎪⎪⎭⎫ ⎝⎛----+---+=101021432143211461463),,(),,321321i i i i εεεξξξ,即过渡矩阵为 T=⎪⎪⎪⎪⎭⎫⎝⎛----+---+101021432143211461463i i i i ,且T ⎪⎪⎪⎭⎫ ⎝⎛-=-i i AT 140001401. 21.在P[x]n <n>1>中,求微分变换D 的特征多项式,并证明D 在任何一组基下的矩阵都不可能是对角阵.解 取P[x]n 的一组基1,x,21,...,2(1)!n x x n --,则D 在此基下的矩阵为 D=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0 (00)01...000...............0...1000 (010),从而n D E λλλλλ=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=-...0001...000...............0...100 01, 故D 的特征值是n (0=λ重>,且D 的属于特征值0的特征向量ξ只能是非零常数.从而线性无关的特征向量个数是1,它小于空间的维数n,故D 在任一组基下的矩阵都不可能是对角形.22.设 A=142034043⎛⎫ ⎪- ⎪ ⎪⎝⎭,求A k.解:因为=---+---=-34430241λλλλA E <)5)(5)(1+--λλλ,故A 的特征值为5,5,1321-===λλλ,且A 的属于特征值1的一个特征向量为X '1)0,0,1(=,A 的属于特征值5的一个特征向量为X '2)2,1,2(=,A 的属于特征值-5 的一个特征向量为X '3)1,2,1(-=.于是只要记T=<X ⎪⎪⎪⎭⎫ ⎝⎛-=120210121),,321X X ,则T B AT =⎪⎪⎪⎭⎫ ⎝⎛-=-5000500011,且 B ⎪⎪⎪⎭⎫ ⎝⎛-=k kk )5(00050001. 于是A ==-1T TB k k ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-5152052510101)5(00050001120210121k k =[][][][][][]⎪⎪⎪⎭⎫⎝⎛-+⋅-+⋅⋅-+⋅⋅-+⋅--+⋅-+⋅⋅-+-+---+-k K k k k k k k k k k k )1(45)1(1520)1(152)1(41501)1(45)1(1521111111111. 23.设εεε,,2143,ε是四维线性空间V 的一个基,线性变换A 在这组基下的矩阵为A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------=711310252921323133425.1) 求A 的基432112εεεεη+++=,321232εεεη++=,33εη=,44εη=下的矩阵; 2) 求A 的特征值与特征向量; 3) 求一可逆矩阵T,使TAT 1-成对角形.解 1>由已知得<X ),,,(1001011100320021),,,(),,,432143214321εεεεεεεεηηηη=⎪⎪⎪⎪⎪⎭⎫⎝⎛=, 故求得A 在基4321,,,ηηηη下的矩阵为B=X ⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-2500232700450056001AX .2> A 的特征多项式为=)(λf )1)(21(2--=-=-λλλλλB E A E ,所以A 的特征值为1,21,04321====λλλλ. A 的属于特征值0=λ的全部特征向量为2211ξξk k +,其中21,k k 不全为零,且4212εεεξ+--=.A 的属于特征值21=λ的全部特征向量为33ξk ,其中 03≠k ,且321324εεεξ+--=+64ε.A 的属于特征值1=λ的全部特征向量为44ξk ,其中04≠k ,且4321423εεεεξ-++=.3〕因为〔⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=2610110112133412),,,(),,,43214321εεεεξξξξ,所求可逆阵为 T=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----2610110112133412,且 T ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=-121001AT 为对角矩阵. 24.1>设21,λλ是线性变换A 的两个不同特征值,21,εε是分别属于21,λλ的特征向量,证明:21εε+不是A 的特征向量;2>证明:如果线性空间V 的线性变换A 以V 中每个非零向量作为它的特征向量,那么A 是数乘变换.证 1>由题设知A 111)(ελε=, A 222)(ελε=, 且21λλ≠,若21εε+是A 的特征向量,则存在0≠λ使 A 〔21εε+〕=)(21εελ+=21λελε+, A 〔21εε+〕=2211ελελ+=21λελε+, 即 0)()(2211=-+-ελλελλ.再由21,εε的线性无关性,知021=-=-λλλλ,即21λλλ==,这是不可能的. 故21εε+不是A 的特征向量.2〕设V 的一组基为12,,...,n εεε,则它也是A 的n 个线性无关的特征向量,故存在特征值λλ,12,,...,n λ 使A i i i ελε=)(),...,2,1(n i =.由1〕即知12...n k λλλ====.由已知,又有A ααk =)()(V ∈∀α,即证A 是数乘变换.25.设V 是复数域上的n 维线性空间,A ,B 是V 上的线性变换,且AB =BA .,证明: 1) 如过0λ是A 的一个特征值,那么0λV 是B 的不变子空间; 2) A ,B 至少有一个公共的特征向量.证 1>设0λαV ∈,则A 0αλα=,于是由题设知 A <B α>=B <A α>=B <=)0αλ0λ<B α>, 故B α∈0λV ,即证0λV 是B 的不变子空间.3) 由1>知0λV 是B 的不变子空间,若记B|0λV =B 0,则B 0也是复数域上线性空间0λV 的一个线性变换,它必有特征值,0μ使B 0B =0μB <B ∈0λV ,且B 0≠>, 显然也有A <B >=0μB ,故B 即为A 与B 的公共特征向量.26. 设V 是复数域上的n 维线性空间,而线性变换A 在基n εεε,...,,21下的矩阵是一若当块.证明:1) V 中包含1ε的A -子空间只有V 自身; 2) V 中任一非零A -子空间都包含n ε;3) V 不能分解成两个非平凡的A -子空间的直和.证 1>由题设,知A <n εεε,...,,21>=<n εεε,...,,21>⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⋅λλλ1.....1,即⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=--n n nn n a A A A λεεελεεελεεελεε11322211.........................,设W 为A -子空间,且∈1εW,则∈1εA W, 进而有∈-=112λεεεA W ∈⇒2εA W, ∈-=223λεεεA W ∈⇒3εA W,………………………………….∈-=--11n n n A λεεεW,故W=L{n εεε,...,,21}=V.2>设W 为任一非零的A -子空间,对任一非零向量∈αW,有 不妨设01≠κ,则A nn A A A εκεκεκα+++= (2211)=1κ<21ελε+>+2κ<32ελε+>+…+n n λεκ =∈++++-n n εκεκεκλα13221...W 于是 ∈+++-n n εκεκεκ13221...W同理可得 ∈+++-n n εκεκεκ24231...W,…,∈n εκ1W 从而∈n εW,即证V 中任一非零的A -子空间W 都包含n ε. 3〕设W ,1W 2是任意两个非平凡的A -子空间,则由2〕知∈n εW 1且∈n εW 2,于是∈n εW ⋂1W 2,故V 不能分解成两个非平凡的A -子空间的直和. 27.求下列矩阵的最小多项式:⎪⎪⎪⎭⎫⎝⎛001010100)1, 2>⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------3131131331311313 解 1>设=A ⎪⎪⎪⎭⎫⎝⎛001010100,因为A 2-E =0,是所以12-λA 的零化多项式,但A -E 0≠,A +E 0≠,故A 的最小多项式为1)(2-=λλA m .2>因为4)(λλλ=-=A E f ,所以A 的最小多项式为432,,,λλλλ之一,代入计算可得A的最小多项式为2)(λλ=A m .二 补充题参考解答1. 设A,B 是线性变换, A 2= A, B 2=B 证明:1) 如果<A+B >2 =A+B 那么AB=0; 2) 如果, AB=BA 那么<A+B-AB>2=A+B-AB. 证 1>因为A 2= A, B 2=B, <A+B >2=A+B 由<A+B >2 =<A+B> <A+B>= A 2 +AB+BA+ B 2, 故A+B= A +AB+BA+ B, 即AB+BA=0.又2AB=AB+AB=AB-BA= A 2B-B 2A= A 2B+ABA= A <AB+BA>= A0=0 所以AB=0.2> 因为A 2= A, B 2=B, AB=BA所以<A+B-AB>2= <A+B-AB> <A+B-AB>= A 2+BA- AB A+ AB+ B 2- AB 2-A 2B-BAB +ABAB = A+AB - AA B + AB+ B- AB-AB-ABB +AABB = A+AB - A B + AB+ B- AB-AB-AB +AB = A+B- AB .2. 设V 是数域P 上维线性空间,证明:由V 的全体变换组成的线性空间是2n 维的.证 21112121n n n n n n n nn E E E E E E P P n ⨯⨯因,,,,,,,是的一组基,是维的.V 的全体线性变换与n n P ⨯同构,故V 的全体线性变换组成的线性空间是2n 维的. 3. 设A 是数域P 上n 维线性空间V 的一个线性变换,证明:1) 在][x P 中有一次数2n ≤的多项式)(x f ,使0)(=A f ; 2) 如果)(,0)(==A g A f ,那么)(=A d ,这里.)()()(的最大公因式与是x g x f x d ;3) A 可逆的充分必要条件是:有一常数项不为零的多项式()()0f x f A =使.证 1>因为P 上的n 维线性空间V 的线性变换组成的线性空间是2n 维的,所以2n +1个线性变换A2n ,A12-n ,、、、,A,E,一定线性相关,即存在一组不全为零的数22101,,,,n n a a a a -使2n a A 2n +12-n a A12-n ++1a A+0a E=0,令22221101()n nn n f x a xa x a x a --=++++,且22(0,1,2,,)i a i n f x n =∂≤不全为零,(()).这就是说,在][x P 中存在一次数2n ≤的多项式)(x f ,使0)(=A f .即证. 2>由题设知)()()()()(x g x v x f x u x d +=因为0)(,0)(==A g A f , 所以)()()()()(A g A v A f A u A d +==0.3>必要性.由1>知,在][x P 中存在一次数2n ≤的多项式)(x f ,使0)(=A f .即2n a A 2n +12-n a A 12-n++1a A+0a E=0,若则,00≠a 22221101()n nn n f x a x a xa x a --=++++即为所求.若00a =,2n a A 2n +12-n a A 12-n++1a A+0a E=0,因 A 可逆,故存在右乘等式两边也存在,用1111)()()(,----=j j j A A A A ,得2n a Ajn-2+12-n a A12--j n+…+j a E=0令=)(x f 2n a jnx-2+12-n a 12--j nx +…+)0(≠j j a a ,即)(x f 为所求.充分性.设有一常数项不为零的多项式22221101()n n n n f x a x a xa x a --=++++)0(0≠a 使0)(=A f ,即00111=++++--E a A a Aa A a m m m m , 所以E a A a Aa A a m m m m 0111-=+++-- , 于是E A E a A a a m m =⋅++--)(1110, 又⋅A E E a A a a m m =++--)(1110, 故A 可逆.4. 设A 是线性空间V 上的可逆线性变换.1) 证明: A 的特征值一定不为0;2) 证明:如果λ是的A 特征值,那么λ1是1-A 的特征值. 证 1>设可逆线性变换A 对应的矩阵是A,则矩阵A 可逆,A 的特征多项式)(λf 为A a a a f n n nn n )1()()(12211-+++++-=- λλλ,A 可逆 ,故0≠A .又因为A 的特征值是的全部根,其积为0≠A ,故A 的特征值一定不为0. 2>设λ是的A特征值,那么存在非零向量ξ,使得111111,A A A A A ξλξξλξξξλλ----===用作用之,得(),于是,即是的特征值.5.设A 是线性空间V 上的线性变换,证明;A 的行列式为零的充要条件是A 以零作为一个特征值.证:设线性变换A 矩阵为A,则 A 的特征值之积为A .必要性,设0=A ,则A 的特征值至少有一个为零,即一另为一个特征值. 充分性,设A 有一个特征值00=λ,那么0=A .6. 设A 是一个n 阶下三角矩阵,证明:1) 如果)2,1,,(n j i j i a a jj ii =≠≠,那么A 相似于一对角矩阵;2) 如果a aa nn === 2211,而至少有一)(00000j i a j i >≠,那么A 不与对角矩阵相似.证:1>因为A 的多项式特征是()f λ=)())((2211a a a nn A E ---=-λλλλ ,又因)2,1,,(n j i j i aa jjii=≠≠,故A 有n 个不同的特征值,从而矩阵A 一定可对角化,故A 似于对角矩阵.2>假定 A=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛a a aa j i1111110与对角矩阵B=⎪⎪⎪⎪⎪⎭⎫⎝⎛λλλn21相似, 则它们有相同的特征值λλλn,,,21,因为A 的特征多项式()f λ=()na 11-λ,所以a n 1121====λλλ ,由于 B=⎪⎪⎪⎪⎪⎭⎫⎝⎛a aa 111111=E a11是数量矩阵,它只能与自身相似,故A 不可能与对角矩阵相似.7.证明:对任一n n ⨯复系数矩阵A ,存在可逆矩阵T,使AT T 1- 证:存在一组基εεεεsr s r ,,,,11111 ,,,使与矩阵A 相应的线性变换A 在该基下的矩阵成若尔当标准形J,且⎪⎪⎩⎪⎪⎨⎧=+=ελεεελεr r A A 111111211111, ⎪⎪⎩⎪⎪⎨⎧=+=ελεεελεr r A A s s s s s s s s 1211 ,若过度矩阵为P,则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-S J J J J AP P211, 重排基向量的次序,使之成为一组新基1111,,,,,,1s sr r s εεεε ,则由新基到旧基的过渡矩阵为Q=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛s r r r B B B21,其中B j r =jr ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛111 , 于是 A 1111,,,,,,(1s sr r s εεεε >=1111,,,,,,(1s sr r s εεεε >J ', 故A 在此新基下的矩阵即为上三角形 即存在可逆矩阵T=PQ,使AT T 1-成上三角形.8. 如果s A A A ,,,21 是线性空间V 的两两不同的线性变换,那么在V 中必存在向量a ,使a A a A a A s ,,,21 也两两不同.证 令V }{a A A V jiij =∈=ααα, <s j i ,2,1,=>,因为ij j i V A A ∈==0,000,故`ij V 非空.又因为s A A A ,,,21 两两不同,所以对于每两个j i A A ,而言,总存在一个向量β,使ββj i A A ≠,故ij V 是V 的非空真子集.设则,,ij V ∈βαββααj i i A A A A ==,,于是)()(βαβα+=+j i A A ,即ij V ∈+βα.又)()(ααααk A kA kA k A j j i i ===,于是ij V k ∈α,故ij V 是V 的真子空间. 1>如果ij V 都是V 的非平凡子空间,在V 中至少有一个向量不属于所有的ij V ,设),,,2,1,(s j i V ij =∉α则ααj i A A ≠<s j i ,,2,1, =>,即证: 存在向量α使αααs A A A ,,,21 两两不同.2>如果{ij V }中有V 的平凡子空间00j i V ,则00j i V 只能是零空间.对于这种00j i V ,只要取0α≠,就有ααj i A A ≠,故这样的00j i V 可以去掉.因而问题可归于1>,即知也存在向量α使αααs A A A ,,,21 两两不同.,.,:A V W V AW W 9.设是有限维线性空间的线性变换是的子空间表示由中向量的像组成的子空间证明)dim ())0(dim ()dim (1W W A AW =⋂+-.证 因为故上的线形变换也是,W A W A ⋂-)0(1是.的子空间W 设W A ⋂-)0(1的维数 为r,W 的维数为s.今在W A ⋂-)0(1中取一组基,,,21r εεε 把它扩充成W 的一组基,,,21r εεε s r εε ,1+, 则),,,,(121s r r A A A A A L AW εεεεε +==),(1s r A A L εε +,且s r A A εε,1 +线性无关,所以)dim ())0(dim ()dim (1W W A AW =⋂+-. 10.设,,A B n V 是维线性空间的两个线性变换证明:rank <AB >rank ≥<A >+n B rank -)(.证 在分别为在这组基下对应的矩阵设线性变换中取一组基B A V ,,A,B,则线性变换对应的矩阵为AB AB.因为B A ,线性变换,的秩分别等于矩阵AB A,B,AB 的秩,所以对于矩阵A,B,AB 有rank <AB>rank ≥<A>+n rank -)B (,故对于B A ,线性变换,也有ABrank <AB >rank ≥<A >+n B rank -)(.11.设22,,A A B B ==证明:1>,A B AB B BA A ==与有相同值域的充要条件是; 2>,A B AB A BA B ==与有相同的核充要条件是. 证1>必要性,若βαβααA B V AV BV B V BV AV =∈=∈∈=使故存在向量则任取,,,,,于是αβββB A A AB ===2,ββα=A 故有的任意性由,.同理可证 A A =β. 充分性,若=AB B ,A BA =,任取则有,V AV Aa ⊂∈BV Aa B BAa Aa ∈==)(,于是BV AV ⊂,同理可证AV BV ⊂,故BV AV =.。
第七章 练习题一、填空: 第一节1、微分方程()1y x 2='+'y 的阶 一 __.2、0)()67(=++-dy y x dx y x 是 一 阶常微分方程. 3、01"=+xy 是 二 阶常微分方程. 4、微分方程2'=y x 的通解为 c x y +=2 。
5、 153'+=+x y xy 是 1 阶常微分方程 6、与积分方程()dx y x f y x x ⎰=0,等价的微分方程初值问题是0|),,(0'===x x y y x f y7、223421xy x y x y x ''''++=+是 3 阶微分方程。
8、方程222(1)1xxd ye e dx+⋅+=的通解中应包含的任意常数的个数为 29、微分方程()1/22///=+y x y 的通解中含有任意常数的个数是 310、方程()01///=+--y xy y x 的通解中含有 2 个任意常数 11、 微分方程03322=+dx x dy y 的阶是 1 第二节 1、微分方程x dye dx=满足初始条件(0)2y =的解为1x y e =+. 2、微分方程y x e y -=2/的通解是 C e e xy +=221 3、微分方程2dyxy dx=的通解是 2x y Ce = 4、一阶线性微分方程23=+y dx dy的通解为 323x Ce -+5、微分方程0=+'y y 的通解为 x ce y -=6、 微分方程323y y ='的一个特解是 ()32+=x y第三节1、tan dy y ydx x x=+通解为arcsin()y x Cx =.第五节1、微分方程x x y cos "+=的通解为213cos 6C x C x x y ++-= 2、微分方程01=+''y 的通解是( 21221C x C x y ++-= )3、 微分方程044=+'+''y y y 的通解是( x e C x C y 221)(-+= )4、微分方程032=-'+''y y y 的通解是( x x e C e C y 231+=- )5、 方程x x y sin +=''的通解是=y 213sin 61C x C x x ++-第六节1、 一阶线性微分方程x e y dxdy-=+的通解为 ()C x e y x +=- 2、已知1=y 、x y =、2x y =是某二阶非齐次线性微分方程的三个解,则该方程的通解为)1(21221c c x c x c y --++=或1)1()1(221+-+-=x c x c y第七节1、 微分方程230y y y '''--=的通解为x x e C e C y 321+=-.2、 分方程2220d xx dtω+=的通解是 12cos sin C t C t ωω+3、微分方程02=+'-''y y y 的通解为 12()x y c c x e =+第八节1、设二阶常系数线性微分方程'''x y y y e αβγ++=的一个特解为2(1)x x y e x e =++,则,,αβγ的值是3,2,1αβγ=-==-2、微分方程2563x y y y xe -'''++=的特解可设为=*y *201()x y x b x b e -=+二、选择 第一节1、方程222(1)1xxd ye e dx+⋅+=的通解中应包含的任意常数的个数为( A )(A ) 2 (B ) 4 (C ) 3 (D ) 02、方程422421x xd y d ye e dx dx+⋅+=的通解中应包含的任意常数的个数为( B )(A ) 2 (B ) 4 (C ) 3 (D ) 03、微分方程()1/22///=+y x y 的通解中含有任意常数的个数是( C )A 、1B 、2C 、3D 、54、微分方程1243/2///+=++x y x y x xy 的通解中含有任意常数的个数是( C ) A 、1 B 、2 C 、3 D 、55、微分方程34()0'''-=x y yy 的阶数为(B ) (A) 1 (B) 2 (C) 3 (D) 46、下列说法中错误的是( B )(A) 方程022=+''+'''y x y y x 是三阶微分方程; (B) 方程220()x y yy x ''-+=是二阶微分方程;(C) 方程0)3()2(22232=+++dy y x y dx xy x 是全微分方程; (D) 方程()()dyf xg y dx=是可分离变量的微分方程. 7、方程()01///=+--y xy y x 的通解中含有( B )个任意常数A 、1B 、2C 、3D 、4 8、 微分方程3447()5()0y y y x '''+-+=的阶数为( B ) A .1 B . 2 C .3 D .49、微分方程()043='-'+''y y y x y xy 的阶数是( A ).A. 2B. 4C. 5D. 310、 微分方程03322=+dx x dy y 的阶是( A ). A. 1 B. 2 C. 3 D. 0 11、 微分方程323y y ='的一个特解是( B )A. 13+=x yB. ()32+=x y C. ()3C x y += D. ()31+=x C y12、 方程322321x xd y d ye e dx dx+⋅+=的通解中应包含的任意常数的个数为( C )(A ) 2 (B ) 4 (C ) 3 (D ) 0第二节1、微分方程20y y '-=的通解为(B )A .sin 2y c x =B .2x y ce =C .24x y e =D .x y e =2、微分方程0ydx xdy -=不是 ( B )A. 线性方程B. 非齐次线性方程C. 可分离变量方程D. 齐次方程 3、微分方程0=+'y y 的通解为( D )A .x y e =B . x ce y -=C . x e y -=D . x ce y -=4、一阶常微分方程e yx dxdy -=2满足初始条件00==x y 的特解为( D ) A x ce y = B x ce y 2= C 1212+=x y e e D ()1212+=x y e e5、微分方程02=+'y y 的通解为( D )A .x e y 2-=B .x y 2sin =C .x ce y 2=D .x ce y 2-= 6、 微分方程 ydy x xdx y ln ln =满足11==x y 的特解是( C )A. 0ln ln 22=+y xB. 1ln ln 22=+y xC. y x 22ln ln =D. 1ln ln 22+=y x第五节1、 微分方程2(1)0y dx x dy --=是( C )微分方程.A .一阶线性齐次B .一阶线性非齐次C .可分离变量D .二阶线性齐次第六节1、已知x y cos =,xe y =,x y sin =是方程()()()xf y x Q dx dyx P dxy d =++22的三个解,则通解为 ( C )A x c e c x c y x sin cos 321++=B ()()x x e x c e x c y -+-=sin cos 21C ()x c x c e c c y x sin cos 12121--++=D ()x c x c e c c y x sin cos 12121++++=第七节1、微分方程02=+'-''y y y 的通解为( D )A .12x x y c e c e -=+;B .12()x y c c x e -=+;C .12cos sin y c x c x =+;D .12()x y c c x e =+ 2、下面哪个不是微分方程''5'60y y y +-=的解( D ) (A )65x x e e -+ (B )x e (C )6x e - (D )6x x e e -+3、 已知2,sin ,1x y x y y ===是某二阶非齐次常微分方程的三个解,则该方程的通解为( D ) A .221sin 1x C x C y ++=B .2321sin xC x C C y ++=C .21221sin C C x C x C y --+=D .212211sin C C x C x C y --++= 4、已知x y x y y cos ,sin ,1===是某二阶非齐次常微分方程的三个解,则该方程的通解为( D )A .x C x C C y cos sin 321++=B .xC x C C y cos sin 321++= C .2121sin cos C C x C C y --+=D .21211cos sin C C x C x C y --++= 5、微分方程0y y ''+=的通解为( C )(A) 12x x y c e c e -=+; (B) 12()x y c c x e -=+; (C) 12cos sin y c x c x =+; (D) 12()x y c c x e =+6、已知1=y ,x y =,2x y =是某二阶非齐次线性微分方程的三个解,则方程的通解为( C ) A 2321x C x C C ++ B 21221C C x C x C --+ C )1(21221C C x C x C --++ D ()()2122111C C x C x C ++-+-7、已知x y y x 4='+''的一个特解为2x ,对应齐次方程0='+''y y x 有一个特解为x ln ,则原方程的通解为 ( A )A 、221ln x c x c ++ B 、221ln x x c x c ++ C 、221ln x e c x c x ++ D 、221ln x e c x c x ++- 8、微分方程04=+''y y 的通解为( A )A .x c x c y 2sin 2cos 21-= ;B .x e x c c y 221)(-+=C x x e c e c y 2221-+=;D .x e x c c y 221)(+=9、 分方程2220d xx dtω+=的通解是( A );A .12cos sin C t C t ωω+B .cos t ωC .sin t ωD .cos sin t t ωω+第八节1、微分方程x e y dxyd =-22的一个特解应具有的形式为 DA ()x e b ax +B ()x e bx ax +2C x aeD x axe2、设二阶常系数线性微分方程'''x y y y e αβγ++=的一个特解为2(1)x x y e x e =++,则,,αβγ的值是( C )(A )3,2,1αβγ===- (B )3,2,1αβγ==-=- (C )3,2,1αβγ=-==- (D )3,2,1αβγ=-=-= 三、计算第二节1、求微分方程0ln '=-y y xy 的通解 解:分离变量xdxy y dy =ln ...........2分 两边积分可得 1ln ln ln C x y += ..........4分 整理可得Cx e y = .........6分 5、计算一阶微分方程ln 0x x y y '⋅-=的通解。
第七章习题答案习题7.01.下列各种情形中,P 为E 的什么点?(1)如果存在点P 的某一邻域()U P ,使得()⊂c U P E (c E 为E 的余集); (2)如果对点P 的任意邻域()U P ,都有, ()(),C U P E U P E φφ≠≠; (3)如果对点P 的任意邻域()U P ,都有. 解 (1)P 为E 的外点;(2)P 为E 的边界点;(3)P 为E 的聚点。
2.判定下列平面点集的特征(说明是开集、闭集、区域、还是有界集、无界集等?)并分别求出它们的导集和边界.(1) (){},0≠x y y ;(2) (){}22,620≤+≤x y x y ; (3) (){}2,≤x y y x ;(4) ()(){}()(){}2222,11,24+-≥⋂+-≤x y x y x y x y .解 (1) 是开集,是半开半闭区域,是无界集,导集为2R ,边界集为(){},0=x y y ;(2)既不是开集也不是闭集,是半开半闭区域,是有界集,导集为(){}22,620≤+≤x y x y ,边界集为(){}2222,=6=20++,x y x y x y ;(3) 是闭集,是半开半闭区域,是无界集,导集为集合本身,边界集为(){}2,=x y y x ;是闭集,是闭区域,是有界集,导集为集合本身,边界集为()()(){}2222,11,24+-=+-=x y x y x y习题7.11. 设求1. 解 令,=-=yu x y v x,解得,11==--u uv x y v v,故()22,11⎛⎫⎛⎫=- ⎪ ⎪--⎝⎭⎝⎭u uv f u v v v ,即()()21+,1=-u v f u v v ,所以,()()21+y ,1=-x f x y y φ≠-}){()(P E P U 22,,y f x y x y x ⎛⎫-=- ⎪⎝⎭(,).f x y2.已知函数()22,cot =+-x f x y x y xy y,试求(),f tx ty .2. 解 因为()22,cot =+-y f x y x y xy x,所以,()2222,cot ,=+-t y f tx ty tx ty txty t x即()()222,cot =+-y f tx ty t x y t xy x.3.求下列各函数的定义域 (1) 25)1(=-+z ln y xy ;(2) =z ;(3) =z(4) )0;=>>u R r(5) =u3. 解 (1)(){}2,510-+>x y yxy ;(2)(){},0->x y x y ;(3)(){}2,≥x y x y ;(4)(){}22222,<++≤x y r x y z R ;(5)(){}222,≤+x y z x y4. 求下列各极限:(1) ()()233,0,31lim →-+x y x yx y ;(2)()(,1,1ln lim→+x x y y e(3)()(,0,0lim→x y(4)()(,0,0lim→x y ;(5)()()(),0,2sin lim→x y xy x ;(6)()()()()222222,0,01cos lim→-++x y x y x y xy e.4. 解 (1)()()2333,0,31101lim 0327→--==++x y x y x y ;(2)()(()1,1,1ln ln 11lim2→+++===x x y y e e e (3)()()()(,0,0,0,0limlim→→=x y x y ()(,0,01lim4→==x y (4)()(()()),0,0,0,01limlim→→=x y x y xy xy()()),0,0=lim1=2→+x y(5)()()()()()(),0,2,0,2sin sin limlim 122→→=⋅=⋅=x y x y xy xy y x xy(6)()()()()()()()()()222222222222222,0,0,0,01cos 1cos limlim→→-+-++=⋅++x y x y x y x y x y x y xy xy eex y()()()()()()()2222222022,0,0,0,01cos 10limlim=02→→-++=⋅⋅=+x y x y x y x y xy e exy5.证明下列极限不存在: (1)()(),0,0lim→-+x y x yx y ;(2)()(),0,0lim→+-x y xyxy x y .5. (1) 解 令=y kx ,有()(),0,001limlim 1→→---==+++x y x x y x kx kx y x kx k ,k 取不同值,极限不同,故()(),0,0lim→-+x y x yx y 不存在.(2) 解令=x y()()22,0,00lim lim 1→→==+-x y x xy x xy x yx ;令2=x y()()()()22,0,02,0,0022lim lim lim 0221→→→===+-++x y y y y xy y y xy x y y y y ;01≠,故()(),0,0lim→+-x y xyxy x y不存在.6.函数=y z a 为常数)在何处间断?6. 解 因为=y z 是二元初等函数,且函数只在点集(){,x y y 上无定义,故函数在点集(){,x y y 上间断.7.用 εδ- 语言证明()(,0,0lim0→=x y .7. 证明 对0∀>ε,要使220-=≤=<ε2<ε,取=2δε<δ0-<ε,所以()(,0,0lim 0→=x y习题7.21. 设()(),sin 1arctan ,π==+-xy xz f x y e y x y 试求()1,1x f 及()1,1y f1. 解()221,sin arctan 1=+++xy x x yf x y ye y xx yyπ22=sin arctan+++xy x xy ye y y x y π.()()222,sin cos 11-=++-+xy xyy x y f x y xe y e y x x yπππ 222sin cos -=+++xyxyx x xe y e y x y πππ()()1,1,1,1∴=-=-x y f e f e2.设(),ln 2⎛⎫=+ ⎪⎝⎭y f x y x x ,求()1,0'x f ,()1,0'y f .2. 解()()222122,22--==++x yx y x f x y y x x y x x()2112,22==++y x f x y yx y x x()()11,011,02∴==,x y f f . 3.求下列函数的偏导数(1) 332=++z x y xy ,(2) ()1=+xz xy , (3) ()222ln =+z y x y ,(4) ln tan=y z x, (5) ()222ln =+z x x y ;(6)=z (7) ()sec =z xy ;(8) ()1=+yz xy ;(9) ()arctan =-zy x y ;(10) .⎛⎫=⎪⎝⎭zx u y 3. 解 (1)2232,32z z x y y x x y ∂∂=+=+∂∂(2)因为 ()ln 1,x xy z e+=所以()()()()ln 1ln 11ln 111x x xy z xy xy e xy xy xy x xy xy +⎛⎫⎛⎫∂=++=+++ ⎪ ⎪∂++⎝⎭⎝⎭()()22ln 1111x x xy z x x e xy y xy xy +⎛⎫⎛⎫∂==+ ⎪ ⎪∂++⎝⎭⎝⎭(3)()2322222222,2ln z xy z y y x y x x y y x y ∂∂==++∂+∂+(4)222222sec sec 111sec ,sec tan tan tantan y yy z y y z y x x y y y y x x x y x x x x x x x x∂∂⎛⎫⎛⎫=-=-== ⎪ ⎪∂∂⎝⎭⎝⎭ (5)()32222222222ln ,z x z x y x x y x x y y x y ∂∂=++=∂+∂+(6)z z x y ∂∂====∂∂(7)()()()()sec tan ,sec tan z z y xy xy x xy xy x y ∂∂==∂∂(8)()()22ln 1111y y xy z y y e xy x xy xy +⎛⎫⎛⎫∂==+ ⎪ ⎪∂++⎝⎭⎝⎭()()()()ln 1ln 11ln 111y y xy z xy xy e xy xy xy y xy xy +⎛⎫⎛⎫∂=++=+++ ⎪ ⎪∂++⎝⎭⎝⎭ (9)()()()()()()()11222ln ,,111z z zz z z z x y z x y x y x y u u u x y z x y x y x y ------∂∂∂==-=∂∂∂+-+-+-(10)因为 ln,x z yu e=所以ln ln ln 21,,ln zzx x x z z z y y y u z x z u z x x z u x e e e x x xy y x y y y y z y y y⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂=⋅==⋅-=-= ⎪ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭4.设ln=z ,求证: 12∂∂+=∂∂z z xy x y . 4.证明 因为ln,z =所以z zx y∂∂====∂∂从而有12 z zx yx y∂∂+=+=+=∂∂5.求下列函数的二阶偏函数:(1)已知33sin sin=+z x y y x,求2∂∂∂zx y;(2)已知ln=xz y,求2∂∂∂zx y;(3)已知(ln=z x,求22∂∂z x和2∂∂∂z x y;(4)arctan=yzx求22222,,∂∂∂∂∂∂∂z z zx y x y和2∂∂∂zy x.5. 解(1)3323sin sin,3sin coszz x y y x x y y xx∂=+∴=+∂从而有223cos3coszx y y xx y∂=+∂∂(2)ln ln1,lnx xzz y y yx x∂⎛⎫=∴= ⎪∂⎝⎭从而有()()()ln1ln1ln11ln ln ln ln1xx xz yxy y y x yx y x y x--⎛⎫∂=+⋅=+⎪∂∂⎝⎭(3)(()1222 ln,zz x x yx-∂=∴===+∂从而有()()3322222222122zx y x x x yx--∂=-+=-+∂()()332222222122z x y y y x y x y --∂=-+=-+∂∂ (4)22221arctan,1y z y y z x xx x y y x ∂⎛⎫=∴=⋅-=- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭ 222111z x yx x y y x ∂⎛⎫=⋅= ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭从而有()()()()2222222222222222222,x y y z xy z y x x x y x y x y x y -++∂∂-===∂∂∂+++ ()()2222222222222222,z xy z x y xy x y y y x x y x y x y ⎛⎫∂-∂+--=== ⎪∂∂∂+⎝⎭++ 6. 设()ln =z y xy ,求2∂∂∂z x y 及22∂∂zy .6. 解 因为()ln ,z y xy =所以()(),ln ln 1z y y z x y xy y xy x xy x y xy∂∂===+=+∂∂从而有22211,.z z x y x y y∂∂==∂∂∂ 习题7.31. 求下列函数的全微分.(1) 2222+=-s t u s t ;(2) ()2222+=+x y xyz x y e;(3) ()arcsin0=>xz y y;(4) ⎛⎫-+ ⎪⎝⎭=y x x y z e ;1.解 (1)()()222232322222222()()22222∂--+⋅---==∂--u s s t s t s s st s t s s s t s t()()222223232222222()()22222u t s t s t t ts t ts s t s t s t ∂--+---==∂-- ()()2322222244u u st t dz ds dt ds dt s t s t s t ∂∂-∴=+=-∂∂--(2)()()()222222222222++++∂=++⋅∂x y x y xyxyx y x y yzxe x y exxy()2222222244222222+++⎛⎫--=++⋅=+ ⎪⎝⎭x y x y x y xyxyxyx y x y xe x y e x e x y x y()()()22222222222-2+++∂=++⋅∂x y x y xy xyy x x y xzye x y eyxy()()2222222222442222+++-+⎛⎫-=+⋅=+ ⎪⎝⎭x y x y x y xyxyxyy x x y y x yeey e xy xy2244442222x y xyz z x y y x dz dx dy x edx y dy x y x y xy +⎛⎫⎛⎫∂∂--∴=+=+++ ⎪ ⎪∂∂⎝⎭⎝⎭ (3)2222211∂=⋅==∂--⎛⎫yzxyyy x y x x22⎛⎫⎛⎫∂=-=-= ⎪ ⎪∂⎝⎭⎝⎭z x x yy y z zdz dx dy x y∂∂∴=+=∂∂(4)22221y x y x x y x y z y y x e e x x y x y ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫∂-=-= ⎪∂⎝⎭ 22221y x y x x y x y z x x y e e y x y xy ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫∂-=-+= ⎪∂⎝⎭222222y x y x x y x y z z z y x x y dz dx dy e dx e dy x y y x y xy⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭∂∂∂--∴=+==+∂∂∂ 2. 求函数2arctan1=+xz y 在1,1==x y 处的全微分.2.解()()()()()()()22222222222222222211111111111++∂++=⋅=⋅=∂++++++++y y z y y x xy y x y y xy()()()()()()22222222222222211222111111+∂-⋅--=⋅=⋅=∂++++++++y z x y xy xyx yy y x y y xy()()21,11125111z x ∂+∴==∂++ , ()()21,12125111∂-⋅==-∂++z y ()1,12255dz dx dy ∴=- 3. 求函数22=-xyz x y 当2,1,0.02,0.01==∆=∆=x y x y 时的全微分和全增量,并求两者之差.3.解 ()()()(),, 2.02,1.011,1z z x x y y z x y z z ∆=+∆+∆-=-()()22222.02 1.0121 2.0420.6670.667021 4.08 1.0232.02 1.01⨯⨯=-=-=-=--- ()()()2223222222222--⋅∂--===-∂---y x y xy x z x y y y x x y x y x y ()()()()22322222222--⋅-∂+==∂--x x y xy y z x xy y x y x y ()2,111413z x ∂∴=-=-∂- ,()()22,182110941z y ∂+⨯==∂- ()2,11100.020.010.070.0110.00439dz ∴=-⨯+⨯=-+=00.0040.004z dz ∴∆-=-=-.*4讨论函数()()()()(),0,0,0,,0,0⎧≠⎪=⎨⎪=⎩xy x y f x y x y 在()0,0点的连续性、可导性、可微性以及其偏导函数在()0,0的连续性.4.解()()()()()(),0,0,0,0lim,lim 00,0x y x y f x y xy f →→===(),f x y ∴在()0,0点连续 又()()()00,00,0000,0limlim 0x x x f x f f x x∆→∆→∆--===∆∆ ()()()000,0,0000,0limlim 0y y y f y f f y y∆→∆→∆--===∆∆ ()()0,00,0,00x y f f ∴==.()(()(,0,0,0,0,0,00limlim limx y x y f x yf z dzρρ→∆∆→∆∆→∆∆--∆-==()()()0,0,0x y<∆∆→∆lim0z dzρρ→∆-∴=故函数(),f x y 在()0,0点可微. 由()(),0,0x y ≠时(),=-x f x yy xy()23222sinx yy xy=-+(),=-y f x y x xy ()23222xy x xy=-+()(),0,0lim 0x y y →= ,()()()()23,0,0222lim→=+x y x yy kx xy()()()33323222=lim11→==+⋅+x kx ky kx k xk ,k 不同值不同()()()23,0,0222lim→∴+x y xy xy 不存在,故()()(),0,0lim ,xx y f x y →不存在.(),x f x y ∴在()0,0点不连续,同理可证(),y f x y 在点()0,0不连续.*5.计算()2.050.99的近似值.5.解 令00,1,2,0.01,0.05yz x x y x y ===∆=∆= 则1,ln y y z z yx x x x y-∂∂==∂∂ ()()1,21,22,0z zx y ∂∂∴==∂∂ ()()()2.0521,21,20.991120.0100.0510.02 1.02∂∂∴≈+∆+∆=+⨯+⨯=+=∂∂z zx y x y*6.设有厚度为,内高为,内半径为的无盖圆柱形容器,求容器外壳体积的近似值(设容器的壁和底的厚度相同).6.解 设容器底面积半径为r ,高为h则容器体积2V r h π=22,V Vrh r r hππ∂∂==∂∂ 22∴=+dV rhdr r dh ππ002,10,0.1,0.1r cm h cm r cm h cm ==∆=∆=()()22,102,1020.10.1400.140.1 4.4∴∆≈=⋅+⋅=⨯+⨯=V dV rh r πππππ*7. 测得直角三角形两直角边的长分别为7±0.1cm 和24±0.1cm ,试求利用上述二值来计算斜边长度时的绝对误差和相对误差.0.1cm 10cm 2cm7.解 设直角三角形的直角边长分别为,x y ,则斜边z =,zz xy∂∂==∂∂由题意007,24,0.1,0.1x y x y δδ====z ∴的绝对误差为()()7,247,247240.10.10.242525∂∂=+=⨯+⨯=∂∂z x y z z x y δδδz 的相对误差()7,240.240.009625=≈zz δ 习题7.41.设,,,求. 1.解 ()3222sin 22cos 23cos 6---∂∂=⋅+⋅=⋅-⋅=-∂∂x y x y t t du z dx z dy e t e t e t t dt x dt y dt2.设,而,,求. 2.解2123∂∂=⋅+⋅=+∂∂dz z dy z dV x dx u dx V dx2341-=x3.设,,,求,. 3.解 ()()222cos 2sin ∂∂∂∂∂=⋅+⋅=-+-∂∂∂∂∂z z u z v uv v y u uv y x u x v x()()2222222cos sin sin cos cos 2cos sin sin x y y x y y x y x y y y =-+-()23sin cos cos sin x y y y y =-()()()222sin 2cos z z u z v uv v x y u uv x y y u y v y∂∂∂∂∂=+=--+-∂∂∂∂∂ ()()()2222222cos sin sin sin cos 2cos sin cos x y y x y x y x y x y y x y =--+-()()3333cos sin 2cos sin sin cos x y y x y y y y =+-+2e x y u -=sin x t =3y t =d d u tarccos()z u v =-34u x =3v x =d d zx22z u v uv =-cos u x y =sin v x y =zx ∂∂z y∂∂4.设,而,,求,. 4.解 222ln 3∂∂∂∂∂⎛⎫=⋅+⋅=⋅+- ⎪∂∂∂∂∂⎝⎭z z u z v u y u v x u x v x v x()()()2322632ln 326ln 3x y y y y x y x y x x x x +⎛⎫=+-=+-- ⎪⎝⎭5.设求5.解 ()()1wf x xy xyz y yz x ∂'=++++∂()()()()1wf x xy xyz x xz x z f x xy xyz y∂''=+++=+++∂ ()()wf x xy xyz xy xyf x xy xyz z ∂''=++=++∂6.求下列函数的一阶偏导数(其中具有一阶连续偏导数):(1);(2);(3);(4).6.解 (1)()()222222∂''=-⋅=-∂z f x y x xf x y x()()()222222∂''=-⋅-=--∂zf x y y yf x y y(2)121110∂'''=+⋅=∂u f f f x y y12122211u x x f f f f y y z y z ⎛⎫∂⎛⎫''''=-+=-+ ⎪ ⎪∂⎝⎭⎝⎭122220∂⎛⎫'''=⋅+-=- ⎪∂⎝⎭u y y f f f z z z (3)1231231∂''''''=⋅+⋅+⋅=++∂uf f y f yz f yf yzf x123230∂'''''=⋅+⋅+⋅=+∂uf f x f xz xf xzf y2ln z u v =32u x y =+y v x =zx ∂∂z y∂∂(),w f x xy xyz =++,,.w w wx y z∂∂∂∂∂∂f 22()z f x y =-,x y u f y z ⎛⎫= ⎪⎝⎭(,,)u f x xy xyz =22(,e ,ln )xy u f x y x =-123300∂''''=⋅+⋅+⋅=∂uf f f xy xyf z (4)1231231122∂''''''=⋅+⋅⋅+⋅=++∂xy xyu f x f e y f xf ye f f x x x()12312202∂'''''=⋅-+⋅+⋅=-+∂xy xy uf y f e x f yf xe f y7.求下列函数的二阶偏导数,,(其中具有二阶连续偏导数):(1),(2). 7.解(1)22121222∂''''=⋅+⋅=+∂zf xy f y xyf y f x22121222∂''''=⋅+⋅=+∂zf x f xy x f xyf y()()222211112212222222∂'''''''''∴=+⋅+⋅+⋅+⋅∂zyf xy f xy f y y f xy f y x233341111221222422yf x y f xy f xy f y f '''''''''=++++ 23341111222244yf x y f xy f y f '''''''=+++()()2222111122212222222∂''''''''''=+⋅+⋅++⋅+⋅∂∂zxf xy f x f xy yf y f x f xy x y322223111122212222422xf x yf x y f yf x y f xy f ''''''''''=+++++ 32231111222222522xf x yf x y f yf xy f ''''''''=++++()2222211122212222222∂'''''''''=+++⋅+⋅∂zx f x x f xy xf xy f x f xy y43221112222424x f x yf xf x y f '''''''=+++(2)()()222222∂''=+⋅=+∂zf x y x xf x y x()()222222∂''=+⋅=+∂zf x y y yf x y y22zx∂∂2z x y ∂∂∂22z y ∂∂f 22(,)z f x y xy =22()z f x y =+()()()()2222222222222224∂''''''∴=+++⋅=+++∂zf x y xf x y x f x y x f x y x()()22222224∂'''=+⋅=+∂∂z xf x y y xyf x y x y()()()()2222222222222224∂''''''=+++⋅=+++∂zf x y yf x y y f x y y f x y y8.设其中F 是可微函数,证明8.解()()()cos sin sin cos cos cos sin sin ux F y x x x xF y x x∂''=+--=--∂ ()sin sin cos uF y x y y∂'=-∂ ()()cos cos cos cos sin sin cos cos sin sin cos u uy x x xF y x y yF y x x x y∂∂''∴+=--+-⎡⎤⎣⎦∂∂ ()()cos cos cos cos sin sin cos cos sin sin cos cos x y x yF y x x yF y x x y ''=--+-=.习题7.51.设,φ⎛⎫= ⎪⎝⎭x y z z 其中为可微函数,求∂∂+∂∂z z x y x y . 1.解 z是,x y函数由方程xx z y φ⎛⎫= ⎪⎝⎭确定。
习题7-11.判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并指出集合的边界.(1){}(,)0,0x y x y ≠≠;(2){}22(,)14x y x y <+≤;(3){}2(,)x y y x >;(4){}2222(,)(1)1(2)4x y x y x y +-≥+-≤且.解 (1)集合是开集,无界集;边界为{(,)0x y x =或0}y =. (2)集合既非开集,又非闭集,是有界集;边界为2222{(,)1}{(,)4}x y x y x y x y +=+= .(3)集合是开集,区域,无界集;边界为2{(,)}x y y x =. (4)集合是闭集,有界集;边界为2222{(,)(1)1}{(,)(2)4}x y x y x y x y +-=+-=2.已知函数(,)v f u v u =,试求(,)f xy x y +. 解 ()()(,)x y f xy x y xy ++=.3.设(,)2f x y xy =,证明:2(,)(,)f tx ty t f x y =.解)222(,)222f tx ty t xy t t xy t xy ===2(,)t f x y =.4.设y f x ⎛⎫=⎪⎝⎭(0)x >,求()f x . 解由于y f x ⎛⎫==⎪⎝⎭,则()f x =5.求下列各函数的定义域:(1)2222x y z x y+=-; (2)ln()arcsin y z y x x =-+;(3)ln()z xy =; (4)z =;(5)z =(6)u =.解 (1)定义域为{}(,)x y y x ≠±; (2)定义域为{}(,)x y x y x <≤-;(3)定义域为{}(,)0x y xy >,即第一、三象限(不含坐标轴);(4)定义域为2222(,)1x y x y a b ⎧⎫+≤⎨⎬⎩⎭; (5)定义域为{}2(,)0,0,x y x y x y ≥≥≥;(6)定义域为{}22222(,,)0,0x y z x y z x y +-≥+≠.6.求下列各极限:(1)22(,)(2,0)lim x y x xy y x y →+++; (2)(,)(0,0)lim x y →; (3)22(,)(0,0)1lim ()sinx y x y xy →+; (4)(,)(2,0)sin()lim x y xy y→;(5)1(,)(0,1)lim (1)xx y xy →+; (6)22(,)(,)lim()x y x y x y e --→+∞+∞+.解:(1)22(,)(2,0)4lim (2,0)22x y x xy y f x y →++===+;(2)(,)(0,0)00112lim lim 2x y u u u u →→→===;(3)因为22(,)(0,0)lim ()0x y x y →+=,且1s i n1xy≤有界,故22(,)(0,0)1lim ()sin 0x y x y xy →+=; (4)(,)(2,0)(,)(2,0)sin()sin()limlim 212x y x y xy xy x y xy →→==⋅=;(5)111(,)(0,1)(,)(0,1)lim (1)lim (1)y xyxx y x y xy xy e e ⋅→→+=+==;(6)当0x N >>,0y N >>时,有222()()0x y x yx y x y e e ++++<<,而()22(,)(,)22limlim lim lim 0x yu u u x y u u u x y u u e e e e+→+∞+∞→+∞→+∞→+∞+==== 按夹逼定理得22(,)(,)lim()0.x y x y x y e --→+∞+∞+=7.证明下列极限不存在: (1)(,)(0,0)limx y x yx y →+-;(2)设2224222,0,(,)0,0,x yx y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩(,)(0,0)lim (,)x y f x y →.证明 (1)当(,)x y 沿直线y kx =趋于(0,0)时极限(,)(0,0)01limlim 1x y x y kxx y x kx kx y x kx k →→=+++==--- 与k 有关,上述极限不存在.(2)当(,)x y 沿直线y x =和曲线2y x =趋于(0,0)有2242422(,)(0,0)00lim lim lim 01x y x x y x y xx y x x x x y x x x →→→=====+++, 2222442444(,)(0,0)001lim lim lim 22x y x x y xy xx y x x x x y x x x →→→=====++, 故函数(,)f x y 在点(0,0)处二重极限不存在.8.指出下列函数在何处间断:(1)22ln()z x y =+; (2)212z y x=-. 解(1)函数在(0,0)处无定义,故该点为函数22ln()z x y =+的间断点; (2)函数在抛物线22y x =上无定义,故22y x =上的点均为函数212z y x=-的间断点.9.用二重极限定义证明:(,)lim0x y →=.证22102ρ=≤=(,)P x y ,其中||OP ρ==,于是,0ε∀>,20δε∃=>;当0ρδ<<时,0ε-<成立,由二重极限定义知(,)lim0x y →=.10.设(,)sin f x y x =,证明(,)f x y 是2R 上的连续函数.证 设2000(,)P x y ∈R .0ε∀>,由于sin x 在0x 处连续,故0δ∃>,当0||x x δ-<时,有0|sin sin |x x ε-<.以上述δ作0P 的δ邻域0(,)U P δ,则当0(,)(,)P x y U P δ∈时,显然 00||(,)x x P P ρδ-<<,从而000|(,)(,)||sin sin |f x y f x y x x ε-=-<,即(,)sin f x y x =在点000(,)P x y 连续.由0P 的任意性知,sin x 作为x 、y 的二元函数在2R 上连续.习题7-21.设(,)z f x y =在00(,)x y 处的偏导数分别为00(,)x f x y A =,00(,)y f x y B =,问下列极限是什么?(1)00000(,)(,)limh f x h y f x y h →+-; (2)00000(,)(,)lim h f x y f x y h h→--;(3)00000(,2)(,)lim h f x y h f x y h →+-; (4)00000(,)(,)lim h f x h y f x h y h→+--.解 (1)0000000(,)(,)lim(,)x h f x h y f x y z x y A h→+-==; (2)000000000000(,)(,)(,)(,)limlim (,)y h h f x y f x y h f x y h f x y z x y B h h→→----===-; (3)0000000000(,2)(,)(,2)(,)limlim 222h h f x y h f x y f x y h f x y B h h→→+-+-=⋅=;(4)00000(,)(,)limh f x h y f x h y h→+--[][]0000000000000000000000000000(,)(,)(,)(,)lim(,)(,)(,)(,)lim (,)(,)(,)(,)lim lim 2.h h h h f x h y f x y f x y f x h y hf x h y f x y f x h y f x y h f x h y f x y f x h y f x y h h A A A →→→→+-+--=+----=+---=+-=+= 2.求下列函数的一阶偏导数: (1)x z xy y=+; (2)ln tan x z y =;(3)e xyz =; (4)22x y z xy+=;(5)222ln()z x x y =+; (6)z = (7)sec()z xy =; (8)(1)y z xy =+;(9)arctan()z u x y =- (10)zx u y ⎛⎫= ⎪⎝⎭.解(1)1z y x y ∂=+∂,2z x x y y∂=-∂; (2)12211tan sec cot sec z x x x x x y y y y y y -⎛⎫⎛⎫∂=⋅⋅= ⎪ ⎪∂⎝⎭⎝⎭, 12222tan sec cot sec z x x x x x x y y y y y y y-⎛⎫⎛⎫⎛⎫∂=⋅⋅-=- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭; (3)xy xy z e y ye x ∂=⋅=∂,xy xy ze x xe y∂=⋅=∂; (4)()2222222222()2()1z x xy x y y x y x y y y x x y y x xy ∂⋅-+⋅-+⋅===-∂, ()2222222222()2()1z y xy x y x xy x y x x y x y x y xy ∂⋅-+⋅-+⋅===-∂;(5)232222222222ln()22ln()z x x x x y x x x y x x y x y ∂=++⋅=++∂++, 22222222z x x yy y x y x y∂=⋅=∂++; (6)1z y x xy ∂=⋅=∂1z x y xy ∂=⋅=∂ (7)tan()sec()tan()sec()zxy xy y y xy xy x∂=⋅=∂, tan()sec()tan()sec()zxy xy x x xy xy y∂=⋅=∂; (8)121(1)(1)y y zy xy y y xy x--∂=+⋅=+∂, ln(1)(1)ln(1)1y xy z xy e y xy xy y y xy +⎡⎤∂∂⎡⎤==+⋅++⎢⎥⎣⎦∂∂+⎣⎦; (9)11221()()1()1()z z z zu z x y z x y x x y x y --∂-=⋅-=∂+-+-, 11221()()(1)1()1()z z z zu z x y z x y y x y x y --∂-=⋅-⋅-=-∂+-+-, 221()ln()()ln()1()1()z zz zu x y x y x y x y z x y x y ∂--=⋅-⋅-=∂+-+-; (10)111z z ux z x z x y y y y --⎛⎫⎛⎫∂=⋅= ⎪ ⎪∂⎝⎭⎝⎭,12z zux x z x z y y y y y -⎛⎫⎛⎫⎛⎫∂=⋅-=- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭, ln z u x x y y y⎛⎫∂=⋅ ⎪∂⎝⎭. 3.设(,)ln 2y f x y x x ⎛⎫=+⎪⎝⎭,求(1,0)x f ,(1,0)y f . 解法一 由于(,0)ln f x x =,所以1(,0)x f x x=,(1,0)1x f =; 由于(1,)ln 12y f y ⎛⎫=+⎪⎝⎭,所以11(1,)212yf y y =⋅+,1(1,0)2y f =.解法二 21(,)122x y f x y y x x x ⎛⎫=⋅- ⎪⎝⎭+,11(,)22y f x y y x x x=⋅+, 10(1,0)110212x f ⎛⎫=⋅-= ⎪⎝⎭+,111(1,0)02212y f =⋅=+. 4.设(,)(f x y x y =+-(,1)x f x . 解法一由于(,1)(11)arcsinf x x x =+-,(,1)()1x f x x '==. 解法二1(,)1x f x y y =,(,1)1x f x =. 5.设2(,)xt yf x y e dt -=⎰,求(,)x f x y ,(,)y f x y .解 2(,)x x f x y e -=,2(,)y f x y e -=-. 6.设yxz xy xe =+,证明z zxy xy z x y∂∂+=+∂∂. 解 由于21y y yx x x z y y y e xe y e x x x ⎛⎫∂⎛⎫=+-⋅=+-⎪ ⎪∂⎝⎭⎝⎭, 1y y x x z x xe x e y x∂=+⋅=+∂, 所以1()yy y yx x x xz z y x y x y e y x e xy e x y xy ye x y x ⎡⎤⎛⎫∂∂⎛⎫+=+-++=+-++ ⎪⎢⎥ ⎪∂∂⎝⎭⎣⎦⎝⎭yxxy xe xy xy z =++=+.7.(1)22,44x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与x 轴正向所成的倾角是多少? (2)1z x ⎧=⎪⎨=⎪⎩在点(1,1处的切线与y 轴正向所成的倾角是多少?解 (1)按偏导数的几何意义,(2,4)x z 就是曲线在点(2,4,5)处的切线对于x 轴正向所成倾角的斜率,而21(2,4)12x x z x ===,即tan 1k α==,于是倾角4πα=. (2)按偏导数的几何意义,(1,1)y z就是曲线在点(1,1处的切线对于y 轴正向所成倾角的斜率,而11(1,1)3y z ===,即1tan 3k α==,于是倾角6πα=.8.求下列函数的二阶偏函数:(1)已知33sin sin z x y y x =+,求2z x y ∂∂∂; (2)已知ln xz y =,求2z x y∂∂∂;(3)已知ln(z x =+,求22z x ∂∂和2zx y∂∂∂;(4)arctan y z x =求22z x ∂∂、22z y ∂∂、2z x y ∂∂∂和2zy x∂∂∂.解(1)233sin cos z x y y x x ∂=+∂,2223cos 3cos z x y y x x y∂=+∂∂; (2)ln ln 1ln ln x x z y y y y x x x∂=⋅=∂, 2ln ln 1ln 1111ln ln (1ln ln )xx x z y y x y y x y x y x y x--⎛⎫∂=+⋅⋅=+ ⎪∂∂⎝⎭; (3)1z x ⎛⎫∂==∂==,()232222zxx xy∂-==∂+,()23222z yx y xy∂-==∂∂+;(4)222211z y y xx x y y x ∂⎛⎫=⋅-=- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,222111z x y x x y y x ∂=⋅=∂+⎛⎫+ ⎪⎝⎭, ()222222z xy x x y ∂=∂+,()222222z xyy x y ∂-=∂+,()()2222222222222z x y y y x x y x y x y ∂+--=-=∂∂++,()()2222222222222z x y x y x y x x y x y ∂+--==∂∂++. 9.设222(,,)f x y z xy yz zx =++,求(0,0,1xx f ,(1,0,2)xz f ,(0,1,0)yz f -及(2,0,1)zzx f .解 因为22x f y xz =+,2xx f z =,2xz f x =, 22y f xy z =+,2yz f z =,22z f yz x =+,2zz f y =,0zzx f =,所以(0,0,1)2xx f =,(1,0,2)2xz f =,(0,1,0)0yz f -=,(2,0,1)0zzx f =.10.验证: (1)2esin kn ty nx -=满足22y yk t x∂∂=∂∂;(2)r =2222222r r r x y z r∂∂∂++=∂∂∂.证 (1)因为22e sin kn t y kn nx t -∂=-∂,2e cos kn t y n nx x -∂=∂,2222e sin kn ty n nx x-∂=-∂ 所以()2222e sin kn ty y k n nx k t x-∂∂=-=∂∂; (2)因为r x x r ∂==∂,2222231r x x x r x x x r r r r r ∂∂-⎛⎫==-⋅= ⎪∂∂⎝⎭, 由函数关于自变量的对称性,得22223r r y y r ∂-=∂,22223r r z z r ∂-=∂, 所以 2222222222223332r r r r x r y r z x y z r r r r∂∂∂---++=++=∂∂∂. 习题7-31.求下列函数的全微分:(1)2222s tu s t+=-; (2)2222()e x y xyz x y +=+;(3)arcsin(0)xz y y=>; (4)ey x x y z ⎛⎫-+ ⎪⎝⎭=;(5)222ln()u x y z =++; (6)yzu x =.解 (1)()()222222222222()2()4u s s t s s t st s s t s t ∂--+==-∂--, ()()222222222222()2()4u t s t t s t s tt s t s t ∂-++==∂--, ()()()22222222222444d d d (d d )st s tstu s t t s s t ststst=-+=-----;(2)22222222244222222()2()2x y x y x y xyxyxyzx y x y yx y xe x y eex xx y x y +++⎛⎫∂-+-=++=+ ⎪∂⎝⎭,由函数关于自变量的对称性可得224422x y xyzy x e y yxy +⎛⎫∂-=+ ⎪∂⎝⎭, 22444422d 2d 2d x y xyx y y x z ex x y y x y xy +⎡⎤⎛⎫⎛⎫--=+++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦; (3)21d d arcsind d x x x z x y y yy y ⎛⎫⎫===- ⎪⎪⎝⎭⎭)d d y x x y =-;(4)d d d y x y x x y x y y x z e e x y ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎡⎤⎛⎫⎢⎥==-⋅+ ⎪⎢⎥⎝⎭⎣⎦2211d d y x x y y x ex y y x x y ⎛⎫-+ ⎪⎝⎭⎡⎤⎛⎫⎛⎫=--+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦;(5)()2222222221d d ln()d u x y z x y zx y z ⎡⎤=++=++⎣⎦++2222222d 2d 2d 2(d d d )x x y y z z x x y y z z x y z x y z++==++++++; (6)()1d d d ln d ln d yz yz yz yzu x yzx x x z x y x y x z -==++()1d ln d ln d yz x yz x xz x y xy x z -=++.2.求下列函数的全微分:(1)22ln(1)z x y =++在1x =,2y =处的全微分; (2)2arctan 1xz y=+在1x =,1y =处的全微分. 解 (1)因为2222222211d d ln(1)d(1)(2d 2d )11z x y x y x x y y x y x y ⎡⎤=++=++=+⎣⎦++++ 所以12112d (2d 4d )d d 633x y z x y x y ===+=+; (2)因为22221d d arctand 1111x x z y y x y ⎛⎫⎛⎫== ⎪ ⎪++⎛⎫⎝⎭⎝⎭+ ⎪+⎝⎭()22222222211212d d d d 11111y xy xy x y x y y x y y x y y ⎡⎤⎛⎫+⎢⎥=-=- ⎪⎢⎥++++++⎝⎭+⎣⎦ 所以()1222111121d d d d d 113x y x y xy z x y x y y x y ====⎛⎫=-=- ⎪+++⎝⎭. 3. 求函数23z x y =当2x =,1y =-,0.02x ∆=,0.01y ∆=-时的全微分.解 因为()23322322d d 2d 3d 23z x y xy x x y y xy x x y y ==+=∆+∆所以当2x =,1y =-,0.02x ∆=,0.01y ∆=-时全微分为d 4120.080.120.2z x y =-∆+∆=--=-.4.求函数22xyz x y=-当2x =,1y =,0.01x ∆=,0.03y ∆=时的全微分和全增量,并求两者之差.解 因为()()222222222d()d()d d x y xy xy x y xy z x y x y ---⎛⎫== ⎪-⎝⎭- ()()()()()222332222222(d d )(2d 2d )d d x y y x+x y xy x x y y x y y x+x +xy y xyx y -----==-- 所以当2x =,1y =,0.01x ∆=,0.03y ∆=时全微分的值为()()()2332222(,)(2,1)0.01,0.030.25d 0.0277779x y x y x y y x+x +xy yz x y =∆=∆=--∆∆==≈-, 而当2x =,1y =,0.01x ∆=,0.03y ∆=时的全增量为()()()()2222(,)(2,1)0.010.030.028252x y x y x x y y xy z x y x x y y =∆=∆=⎡⎤+∆+∆∆=-≈⎢⎥-+∆-+∆⎢⎥⎣⎦, 全增量与全微分之差为d 0.0282520.0277770.000475z z ∆-≈-=.习题7-41.设2e x yu -=,sin x t =,3y t =,求d d u t. 解3222sin 22d d d cos 23(cos 6)d d d x y x y t t u u x u ye t e t e t t t x t y t---∂∂=+=-⋅=-∂∂. 2.设arccos()z u v =-,而34u x =,3v x =,求d d z x. 解2d d d 123d d d z z u z v x x u x v x ∂∂=+=+∂∂2314x -=3.设22z u v uv =-,cos u x y =,sin v x y =,求z x ∂∂,z y∂∂. 解()()222cos 2sin z z u z v uv v y u uv y x u x v x∂∂∂∂∂=⋅+⋅=-⋅+-⋅∂∂∂∂∂ 23sin cos (cos sin )x y y y y =-,()()()222sin 2cos z z u z v uv v x y u uv x y y u y v y∂∂∂∂∂=⋅+⋅=-⋅-+-⋅∂∂∂∂∂ 33232(sin 2sin cos cos 2cos sin )x y y y y y y =-+-.4.设2ln z u v =,而32u x y =+,y v x =,求z x ∂∂,z y∂∂. 解 222ln 3z z u z v u y u v x u x v x v x ∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅- ⎪∂∂∂∂∂⎝⎭216(32)ln(32)y x y x y x x=+-+, 22112ln 24(32)ln (32)z z u z v u y u v x y x y y u y v y v x x y∂∂∂∂∂=⋅+⋅=⋅+⋅=+++∂∂∂∂∂. 5. 设2(,,)ln(sin )z f u x y u y x ==+,ex yu +=,求z x ∂∂,zy∂∂. 解22112cos sin sin x y z z u f u e y x x u x x u y x u y x+∂∂∂∂=⋅+=⋅⋅+⋅∂∂∂∂++ ()()222cos sin x y x y e y xe y x+++=+, 22112sin sin sin x y z z u f u e x y u y y u y x u y x+∂∂∂∂=⋅+=⋅⋅+⋅∂∂∂∂++ ()()222sin sin x y x y e xe y x+++=+. 6.设222sin()u x y z =++,x r s t =++,y rs st tr =++,z rst =,求u r ∂∂,us∂∂,ut∂∂. 解[]22222()2cos()u u x u y u z x y s t zst x y z r x r y r z r∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr s t rs t r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦,[]22222()2cos()u u x u y u zx y r t zrt x y z s x s y s z s∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr r t r st r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦,[]22222()2cos()u u x u y u z x y s r zrs x y z t x t y t z t∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr r s r s t r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦.7.设arctanxz y=,x u v =+,y u v =-,求z u ∂∂,z v ∂∂,并验证:22z z u vu v u v∂∂-+=∂∂+.解222221111111z z x z y x y xu x u y uy y x y x x y y ⎛⎫∂∂∂∂∂-=⋅+⋅=⋅⋅+⋅-⋅= ⎪∂∂∂∂∂+⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭, ()222221111111z z x z yx y xv x v y vy y x y x x y y ⎛⎫∂∂∂∂∂+=⋅+⋅=⋅⋅+⋅-⋅-= ⎪∂∂∂∂∂+⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭, 则222222222()()()z z y x y x u v u vu v x y x y u v u v u v ∂∂-+--+=+==∂∂++++-+. 8.设22(,,)z f x y t x y t ==-+,sin x t =,cos y t =,求d d z t. 解d d d 2cos 2(sin )12sin 21d d d z z x z y f x t y t t t x t y t t∂∂∂=⋅+⋅+=--+=+∂∂∂. 9.求下列函数的一阶偏导数(其中f 具有一阶连续偏导数): (1)22()z f x y =-; (2),x y u f y z ⎛⎫=⎪⎝⎭; (3)(,,)u f x xy xyz =; (4)22(,,ln )xy u f x y e x =-. 解(1)222()z xf x y x ∂'=-∂,222()zyf x y y∂'=--∂; (2)111f u f x y y '∂'=⋅=∂,12122211u x x f f f f y y z y z ⎛⎫∂''''=⋅-+⋅=-+ ⎪∂⎝⎭, 2222u y y f f z z z ∂⎛⎫''=⋅-=- ⎪∂⎝⎭; (3)123u f yf yzf x ∂'''=++∂,23uxf xzf y ∂''=+∂,3u xyf z ∂'=∂; (4)12312xy u xf ye f f x x ∂'''=++∂,122xy u yf xe f y∂''=-+∂. 10.设()z xy xF u =+,而yu x=,()F u 为可导函数,证明: z zxy z xy x y∂∂+=+∂∂.证 ()()()z z u u xy x y F u xF u y x xF u x y x y ⎡⎤∂∂∂∂⎡⎤''+=++++⎢⎥⎢⎥∂∂∂∂⎣⎦⎣⎦ []()()()yx y F u F u y x F u x ⎡⎤''=+-++⎢⎥⎣⎦()xy xF u xy z xy =++=+. 11.设[cos()]z y x y ϕ=-,试证:z z zx y y∂∂+=∂∂. 证sin()[cos()]sin()z z y x y x y y x y x yϕϕϕ∂∂''+=--+-+-∂∂ [cos()]z x y yϕ=-=. 12.设,kz y u x F x x ⎛⎫=⎪⎝⎭,且函数,z y F x x ⎛⎫⎪⎝⎭具有一阶连续偏导数,试证: u u uxy z ku x y z∂∂∂++=∂∂∂. 证11222k k u z y kx F x F F x x x -∂⎡⎤⎛⎫⎛⎫''=+-+- ⎪ ⎪⎢⎥∂⎝⎭⎝⎭⎣⎦,1221k k ux F x F y x -∂''=⋅=∂, 1111k k u x F x F z x-∂''=⋅=∂, 11111111k k k k k u u u xy z kx F x zF x yF x yF x zF ku x y z----∂∂∂''''++=--++=∂∂∂. 13.设sin (sin sin )z y f x y =+-,试证:sec sec 1z zxy x y∂∂+=∂∂. 证cos z f x x ∂'=∂,cos (cos )zy y f y∂'=+-∂, sec sec sec cos sec cos sec (cos )1z zxy x xf y y y y f x y∂∂''+=++-=∂∂. 14.求下列函数的二阶偏导数22z x ∂∂,2z x y ∂∂∂,22zy ∂∂(其中f 具有二阶连续偏导数):(1)(,)z f xy y =; (2)22()z f x y =+;(3)22(,)z f x y xy =; (4)(sin ,cos ,)x y z f x y e +=. 解 (1)令s xy =,t y =,则(,)z f xy y =,s 和t 是中间变量.11z s f yf x x ∂∂''=⋅=∂∂,1212d d z s tf f xf f y y y∂∂''''=⋅+⋅=+∂∂. 因为(,)f s t 是s 和t 的函数,所以1f '和2f '也是s 和t 的函数,从而1f '和2f '是以s 和t 为中间变量的x 和y 的函数.故()22111112z z s yf yf y f x x x x x∂∂∂∂∂⎛⎫'''''===⋅= ⎪∂∂∂∂∂⎝⎭, ()211111211112d d z z s t yf f y f f f xyf yf x y y x y y y ⎛⎫∂∂∂∂∂⎛⎫'''''''''''===+⋅+⋅=++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭,()212111221222d d d d z z s t s t xf f x f f f f y y y y yy y y ⎛⎫⎛⎫∂∂∂∂∂∂''''''''''==+=+++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭ 21112222x f xf f ''''''=++. (2)令22s x y =+,则22()z f x y =+是以s 为中间变量的x 和y 的函数.2z s f xf x x ∂∂''=⋅=∂∂,2z sf yf y y∂∂''=⋅=∂∂. 因为()f s 是s 的函数,所以f '也是s 的函数,从而f '是以s 中间变量的x 和y 的函数.故()()222222224z z xf f xf x f x f x x x x∂∂∂∂⎛⎫'''''''===+⋅=+ ⎪∂∂∂∂⎝⎭, ()()22224z z xf xf y xyf x y y x y∂∂∂∂⎛⎫'''''===⋅= ⎪∂∂∂∂∂⎝⎭, ()()222222224z z yf f yf y f y f y y y y⎛⎫∂∂∂∂'''''''===+⋅=+ ⎪∂∂∂∂⎝⎭. (3)令2s xy =2t x y =,则212122z s t f f y f xyf x x x ∂∂∂''''=⋅+⋅=+∂∂∂,212122z s tf f xyf x f y y y∂∂∂''''=⋅+⋅=+∂∂∂. ()221222z z y f xyf x x x x∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂⎝⎭211122212222s t s t y f f yf xy f f x x x x ∂∂∂∂⎛⎫⎛⎫'''''''''=⋅+⋅++⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭()()2221112221222222y y f xyf yf xy y f xyf '''''''''=++++ 43222111222244yf y f xy f x y f '''''''=+++, ()22122z z y f xyf x y y x y∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂∂⎝⎭ 21111222122222s t s t yf y f f xf xy f f y y y y ⎛⎫⎛⎫∂∂∂∂''''''''''=+⋅+⋅++⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭ ()()222111122212222222yf y xyf x f xf xy xyf x f ''''''''''=+++++ 32231211122222252yf xf xy f x y f x yf ''''''''=++++, ()221222z z xyf x f y y y y⎛⎫∂∂∂∂''==+ ⎪∂∂∂∂⎝⎭ 211112212222s t s t xf xy f f x f f y y y y ⎛⎫⎛⎫∂∂∂∂'''''''''=+⋅+⋅+⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭ ()()2221111221222222xf xy xyf x f x xyf x f '''''''''=++++ 22341111222244xf x y f x yf x f '''''''=+++. (4)令sin u x =,cos v y =,x yw e +=,则1313d cos d x y z u w f f xf e f x x x +∂∂''''=+=+∂∂,2323d sin d x y z v w f f yf e f y y y+∂∂''''=+=-+∂∂. ()2132cos x y z z xf e f x x x x+∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂⎝⎭ 1111333133d d sin cos d d x y x y u w u w xf x f f e f e f f x x xx ++∂∂⎛⎫⎛⎫''''''''''=-+++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()1111333133sin cos cos cos x yx y x y x y xf x xf e f e f e xf e f ++++''''''''''=-+++++ ()2231111333sin cos 2cos x y x yx y ef xf xf e xf e f +++''''''''=-+++, ()213cos x y z z xf e f x y y x y+∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂∂⎝⎭121333233d d cos d d x y x y v w v w x f f e f e f f y y yy ++⎛⎫⎛⎫∂∂'''''''''=++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()121333233cos sin sin x yx y x y x y x yf e f e f e yf e f ++++'''''''''=-+++-+ ()2312133233cos sin cos sin x y x yx y x y ef x yf e xf e yf e f ++++'''''''''=-+-+, ()2232sin x y z z yf e f y y y y+⎛⎫∂∂∂∂''==-+ ⎪∂∂∂∂⎝⎭ 2222333233d d cos sin d d x y x y v w v w yf y f f e f e f f y y yy ++⎛⎫⎛⎫∂∂''''''''''=--++++ ⎪ ⎪∂∂⎝⎭⎝⎭ ()()2222333233cos sin sin sin x yx y x y x y yf y yf e f e f e yf e f ++++''''''''''=---+++-+ ()2232222333cos sin 2sin x y x yx y e f yf yf e yf e f +++''''''''=-+-+.习题7-51.设2cos e 0x y x y +-=,求d d yx. 解 设2(,)cos e x F x y y x y =+-,则22d e 2e 2d sin sin x x x y F y xy xyx F y x y x --=-=-=--+. 2.设ln ln 1xy y x ++=,求1d d x yx =. 解 设(,)ln ln 1F x y xy y x =++-,则221d 1d x y y F y xy y x x F x y x x y++=-=-=-++. 当1x =时,由ln ln 1xy y x ++=知1y =,所以1d 1d x yx ==-. 3.设arctany x =,求d d y x. 解设(,)ln arctan y F x y x=,则2222222222211d11d1xyyx x yyFy x yx y x yxy xx F x yx x y x yyx⎛⎫-⋅- ⎪⎝⎭⎛⎫++ ⎪+++⎝⎭=-=-=-=--⋅-++⎛⎫+ ⎪⎝⎭.4.设222cos cos cos1x y z++=,求zx∂∂,zy∂∂.解设222(,,)cos cos cos1F x y z x y z=++-,则2cos sin sin22cos sin sin2xzFz x x xx F z z z∂-=-=-=-∂-,2cos sin sin22cos sin sin2yzFz y y yy F z z z∂-=-=-=-∂-.5.设方程(,)0F x y z xy yz zx++++=确定了函数(,)z z x y=,其中F存在偏导函数,求zx∂∂,zy∂∂.解1212()()xzF F y z Fzx F F y x F''++∂=-=-∂''++,1212()()yzF F x z Fzy F F y x F''++∂=-=-∂''++.6.设由方程(,,)0F x y z=分别可确定具有连续偏导数的函数(,)x x y z=,(,)y y x z=,(,)z z x y=,证明:1x y zy z x∂∂∂⋅⋅=-∂∂∂.证因为yxFxy F∂=-∂,zyFyz F∂=-∂,xzFzx F∂=-∂,所以1y xzx y zF FFx y zy z x F F F⎛⎫⎛⎫⎛⎫∂∂∂⋅⋅=-⋅-⋅-=-⎪⎪ ⎪⎪∂∂∂⎝⎭⎝⎭⎝⎭.7.设(,)u vϕ具有连续偏导数,证明由方程(,)0cx az cy bzϕ--=所确定的函数(,)z f x y=满足z za b cx y∂∂+=∂∂.证令u cx az=-,v cy bz=-,则x u u u c x ϕϕϕ∂=⋅=∂,y v v vc yϕϕϕ∂=⋅=∂,z u v u v u v a b z z ϕϕϕϕϕ∂∂=⋅+⋅=--∂∂. x u z u v c z x a b ϕϕϕϕϕ∂=-=∂+,y v z u vc zy a b ϕϕϕϕϕ∂=-=∂+. 于是 u v u v u vc c z zab a bc x y a b a b ϕϕϕϕϕϕ∂∂+=⋅+⋅=∂∂++. 8.设0ze xyz -=,求22zx∂∂.解 设(,,)zF x y z e xyz =-,则x F yz =-,z z F e xy =-. 于是x zz F z yzx F e xy ∂=-=∂-, ()222()z z zz z ye xy yz e y z z x x x x x e xy ∂∂⎛⎫--- ⎪∂∂∂∂∂⎛⎫⎝⎭== ⎪∂∂∂⎝⎭-()22z z zyzy z yz e y e xy e xy ⎛⎫-⋅- ⎪-⎝⎭=-()2322322z zzy ze xy z y z e exy --=-.9.设(,)z z x y =是由方程2e 0zxz y --=所确定的隐函数,求2(0,1)zx y∂∂∂.解 设2(,,)e z F x y z xz y =--,则x F z =-,e z z F x =-,2y F y =-. 于是x z z F z z x F e x ∂=-=∂-,2y zz F z yy F e x∂=-=∂-, ()()22z z zz z e x z e z z y yx y y x ex ∂∂--⋅⋅∂∂∂∂∂⎛⎫== ⎪∂∂∂∂⎝⎭-()()222z zz zz y y e x ze e x e x e x ----=-()()322z zzy e x yze ex --=-.由20ze xz y --=,知(0,1)0z =,得2(0,1)2zx y∂=∂∂.10.求由方程xyz +=(,)z z x y =在点(1,0,1)-处的全微分d z .解设(,,)F x y z xyz =x z F zx F xy ∂=-==∂+,y z F zy F xy ∂=-==∂+,d d d z zz x y x y x y ∂∂=+=∂∂,(1,0,1)d d z x y -=.11.求由下列方程组所确定的函数的导数或偏导数:(1)设22222,2320,z x y x y z ⎧=+⎪⎨++=⎪⎩求d d y x ,d d z x; (2)设0,1,xu yv yu xv -=⎧⎨+=⎩求u x ∂∂,u y ∂∂,v x ∂∂,vy ∂∂; (3)设sin ,cos ,uux e u v y e u v ⎧=+⎪⎨=-⎪⎩求u x ∂∂,u y ∂∂,v x ∂∂,vy∂∂. 解 (1)分别在两个方程两端对x 求导,得d d 22,d d d d 2460.d d zy x y x xy z x y z x x ⎧=+⎪⎪⎨⎪++=⎪⎩称项,得d d 22,d d d d 23.d d y z y x x xy z y z x xx ⎧-=-⎪⎪⎨⎪+=-⎪⎩ 在 2162023y D yz y y z-==+≠的条件下,解方程组得213d 6(61)d 622(31)x x z yxz x x z x D yz y y z ------+===++. 222d 2d 6231y xy x z xy xx D yz y z --===++. (2)此方程组确定两个二元隐函数(,)u u x y =,(,)v v x y =,将所给方程的两边对x 求导并移项,得,.uv x y u x xu v y x v xx ∂∂⎧-=-⎪⎪∂∂⎨∂∂⎪+=-⎪∂∂⎩ 在220x yJ x y y x-==+≠的条件下,22u y v x u xu yvx y x x y y x ---∂+==--∂+, 22x uy v v yu xvx y x x yy x--∂-==-∂+. 将所给方程的两边对y 求导,用同样方法在220J x y =+≠的条件下可得22u xv yu y x y∂-=∂+,22v xu yv y x y ∂+=-∂+. (3)此方程组确定两个二元隐函数(,)u u x y =,(,)v v x y =是已知函数的反函数,令(,,,)sin u F x y u v x e u v =--,(,,,)cos u G x y u v y e u v =-+.则 1x F =,0y F =,sin u u F e v =--,cos v F u v =-, 0x G =,1y G =,cos u u G e v =-+,sin v G u v =-.在sin cos (,)(sin cos )0(,)cos sin u u u e v u v F G J ue v v u u v e v u v---∂===-+≠∂-+-的条件下,解方程组得1cos 1(,)1sin 0sin (,)(sin cos )1uu v u F G vu v x J x v J e v v -∂∂=-=-=-∂∂-+, 0cos 1(,)1cos 1sin (,)(sin cos )1uu v u F G vu v y J y v J e v v -∂∂-=-=-=-∂∂-+, sin 11(,)1cos (,)[(sin cos )1]cos 0u uu ue v v F G v e x J u x J u e v v e v --∂∂-=-=-=∂∂-+-+, sin 01(,)1sin (,)[(sin cos )1]cos 1u uu u e v v F G v e x J u x J u e v v e v --∂∂+=-=-=∂∂-+-+.习题7-61.求下列曲线在指定点处的切线方程和法平面方程: (1)2x t =,1y t =-,3z t =在(1,0,1)处; (2)1t x t =+,1t y t+=,2z t =在1t =的对应点处;(3)sin x t t =-,1cos y t =-,4sin2t z =在点2π⎛- ⎝处; (4)2222100,100,x y y z ⎧+-=⎪⎨+-=⎪⎩在点(1,1,3)处. 解 (1)因为2t x t '=,1t y '=-,23t z t '=,而点(1,0,1)所对应的参数1t =,所以(2,1,3)=-T .于是,切线方程为11213x y z --==-. 法平面方程为2(1)3(1)0x y z --+-=,即 2350x y z -+-=.(2)因为2211(1)(1)t t t x t t +-'==++,22(1)1t t t y t t -+'==-,2t z t '=,1t =对应着点1,2,12⎛⎫⎪⎝⎭,所以 1,1,24⎛⎫=- ⎪⎝⎭T .于是,切线方程为 1212148x y z ---==-. 法平面方程为 281610x y z -+-=.(3)因为1cos t x t '=-,sin t y t '=,2cos 2t t z '=,点1,12π⎛- ⎝对应在的参数为2t π=,所以(=T .于是,切线方程为112x y π-+=-=. 法平面方程为402x y π++--=. (4)将2222100,100,x y y z ⎧+-=⎪⎨+-=⎪⎩的两边对x 求导并移项,得 d 22,d d d 220,d d yy x xy z y z xx ⎧=-⎪⎪⎨⎪+=⎪⎩ 由此得 2002d 420d 422x z y xz x y x yz y y z --===-,2220d 420d 422y x y z xy xy x yz z y z-===.(1,1,3)d 1d y x =-,(1,1,3)d 1d 3z x =.从而 1,1,3=- ⎪⎝⎭T . 故所求切线方程为113331x y z ---==-. 法平面方程为 3330x y z -+-=.2.在曲线x t =,2y t =,3z t =上求一点,使此点的切线平行于平面24x y z ++=.解 因为1t x '=,2t y t '=,23t z t '=,设所求点对应的参数为0t ,于是曲线在该点处的切向量可取为200(1,2,3)t t =T .已知平面的法向量为(1,2,1)=n ,由切线与平面平行,得0⋅=T n ,即2001430t t ++=,解得01t =-和13-.于是所求点为(1,1,1)--或111,,3927⎛⎫-- ⎪⎝⎭. 3.求下列曲面在指定点处的切平面和法线方程: (1)222327x y z +-=在点(3,1,1)处; (2)22ln(12)z x y =++在点(1,1,ln 4)处; (3)arctany z x =在点1,1,4π⎛⎫ ⎪⎝⎭处. 解(1)222(,,)327F x y z x y z =+--,(,,)(6,2,2)x y z F F F x y z ==-n ,(3,1,1)(18,2,2)=-n .所以在点(3,1,1)处的切平面方程为9(3)(1)(1)0x y z -+---=,即 9270x y z +--=. 法线方程为311911x y z ---==-. (2)22(,,)ln(12)F x y z x y z =++-,222224(,,),,11212x y z x yF F F x y x y ⎛⎫==- ⎪++++⎝⎭n ,(1,1,ln 4),1,12=- ⎪⎝⎭n .所以在点(1,1,ln 4)处的切平面方程为2234ln 20x y z +--+=.法线方程为 12ln 2122y z x ---==-. (3)(,,)arctanyF x y z z x=-, 2222(,,),,1x y z y xF F F x y x y ⎛⎫-==- ⎪++⎝⎭n , 1,1,411,,122π⎛⎫ ⎪⎝⎭⎛⎫=-- ⎪⎝⎭n . 所以在点1,1,4π⎛⎫⎪⎝⎭处的切平面方程为 202x y z π-+-=. 法线方程为 114112z x y π---==-. 4.求曲面2222321x y z ++=上平行于平面460x y z ++=的切平面方程.解 设222(,,)2321F x y z x y z =++-,则曲面在点(,,)x y z 处的一个法向量(,,)(2,4,6)x y z n F F F x y z ==.已知平面的法向量为(1,4,6),由已知平面与所求切平面平行,得246146x y z ==,即12x z =,y z =. 代入曲面方程得 22223214z z z ++=. 解得 1z =±,则12x =±,1y =±. 所以切点为 1,1,12⎛⎫±±± ⎪⎝⎭. 所求切平面方程为 21462x y z ++=±5.证明:曲面(,)0F x az y bz --=上任意点处的切平面与直线x yz a b==平行(a ,b 为常数,函数(,)F u v 可微).证 曲面(,)0F x az y bz --=的法向量为1212(,,)F F aF bF ''''=--n ,而直线的方向向量(,,1)a b =s ,由0⋅=n s 知⊥n s ,即曲面0F =上任意点的切平面与已知直线x yz a b==平行. 6.求旋转椭球面222316x y z ++=上点(1,2,3)--处的切平面与xOy 面的夹角的余弦.解 令222(,,)316F x y z x y z =++-,曲面的法向量为(,,)(6,2,2)x y z F F F x y z ==n ,曲面在点(1,2,3)--处的法向量为1(1,2,3)(6,4,6)--==--n n ,xOy 面的法向量2(0,0,1)=n ,记1n 与2n 的夹角为θ,则所求的余弦值为1212cos θ⋅===n n n n . 7.证明曲面3xyz a =(0a >,为常数)的任一切平面与三个坐标面所围成的四面体的体积为常数.证 设3(,,)F x y z xyz a =-,曲面上任一点(,,)x y z 的法向量为(,,)n yz xz xy =,该点的切平面方程为()()()0yz X x xz Y y xy Z z -+-+-=,即 33yzX xzY xyZ a ++=.这样,切平面与三个坐标面所围成的四面体体积为33331333962a a a V a yz xz xy =⋅⋅⋅=.习题7-71.求函数22z x y =+在点(1,2)处沿从点(1,2)到点(2,2的方向的方向导数.。
第七章习题课1.求函数z =.(总习题七A ,2) 解答 要使函数式有意义,只要⎪⎩⎪⎨⎧≠--≥---+020)2)((222222y x x y x x x y x 成立即可,从而只要⎪⎩⎪⎨⎧+≠≤-+-+22222220)2)((yx x x y x x y x 成立 当0≥x 时,由0)2)((2222≤-+-+x y x x y x 解得x y x x 222≤+≤,从而定义域为22{(,)|2}D x y x x y x =≤+<当0<x 时,由0)2)((2222≤-+-+x y x x y x 解得x y x x ≤+≤222,此时x y x ≤+≤220,矛盾.因此函数定义域就是22{(,)|2}D x y x x y x =≤+< 2. 求极限(,)(0,0)limx y xy e→+A ,4(1))解答1 令cos ,sin x y ρθρθ==,则22cos sin 01cos 1lim2x y x y e e ρθθρρρ→→→-==+; 解答2 当0,0→→y x 时,022→y x ,从而122→y x e又因为022→+y x 为无穷小,由无穷小替换定理,)(21~cos12222y x y x ++- 从而2121lim )()(21lim )(cos 1lim 2222220022*******200==++=++-→→→→→→y x y x y x y x y x y x e e y x y x e y x y x 3.讨论函数()22222(,)x y f x y x y x y =+-当(,)(0,0)x y →时的极限存在性.(总习题七A ,5)解答 取y x =和y x =-两条路径,有10lim )(lim 4402222200=+=-+→=→→x x y x y x y x x xy y x 04lim 4lim )(lim 22024********0=+=+=-+→→-=→→x x x x x y x y x y x x x xy y x 因此()22222(,)(0,0)limx y x y x y x y →+-不存在.4.讨论函数的连续性:(总习题七A ,6)⎪⎩⎪⎨⎧=≠=00)tan(),(22y x y yy x y x f解答 当0≠y 时,yy x y x f )tan(),(2=为初等函数,因此连续;当0=y 时,考虑)0,(0x 处的连续性.由于)0,(1)t an (lim )tan(lim ),(lim 020202220200000x f x x x y x y x y y x y x f y x x y x x y x x ==⋅=⎥⎦⎤⎢⎣⎡⋅==→→→→→→,因此函数在)0,(0x 处也连续,故函数处处连续.5.设x y u yf xg y x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,其中函数,f g 具有二阶连续导数,求222u u x y x x y ∂∂+∂∂∂.(总习题七A ,11) 解答21u y y yf g xg f g g x y x x ∂-⎛⎫''''=⋅++⋅=+- ⎪∂⎝⎭, 2222223311u y y y y f g g g f g x y x xx y x ∂⎛⎫''''''''''=+⋅-++=+ ⎪∂⎝⎭, 2222211u x y x y f g g g f g x y y x x x y x ⎛⎫∂⎛⎫''''''''''''=-+⋅--=-- ⎪ ⎪∂∂⎝⎭⎝⎭, 故2220.u ux y x x y∂∂+=∂∂∂6.设函数()y y x =由(cos )(sin )1y xx y +=确定,求d d yx.(总习题七A ,12) 解答 由ln(cos )ln(sin )1y x x y ee +=,两边关于x 求导,得ln(cos )ln(sin )(sin )cos ln cos lnsin 0cos sin y x x y x y e y x y e y x y x y ⎛⎫-⎛⎫''+++= ⎪ ⎪⎝⎭⎝⎭. 即 ()()(cos )lncos tan (sin )lnsin cot 0y x x y x y x y y x y y ''-++⋅=.故 (cos )tan (sin )ln sin (cos )ln cos (sin )cot y x y x x y x y yy x x y x y-'=+.7.在已知的圆锥内嵌入一个长方体,如何选择其长、宽、高,使它的体积最大.(总习题七A ,15)解答 设圆锥的底半径为R ,高为h ,以底面圆心为坐标原点,底面圆心到顶点射线方向为z 轴正方向,建立坐标系,则圆锥的表面方程为z h -=, 在圆锥面上取点),,(z y x ,以之为顶点的长方体的体积则为 224.V x y z xyz =⨯⨯=设(,,,)[()F x y z xyz R z h λλ=+-+,令0,0,0,()0.x y z F yz F xz F xy R R z h λ⎧'=+=⎪⎪⎪⎪'=+=⎨⎪⎪'=+=⎪⎪-+=⎩解得3x y R ==,13z h =,此时当长宽高分别为3,322,322hR R 时,长方体体积最大,最大体积为2max 827V R h =. 8.求极限222(,)(,)limx x y xy x y →+∞+∞⎛⎫ ⎪+⎝⎭.(总习题七B ,1) 解答 由于2212xy x y ≤+,有2221022x x y x xy ⎪⎭⎫ ⎝⎛≤+≤,而021lim 2=⎪⎭⎫⎝⎛+∞→x x由夹逼准则知222(,)(,)lim0x x y xy x y →+∞+∞⎛⎫= ⎪+⎝⎭. 9.设函数(,)f x y 在点(0,0)的某邻域内有定义,且(0,0)3x f =,(0,0)1y f =-,则有 .(总习题七B ,4) A.(0,0)d 3d d z x y =-.B.曲面(,)z f x y =在点(0,0,(0,0))f 的一个法向量为(3,1,1)-.C.曲线(,),0z f x y y =⎧⎨=⎩在点(0,0,(0,0))f 的一个切向量为(1,0,3).D .曲线(,),z f x y y =⎧⎨=⎩在点(0,0,(0,0))f 的一个切向量为(3,0,1).解答 选C函数(,)f x y 在点(0,0)处的两个偏导数存在,但不一定可微分,故(A )不对;曲面(,)z f x y =可化为0),(=-z y x f ,其法向量为)1,,(-y x f f ,故在点(0,0,(0,0))f 处的一个法向量是(3,1,1)--,而不是(3,1,1)-,故(B )不对;以x 为参数,则曲线x x =,0y =,(,0)z f x =的切向量为),,1(x f y ',故在点(0,0,(0,0))f 处的一个切向量为(1,0,3),故(C )对,(D )不对.10.设(,)f xy 具有连续偏导数,且当0x ≠时有2(,)1f x x =,2(,)x f x x x '=,求2(,)y f xx '.(总习题七B ,5)解答 方程2(,)1f x x =左右两边对x 求导,得02),(),(22=⋅'+'x x x f x x f y x即 22(,)0y x xf x x '+=,求得21(,)2y f x x '=-. 11.设,sin ,sin u v x y u x v y +=+⎧⎪⎨=⎪⎩确定函数(,)u u x y =,(,)v v x y =,求d u ,d v .(总习题七B ,7)解答 将方程组改写成,sin sin ,u v x y y u x v +=+⎧⎨=⎩两式两边微分得,sin cos sin cos .du dv dx dy udy y udu vdx x vdv +=+⎧⎨+=+⎩消去dv ,得 ()sin cos (sin cos )cos cos v x v dx u x v dy du x v y u+--=+,消去du ,得 ()cos sin (sin cos )cos cos y u v dx u y u dy dv x v y u-++=+.12.=(0a >,为常数)上任何点处的切平面在各坐标轴上截距之和为a .(总习题七B ,8)证设(,,)F x y z =(,,)x y z 的法向量为⎛⎫=n , 该点的切平面方程为)))0X x Y y Z z ---=,即X Z =这样,切平面在三个坐标轴上截距之和为a ==.13.在椭球面2222221x y z ++=上求一点,使得函数222(,,)f x y z x y z =++沿着点(1,1,1)A 到点(2,0,1)B 的方向导数具有最大值.(总习题七B ,9)解答 由)0,1,1(-=知0cos ,21cos ,21cos =-==γβα,而(2,2,2)f x y z =grad因此2220)f z x y l ∂=-+⋅=-∂ 作222(,,))(2221)L x y z x y x y z λ=-+++-,令22240,40,40,222 1.x y z L x L y L z x y z λλλ⎧==⎪==⎪⎨==⎪⎪++=⎩解得11,,022⎛⎫- ⎪⎝⎭,11,,022⎛⎫- ⎪⎝⎭.比较得知方向导数在点11,,022⎛⎫- ⎪⎝⎭14.证明:函数(1)cos yyz e x ye =+-有无穷多个极大值,但无极小值.(总习题七B ,10)证明 由(1)sin 0,(cos 1)0,yy z e x xz e x y y∂⎧=-+=⎪∂⎪⎨∂⎪=--=∂⎪⎩解得⎩⎨⎧==02y k x π或⎩⎨⎧-=+=2)12(y k x π.22(1)cos y z e x x ∂=-+∂,2sin y z e x x y ∂=-∂∂,22(cos 2)y z e x y y∂=--∂. 当0,2==y k x π时,1,0,2-==-=C B A ,由于0,022<>=-A B AC ,所以此时z 取得无穷多个极大值;当2,)12(-=+=y k x π时22,0,1---==+=e C B e A ,由0)1(222<+-=---e e B AC 知,此时z 没有极值.从而结论成立。
习题7-11.判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并指出集合的边界.(1){}(,)0,0x y x y ≠≠;(2){}22(,)14x y x y <+≤; (3){}2(,)x y y x>;(4){}2222(,)(1)1(2)4x y x y x y +-≥+-≤且.解 (1)集合是开集,无界集;边界为{(,)0x y x =或0}y =. (2)集合既非开集,又非闭集,是有界集;边界为2222{(,)1}{(,)4}x y x y x y x y +=+= . (3)集合是开集,区域,无界集;边界为2{(,)}x y y x =.(4)集合是闭集,有界集;边界为2222{(,)(1)1}{(,)(2)4}x y x y x y x y +-=+-=2.已知函数(,)vf u v u =,试求(,)f xy x y +. 解 ()()(,)x y f xy x y xy ++=.3.设44(,)2f x y x yxy =+-,证明:2(,)(,)f tx ty t f x y =.解()()()4422442244(,)222f tx ty tx ty t xy tx yt xy tx yxy =+-=+-=+-2(,)t f x y =.4.设22x y y f x x+⎛⎫=⎪⎝⎭(0)x >,求()f x .解 由于222211y x y x y f x x⎛⎫+ ⎪+⎛⎫⎝⎭==⎪⎝⎭,则()21f x x =+.5.求下列各函数的定义域: (1)2222x y z x y+=-; (2)ln ()arcsiny z y x x=-+;(3)ln()z xy =; (4)22221x y z ab=--;(5)z x y =-; (6)22arcco sz u x y=+.解 (1)定义域为{}(,)x y y x ≠±;(2)定义域为{}(,)x y x y x <≤-;(3)定义域为{}(,)0x y xy >,即第一、三象限(不含坐标轴);(4)定义域为2222(,)1x y x y ab⎧⎫+≤⎨⎬⎩⎭; (5)定义域为{}2(,)0,0,x y x y x y ≥≥≥;(6)定义域为{}22222(,,)0,0x y z x y z x y +-≥+≠.6.求下列各极限: (1)22(,)(2,0)limx y x xy yx y→+++; (2)2222(,)(0,0)1co slimln (1)x y x yx y →-+++;(3)22(,)(0,0)1lim()sinx y x y xy→+; (4)(,)(2,0)sin ()limx y xy y→;(5)1(,)(0,1)lim(1)x x y xy →+; (6)22(,)(,)lim()x yx y x y e--→+∞+∞+.解:(1)22(,)(2,0)4lim(2,0)22x y x xy yf x y→++===+;(2)2222(,)(0,0)0011co s1co s 12limlim lim ln (1)ln (1)2x y u u ux yux y u u →→→-+-===+++; (3)因为22(,)(0,0)lim()0x y x y →+=,且1s i n1xy≤有界,故22(,)(0,0)1lim()sin0x y x y xy→+=;(4)(,)(2,0)(,)(2,0)sin ()sin ()limlim212x y x y xy xy xyxy→→==⋅=;(5)111(,)(0,1)(,)(0,1)lim(1)lim(1)yxyxx y x y xy xy e e ⋅→→+=+==;(6)当0x N >>,0y N >>时,有222()()0x yx yx y x y ee++++<<,而()22(,)(,)22limlimlimlim0x yuuux y u u u x y u u eeee+→+∞+∞→+∞→+∞→+∞+====按夹逼定理得22(,)(,)lim()0.x yx y x y e--→+∞+∞+=7.证明下列极限不存在: (1)(,)(0,0)limx y x y x y→+-;(2)设2224222,0,(,)0,0,x yx y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩(,)(0,0)lim(,)x y f x y →.证明 (1)当(,)x y 沿直线y kx =趋于(0,0)时极限(,)(0,0)01limlim1x y x y kxx y x kx k x yx kxk→→=+++==---与k 有关,上述极限不存在.(2)当(,)x y 沿直线y x =和曲线2y x =趋于(0,0)有2242422(,)(0,0)00limlimlim01x y x x y xy xx y x x x x y x x x →→→=====+++,2222442444(,)(0,0)001limlimlim22x y x x y xy xx y x xxx yx xx→→→=====++,故函数(,)f x y 在点(0,0)处二重极限不存在.8.指出下列函数在何处间断:(1)22ln()z x y =+; (2)212z y x=-.解(1)函数在(0,0)处无定义,故该点为函数22ln()z x y =+的间断点; (2)函数在抛物线22y x =上无定义,故22y x =上的点均为函数212z y x=-的间断点.9.用二重极限定义证明:22(,)(0,0)lim0x y xy x y→=+.证2222222222221110222x yxy x yx yx yx y x yρ⋅+-=≤=++++(,)P x y ,其中22||x yO P ρ=+=,于是,0ε∀>,20δε∃=>;当0ρδ<<时,有220xy x yε-<+成立,由二重极限定义知22(,)(0,0)lim0x y xy x y→=+.10.设(,)sin f x y x =,证明(,)f x y 是2R 上的连续函数.证 设2000(,)P x y ∈R .0ε∀>,由于sin x 在0x 处连续,故0δ∃>,当0||x x δ-<时,有0|sin sin |x x ε-<.以上述δ作0P 的δ邻域0(,)U P δ,则当0(,)(,)P x y U P δ∈时,显然00||(,)x x P P ρδ-<<,从而000|(,)(,)||sin sin |f x y f x y x x ε-=-<,即(,)sin f x y x =在点000(,)P x y 连续.由0P 的任意性知,sin x 作为x 、y 的二元函数在2R 上连续.习题7-21.设(,)z f x y =在00(,)x y 处的偏导数分别为00(,)x f x y A =,00(,)y f x y B =,问下列极限是什么?(1)00000(,)(,)limh f x h y f x y h →+-; (2)00000(,)(,)limh f x y f x y h h →--;(3)00000(,2)(,)limh f x y h f x y h→+-; (4)00000(,)(,)limh f x h y f x h y h→+--.解 (1)0000000(,)(,)lim (,)x h f x h y f x y z x y A h →+-==; (2)00000000000(,)(,)(,)(,)limlim(,)y h h f x y f x y h f x y h f x y z x y B h h→→----===-;(3)000000000(,2)(,)(,2)(,)limlim 222h h f x y h f x y f x y h f x y B hh→→+-+-=⋅=;(4)00000(,)(,)limh f x h y f x h y h→+--[][]000000000000000000000000000(,)(,)(,)(,)lim(,)(,)(,)(,)lim(,)(,)(,)(,)limlim2.h h h h f x h y f x y f x y f x h y hf x h y f x y f x h y f x y hf x h y f x y f x h y f x y hhA A A →→→→+-+--=+----=+---=+-=+=2.求下列函数的一阶偏导数: (1)x z xy y=+; (2)ln tanx z y=;(3)e xyz =; (4)22x y z xy+=;(5)222ln ()z x x y =+; (6)ln()z xy =;(7)sec()z xy =; (8)(1)yz xy =+;(9)arctan()zu x y =- (10)zx u y ⎛⎫= ⎪⎝⎭.解(1)1z y xy∂=+∂,2z x x yy∂=-∂;(2)12211tan sec co t sec zx x x x x y y y y y y -⎛⎫⎛⎫∂=⋅⋅= ⎪ ⎪∂⎝⎭⎝⎭, 12222tan sec co t sec zx x x x x xy y y y y y y -⎛⎫⎛⎫⎛⎫∂=⋅⋅-=- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭; (3)xyxyz ey yex∂=⋅=∂,xyxyz ex xey∂=⋅=∂;(4)()2222222222()2()1z x xy x y yx y x y yy xx yyx xy ∂⋅-+⋅-+⋅===-∂,()2222222222()2()1z y xy x y xxy x y xxyx yxyxy ∂⋅-+⋅-+⋅===-∂;(5)232222222222ln ()22ln ()z xxx x y x x x y x x y x y∂=++⋅=++∂++,22222222z xx yy y x yx y∂=⋅=∂++;(6)1112ln ()2ln ()z y x xyxy x xy ∂=⋅⋅=∂,1112ln ()2ln ()z x yxyxy yxy ∂=⋅⋅=∂;(7)tan ()sec()tan ()sec()z xy xy y y xy xy x ∂=⋅=∂,tan ()sec()tan ()sec()z xy xy x x xy xy y∂=⋅=∂;(8)121(1)(1)y y z y xy y y xy x--∂=+⋅=+∂,ln (1)(1)ln (1)1y xy z xy e y xy xy yy xy +⎡⎤∂∂⎡⎤==+⋅++⎢⎥⎣⎦∂∂+⎣⎦; (9)11221()()1()1()z z zzu z x y z x y x x y x y --∂-=⋅-=∂+-+-,11221()()(1)1()1()z z zzu z x y z x y y x y x y --∂-=⋅-⋅-=-∂+-+-,221()ln ()()ln ()1()1()zzzzu x y x y x y x y zx y x y ∂--=⋅-⋅-=∂+-+-;(10)111z z u x z x z x y y y y --⎛⎫⎛⎫∂=⋅= ⎪ ⎪∂⎝⎭⎝⎭,12z zu x x z x z y y y y y -⎛⎫⎛⎫⎛⎫∂=⋅-=- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭,ln zux xy y y ⎛⎫∂=⋅ ⎪∂⎝⎭. 3.设(,)ln 2y f x y x x ⎛⎫=+⎪⎝⎭,求(1,0)x f ,(1,0)y f . 解法一 由于(,0)ln f x x =,所以1(,0)x f x x=,(1,0)1x f =;由于(1,)ln 12y f y ⎛⎫=+⎪⎝⎭,所以11(1,)212y f y y =⋅+,1(1,0)2y f =.解法二 21(,)122x y f x y y x x x ⎛⎫=⋅- ⎪⎝⎭+,11(,)22y f x y y x x x=⋅+, 10(1,0)110212x f ⎛⎫=⋅-= ⎪⎝⎭+,111(1,0)02212y f =⋅=+. 4.设(,)(1)arcsinx f x y x y y=+-,求(,1)x f x .解法一 由于(,1)(11)arcsin1x f x x x =+-=,(,1)()1x f x x '==.解法二 111(,)112x y f x y yx x yy-=+⋅⋅-,(,1)1x f x =.5.设2(,)x tyf x y ed t -=⎰,求(,)x f x y ,(,)y f x y .解 2(,)xx f x y e-=,2(,)yf x y e-=-.6.设yx z xy xe =+,证明z z xyxy z xy∂∂+=+∂∂.解 由于21yyyx xx z y y y e xe y e x x x ⎛⎫∂⎛⎫=+-⋅=+- ⎪ ⎪∂⎝⎭⎝⎭, 1yyx x z x xe x e yx∂=+⋅=+∂,所以1()y y y yx xx x zzy x y x y e y x e xy e x y xy ye x y x ⎡⎤⎛⎫∂∂⎛⎫+=+-++=+-++ ⎪⎢⎥ ⎪∂∂⎝⎭⎣⎦⎝⎭yx xy xe xy xy z =++=+.7.(1)22,44x yz y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与x 轴正向所成的倾角是多少? (2)221,1z x y x ⎧=++⎪⎨=⎪⎩在点(1,1,3)处的切线与y 轴正向所成的倾角是多少?解 (1)按偏导数的几何意义,(2,4)x z 就是曲线在点(2,4,5)处的切线对于x 轴正向所成倾角的斜率,而21(2,4)12x x z x===,即tan 1k α==,于是倾角4πα=.(2)按偏导数的几何意义,(1,1)y z 就是曲线在点(1,1,3)处的切线对于y 轴正向所成倾角的斜率,而2121(1,1)3211y y y z y===++,即1tan 3k α==,于是倾角6πα=.8.求下列函数的二阶偏函数: (1)已知33sin sin z x y y x =+,求2z x y∂∂∂; (2)已知ln xz y=,求2z x y∂∂∂;(3)已知22ln ()z x x y =++,求22z x∂∂和2z x y ∂∂∂;(4)arctany z x=求22z x∂∂、22z y∂∂、2z x y ∂∂∂和2z y x∂∂∂.解(1)233sin co s z x y y x x∂=+∂,2223co s 3co s z x y y x x y∂=+∂∂;(2)ln ln 1ln ln xxz y yy yx xx∂=⋅=∂,2ln ln 1ln 1111ln ln (1ln ln )x x x z y y x y y x y x yx y x --⎛⎫∂=+⋅⋅=+ ⎪∂∂⎝⎭; (3)2222222211212x x y z x xx x yx yx x y+⎛⎫+∂ ⎪=+= ⎪∂+++++⎝⎭222222221()x y x x y x x y x y++==++++,()()23232222222z x xxxyxy∂-=-=∂++,()()2332222222z y yx yxyxy∂-=-=∂∂++;(4)222211z y y xx x y y x ∂⎛⎫=⋅-=- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,222111z x y xx yy x ∂=⋅=∂+⎛⎫+ ⎪⎝⎭,()222222z xyxxy∂=∂+,()222222z xyyxy∂-=∂+,()()2222222222222z x y yy xx yxyxy∂+--=-=∂∂++,()()2222222222222z x y xy xy xxyxy∂+--==∂∂++.9.设222(,,)f x y z xy yz zx =++,求(0,0,1xx f ,(1,0,2)xz f ,(0,1,0)yz f -及(2,0,1)zzx f .解 因为22x f y xz =+,2xx f z =,2xz f x =, 22y f xy z =+,2yz f z =,22z f yz x =+,2zz f y =,0zzx f =,所以(0,0,1)2xx f =,(1,0,2)2xz f =,(0,1,0)0yz f -=,(2,0,1)0zzx f =.10.验证: (1)2esin kn ty n x -=满足22y y ktx∂∂=∂∂;(2)222r x y z =++满足2222222r r r xyzr∂∂∂++=∂∂∂.证 (1)因为22esin kn ty kn n x t-∂=-∂,2eco s kn ty n n x x-∂=∂,2222esin kn ty n n x x-∂=-∂所以()2222esin kn ty y k n n x ktx-∂∂=-=∂∂;(2)因为222r x x xrx y z∂==∂++,2222231r x x x r xxx r r r r r∂∂-⎛⎫==-⋅= ⎪∂∂⎝⎭,由函数关于自变量的对称性,得22223r r y yr∂-=∂,22223r r z zr∂-=∂,所以 2222222222223332r r r r x r y r z xyzrrrr∂∂∂---++=++=∂∂∂.习题7-31.求下列函数的全微分:(1)2222s t u s t+=-; (2)2222()ex yxyz x y +=+;(3)arcsin(0)x z y y=>; (4)ey x x y z ⎛⎫-+ ⎪⎝⎭=;(5)222ln()u x y z =++; (6)yzu x =. 解 (1)()()222222222222()2()4u s s t s s t sts stst∂--+==-∂--,()()222222222222()2()4u t s t t s t s ttstst∂-++==∂--,()()()22222222222444d d d (d d )sts tstu s t t s s t ststst=-+=-----;(2)22222222244222222()2()2x yx yx yxyxyxyz x y x y yx y xex y eex xx yx y +++⎛⎫∂-+-=++=+ ⎪∂⎝⎭, 由函数关于自变量的对称性可得224422x yxyz y x ey yxy +⎛⎫∂-=+ ⎪∂⎝⎭, 22444422d 2d 2d x yxyx y y x z ex x y y x y xy +⎡⎤⎛⎫⎛⎫--=+++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦; (3)22222111d d arcsindd d 11x x xz x y y yy y x x y y⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭--()221d d y x x y yy x=--;(4)d d d y x y x x y x y y x z e e x y ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎡⎤⎛⎫⎢⎥==-⋅+ ⎪⎢⎥⎝⎭⎣⎦2211d d y x x y y x ex y y x x y ⎛⎫-+ ⎪⎝⎭⎡⎤⎛⎫⎛⎫=--+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦;(5)()2222222221d d ln ()d u x y z x y zx y z ⎡⎤=++=++⎣⎦++2222222d 2d 2d 2(d d d )x x y y z zx x y y z z x y zx y z++==++++++;(6)()1d d d ln d ln d yzyz yzyzu x yzxx x z x y xy x z -==++()1d ln d ln d yz xyz x xz x y xy x z -=++.2.求下列函数的全微分:(1)22ln(1)z x y =++在1x =,2y =处的全微分; (2)2arctan 1x z y=+在1x =,1y =处的全微分.解 (1)因为2222222211d d ln (1)d (1)(2d 2d )11z x y x y x x y y x y x y ⎡⎤=++=++=+⎣⎦++++所以12112d (2d 4d )d d 633x y zx y x y ===+=+;(2)因为22221d d arctand 1111xx z y y x y ⎛⎫⎛⎫== ⎪⎪++⎛⎫⎝⎭⎝⎭+ ⎪+⎝⎭()22222222211212d d d d 11111yxy xyx y x y y x y y x y y ⎡⎤⎛⎫+⎢⎥=-=- ⎪⎢⎥++++++⎝⎭+⎣⎦ 所以()1222111121d d d d d 113x y x y xy zx y x y y x y ====⎛⎫=-=- ⎪+++⎝⎭.3. 求函数23z x y =当2x =,1y =-,0.02x ∆=,0.01y ∆=-时的全微分. 解 因为()23322322d d 2d 3d 23z x yxyx x y y xy x x y y ==+=∆+∆所以当2x =,1y =-,0.02x ∆=,0.01y ∆=-时全微分为d 4120.080.120.2z x y =-∆+∆=--=-.4.求函数22xy z x y=-当2x =,1y =,0.01x ∆=,0.03y ∆=时的全微分和全增量,并求两者之差.解 因为()()222222222d ()d ()d d xyxy xy x y xyz x y xy---⎛⎫== ⎪-⎝⎭-()()()()()222332222222(d d )(2d 2d )d d xyy x +x y xy x x y y xy yx +x+xyyxyxy-----==--所以当2x =,1y =,0.01x ∆=,0.03y ∆=时全微分的值为()()()2332222(,)(2,1)0.01,0.030.25d 0.0277779x y x y xy yx +x+xyyz xy=∆=∆=--∆∆==≈-,而当2x =,1y =,0.01x ∆=,0.03y ∆=时的全增量为()()()()2222(,)(2,1)0.010.030.028252x y x y x x y y xy z x y x x y y =∆=∆=⎡⎤+∆+∆∆=-≈⎢⎥-+∆-+∆⎢⎥⎣⎦, 全增量与全微分之差为d 0.0282520.0277770.000475z z ∆-≈-=.习题7-41.设2ex yu -=,sin x t =,3y t =,求d d u t.解 3222sin 22d d d co s 23(co s 6)d d d x yx yt tu u x u y e t e t e t t tx ty t---∂∂=+=-⋅=-∂∂.2.设arccos()z u v =-,而34u x =,3v x =,求d d z x.解222d d d 11123d d d 1()1()z z u z v x xu xv xu v u v ∂∂=+=-⋅+⋅∂∂----()22223141(43)xx x -=--.3.设22z u v uv =-,cos u x y =,sin v x y =,求z x∂∂,z y∂∂.解 ()()222co s 2sin z z u z v u v v y u u v y xuxv x∂∂∂∂∂=⋅+⋅=-⋅+-⋅∂∂∂∂∂ 23sin cos (cos sin )x y y y y =-, ()()()222sin 2co s z z u z v u v v x y u u v x y yuyv y∂∂∂∂∂=⋅+⋅=-⋅-+-⋅∂∂∂∂∂ 33232(sin 2sin cos cos 2cos sin )x y y y y y y =-+-.4.设2ln z u v =,而32u x y =+,y v x=,求z x∂∂,z y∂∂.解 222ln 3z z uz v u y u v x u x v x v x ∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅- ⎪∂∂∂∂∂⎝⎭216(32)ln(32)y x y x y xx=+-+,22112ln 24(32)ln (32)z z uz v u y u v x y x y y u y v y v x x y∂∂∂∂∂=⋅+⋅=⋅+⋅=+++∂∂∂∂∂. 5. 设2(,,)ln(sin )z f u x y u y x ==+,ex yu +=,求z x∂∂,z y∂∂.解22112co s sin sin x yz z u f u ey x xuxxu y xu y x+∂∂∂∂=⋅+=⋅⋅+⋅∂∂∂∂++()()222co s sin x y x y e y x ey x+++=+,22112sin sin sin x yz z u f u ex yuyyu y xu y x+∂∂∂∂=⋅+=⋅⋅+⋅∂∂∂∂++()()222sin sin x y x y e xey x+++=+.6.设222sin()u x y z =++,x r s t =++,y rs st tr =++,z rst =,求u r∂∂,u s∂∂,u t∂∂.解 []22222()2co s()u u x u y u z x y s t zst x y z rx r y r z r∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()co s ()()()r s t rs st tr s t rs t r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦,[]22222()2co s()u u x u y u z x y r t zrt x y z sx s y s z s∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr r t r st r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦,[]22222()2co s()u u x u y u z x y s r zrs x y z tx t y t z t∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr r s r s t r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦.7.设arctanx z y=,x u v =+,y u v =-,求z u∂∂,z v∂∂,并验证:22z z u v uvu v∂∂-+=∂∂+.解222221111111z zxzyx y x ux uy uyy x y x x y y ⎛⎫∂∂∂∂∂-=⋅+⋅=⋅⋅+⋅-⋅= ⎪∂∂∂∂∂+⎛⎫⎛⎫⎝⎭++ ⎪⎪⎝⎭⎝⎭, ()222221111111z z x z y x y x vx v y vyy x y x x y y ⎛⎫∂∂∂∂∂+=⋅+⋅=⋅⋅+⋅-⋅-= ⎪∂∂∂∂∂+⎛⎫⎛⎫⎝⎭++ ⎪⎪⎝⎭⎝⎭, 则222222222()()()z z y x y x u v u v uvx yx yu v u v u v∂∂-+--+=+==∂∂++++-+.8.设22(,,)z f x y t x y t ==-+,sin x t =,cos y t =,求d d z t.解 d d d 2co s 2(sin )12sin 21d d d z z x z y f x t y t t tx t y t t∂∂∂=⋅+⋅+=--+=+∂∂∂. 9.求下列函数的一阶偏导数(其中f 具有一阶连续偏导数):(1)22()z f x y =-; (2),x y u f yz ⎛⎫=⎪⎝⎭; (3)(,,)u f x xy xyz =; (4)22(,,ln )xyu f x y e x =-. 解(1)222()z xf x y x∂'=-∂,222()z yf x y y∂'=--∂;(2)111f u f xyy'∂'=⋅=∂,12122211ux x f f f f y y z y z ⎛⎫∂''''=⋅-+⋅=-+ ⎪∂⎝⎭, 2222uy y f f z z z ∂⎛⎫''=⋅-=- ⎪∂⎝⎭; (3)123u f yf yzf x ∂'''=++∂,23u xf xzf y∂''=+∂,3u xyf z∂'=∂;(4)12312xyu xf yef f xx∂'''=++∂,122xyu yf xef y∂''=-+∂.10.设()z xy xF u =+,而y u x=,()F u 为可导函数,证明:z z x y z xy xy∂∂+=+∂∂.证 ()()()z zu u xyx y F u xF u y x xF u xy x y ⎡⎤∂∂∂∂⎡⎤''+=++++⎢⎥⎢⎥∂∂∂∂⎣⎦⎣⎦ []()()()yx y F u F u y x F u x ⎡⎤''=+-++⎢⎥⎣⎦()xy xF u xy z xy =++=+.11.设[cos()]z y x y ϕ=-,试证:z z z xyy∂∂+=∂∂.证sin ()[co s()]sin ()z z y x y x y y x y xyϕϕϕ∂∂''+=--+-+-∂∂[co s()]z x y yϕ=-=.12.设,kz y u x F xx ⎛⎫=⎪⎝⎭,且函数,z y F x x ⎛⎫ ⎪⎝⎭具有一阶连续偏导数,试证:u u u xyzku xyz∂∂∂++=∂∂∂.证11222k k u z y kxF x F F xx x -∂⎡⎤⎛⎫⎛⎫''=+-+- ⎪ ⎪⎢⎥∂⎝⎭⎝⎭⎣⎦,1221k k u x F x F y x -∂''=⋅=∂,1111kk u x F x F z x-∂''=⋅=∂,11111111k k k k k u u u x yz kx F xzF xyF xyF xzF ku xyz----∂∂∂''''++=--++=∂∂∂.13.设sin (sin sin )z y f x y =+-,试证:sec sec 1z z xyxy∂∂+=∂∂.证co s z f x x∂'=∂,co s (co s )z y y f y ∂'=+-∂,sec sec sec co s sec co s sec (co s )1z zxyx xf y y y y f xy∂∂''+=++-=∂∂.14.求下列函数的二阶偏导数22z x∂∂,2z x y∂∂∂,22z y∂∂(其中f 具有二阶连续偏导数):(1)(,)z f xy y =; (2)22()z f x y =+;(3)22(,)z f x y xy =; (4)(sin ,cos ,)x yz f x y e+=.解 (1)令s xy =,t y =,则(,)z f xy y =,s 和t 是中间变量.11z s f yf xx∂∂''=⋅=∂∂,1212d d z s t f f xf f yyy∂∂''''=⋅+⋅=+∂∂.因为(,)f s t 是s 和t 的函数,所以1f '和2f '也是s 和t 的函数,从而1f '和2f '是以s 和t 为中间变量的x 和y 的函数.故()22111112z z s yf yf y f xx x xx∂∂∂∂∂⎛⎫'''''===⋅= ⎪∂∂∂∂∂⎝⎭, ()211111211112d d z z s t yf f y f f f xyf yf x y y x yy y ⎛⎫∂∂∂∂∂⎛⎫'''''''''''===+⋅+⋅=++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭,()212111221222d d d d z z s t s txf f x f f f f yy y y y y y y ⎛⎫⎛⎫∂∂∂∂∂∂''''''''''==+=+++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭21112222x f xf f ''''''=++. (2)令22s x y =+,则22()z f x y =+是以s 为中间变量的x 和y 的函数.2z s f xf xx∂∂''=⋅=∂∂,2z s f yf yy∂∂''=⋅=∂∂.因为()f s 是s 的函数,所以f '也是s 的函数,从而f '是以s 中间变量的x 和y 的函数.故()()222222224z z xf f xf x f x f xx x x∂∂∂∂⎛⎫'''''''===+⋅=+ ⎪∂∂∂∂⎝⎭, ()()22224z z xf xf y xyf x y y x y∂∂∂∂⎛⎫'''''===⋅= ⎪∂∂∂∂∂⎝⎭, ()()222222224z z yf f yf y f y f yy y y⎛⎫∂∂∂∂'''''''===+⋅=+ ⎪∂∂∂∂⎝⎭. (3)令2s xy =2t x y =,则212122z s t f f y f xyf xxx∂∂∂''''=⋅+⋅=+∂∂∂,212122z s t f f xyf x f yyy∂∂∂''''=⋅+⋅=+∂∂∂.()221222z z yf xyf xx x x∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂⎝⎭211122212222y f f yf xy f f x x x x '''''''''=⋅+⋅++⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭ ()()2221112221222222yyf xyf yf xy y f xyf '''''''''=++++ 43222111222244yf y f xy f x y f '''''''=+++, ()22122z z yf xyf x yy x y∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂∂⎝⎭21111222122222s t s t yf y f f xf xy f f y y y y ⎛⎫⎛⎫∂∂∂∂''''''''''=+⋅+⋅++⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭()()222111122212222222yf yxyf xf xf xy xyf x f ''''''''''=+++++ 32231211122222252yf xf xy f x y f x yf ''''''''=++++, ()221222z z xyf x f yy y y⎛⎫∂∂∂∂''==+ ⎪∂∂∂∂⎝⎭ 211112212222s t s t xf xy f f x f f y y y y ⎛⎫⎛⎫∂∂∂∂'''''''''=+⋅+⋅+⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭()()2221111221222222xf xy xyf x f x xyf x f '''''''''=++++ 22341111222244xf x y f x yf x f '''''''=+++. (4)令sin u x =,cos v y =,x yw e+=,则1313d co s d x y z u w f f xf e f xxx+∂∂''''=+=+∂∂,2323d sin d x yz v w f f yf ef yyy+∂∂''''=+=-+∂∂.()2132co s x yz z xf e f xx x x+∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂⎝⎭ 1111333133d d sin co s d d x yx y u w u w xf x f f e f e f f xx x x ++∂∂⎛⎫⎛⎫''''''''''=-+++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()1111333133sin cos cos cos x yx y x y x y xf x xf e f e f e xf e f ++++''''''''''=-+++++ ()2231111333sin cos 2cos x y x yx yef xf xf e xf e f +++''''''''=-+++, ()213co s x yz z xf e f x yy x y+∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂∂⎝⎭121333233co s d d x yx y x f f e f e f f yy y y ++'''''''''=++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()121333233co s sin sin x yx y x y x y x yf e f e f e yf e f ++++'''''''''=-+++-+ ()2312133233cos sin cos sin x y x yx y x yef x yf e xf e yf e f ++++'''''''''=-+-+, ()2232sin x yz z yf e f yy y y+⎛⎫∂∂∂∂''==-+ ⎪∂∂∂∂⎝⎭ 2222333233d d co s sin d d x yx y v w v w yf y f f e f e f f yy y y ++⎛⎫⎛⎫∂∂''''''''''=--++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()2222333233cos sin sin sin x yx y x y x y yf y yf e f e f e yf e f ++++''''''''''=---+++-+ ()2232222333co s sin2sin x y x yx ye f yf yf e yf e f +++''''''''=-+-+.习题7-51.设2cos e 0xy x y +-=,求d d y x.解 设2(,)cos e xF x y y x y =+-,则22d e 2e 2d sin sin xxx yF y xy xy xF y xy x--=-=-=--+.2.设ln ln 1xy y x ++=,求1d d x y x=.解 设(,)ln ln 1F x y xy y x =++-,则221d 1d x yy F y xy y x xF x y x x y++=-=-=-++.当1x =时,由ln ln 1xy y x ++=知1y =,所以1d 1d x y x==-.3.设22ln arctany x yx+=,求d d y x.解 设22(,)ln arctan y F x y x y x=+-,则2222222222222222222111d 111d 1x yx y x x y y x yx y F y x y x y x y x y y x xF x yx x yx yy x yx y x ⎛⎫⋅-⋅- ⎪⎝⎭++⎛⎫++ ⎪+++⎝⎭=-=-=-=-⋅-⋅-++++⎛⎫+ ⎪⎝⎭.4.设222cos cos cos 1x y z ++=,求z x∂∂,z y∂∂.解 设222(,,)cos cos cos 1F x y z x y z =++-,则2co s sin sin 22co s sin sin 2x zF z x x x xF z zz∂-=-=-=-∂-,2co s sin sin 22co s sin sin 2y zF z y y y yF z zz∂-=-=-=-∂-.5.设方程(,)0F x y z xy yz zx ++++=确定了函数(,)z z x y =,其中F 存在偏导函数,求z x∂∂,z y∂∂.解1212()()x zF F y z F z xF F y x F ''++∂=-=-∂''++,1212()()y zF F x z F z yF F y x F ''++∂=-=-∂''++.6.设由方程(,,)0F x y z =分别可确定具有连续偏导数的函数(,)x x y z =,(,)y y x z =,(,)z z x y =,证明:1x y zy z x∂∂∂⋅⋅=-∂∂∂. 证 因为 y xF x yF ∂=-∂,z yF y zF ∂=-∂,x zF z xF ∂=-∂,所以1y x z x y z F F F x y zy z x F F F ⎛⎫⎛⎫⎛⎫∂∂∂⋅⋅=-⋅-⋅-=- ⎪ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭. 7.设(,)u v ϕ具有连续偏导数,证明由方程(,)0c x a z c yb z ϕ--=所确定的函数(,)z f x y =满足z z abc xy∂∂+=∂∂.证 令u cx az =-,v cy b z =-,则x u u u c xϕϕϕ∂=⋅=∂,y v v v c yϕϕϕ∂=⋅=∂,z u v u v u v a b zzϕϕϕϕϕ∂∂=⋅+⋅=--∂∂.x u zu vc z x a b ϕϕϕϕϕ∂=-=∂+,y v zu v c z ya b ϕϕϕϕϕ∂=-=∂+.于是 u v u vu vc c z z a ba b c xya b a b ϕϕϕϕϕϕ∂∂+=⋅+⋅=∂∂++.8.设0ze xyz -=,求22z x∂∂.解 设(,,)zF x y z e xyz =-,则x F yz =-,zz F e xy =-. 于是x zzF z yz xF e xy∂=-=∂-,()222()zz zzz ye xy yz e y z z x x xx x exy ∂∂⎛⎫--- ⎪∂∂∂∂∂⎛⎫⎝⎭== ⎪∂∂∂⎝⎭-()22z z zyz y z yz e y e xy exy ⎛⎫-⋅- ⎪-⎝⎭=-()2322322zzzy ze xy z y z eexy --=-.9.设(,)z z x y =是由方程2e 0zxz y --=所确定的隐函数,求2(0,1)z x y∂∂∂.解 设2(,,)e z F x y z xz y =--,则x F z =-,e zz F x =-,2y F y =-.于是x zzF z z xF e x∂=-=∂-,2y zzF z y yF e x∂=-=∂-,()()22zz zzz e x z e z z yyx yy x ex ∂∂--⋅⋅∂∂∂∂∂⎛⎫== ⎪∂∂∂∂⎝⎭-()()222zzzzzyye x zee xe xex ----=-()()322zzzy e x yzeex --=-.由20ze xz y --=,知(0,1)0z =,得2(0,1)2z x y∂=∂∂.10.求由方程2222xyz x y z+++=所确定的函数(,)z z x y =在点(1,0,1)-处的全微分d z .解 设222(,,)2F x y z xyz x y z=+++-,则222222222222x zx yz x y zyz x y z x F z z xF xyx y z zxy x y z++++++∂=-=-=-∂++++++,222222222222y zy xz F x y zxz x y z y z z yF xyx y z zxy x y z++++++∂=-=-=-∂++++++,222222222222d d d d d yz x y z x xz x y z y z z z x y x y xyxyx y zzxyx y zz++++++∂∂=+=--∂∂++++++,(1,0,1)d d 2d zx y -=-.11.求由下列方程组所确定的函数的导数或偏导数:(1)设22222,2320,z x y x y z ⎧=+⎪⎨++=⎪⎩求d d y x ,d d z x ; (2)设0,1,xu yv yu xv -=⎧⎨+=⎩求u x∂∂,u y∂∂,v x∂∂,v y∂∂;(3)设sin ,co s ,uux e u v y e u v ⎧=+⎪⎨=-⎪⎩求u x ∂∂,u y ∂∂,v x ∂∂,v y ∂∂. 解 (1)分别在两个方程两端对x 求导,得d d 22,d d d d 2460.d d zy x y x xy z x y z x x ⎧=+⎪⎪⎨⎪++=⎪⎩称项,得。
第七章习题课1.求函数z =.(总习题七A ,2) 解答 要使函数式有意义,只要⎪⎩⎪⎨⎧≠--≥---+020)2)((222222y x x y x x x y x 成立即可,从而只要⎪⎩⎪⎨⎧+≠≤-+-+22222220)2)((yx x x y x x y x 成立 当0≥x 时,由0)2)((2222≤-+-+x y x x y x 解得x y x x 222≤+≤,从而定义域为22{(,)|2}D x y x x y x =≤+<当0<x 时,由0)2)((2222≤-+-+x y x x y x 解得x y x x ≤+≤222,此时x y x ≤+≤220,矛盾.因此函数定义域就是22{(,)|2}D x y x x y x =≤+< 2. 求极限(,)(0,0)limx y xy e→+A ,4(1))解答1 令cos ,sin x y ρθρθ==,则22cos sin 01cos 1lim2x y x y e e ρθθρρρ→→→-==+; 解答2 当0,0→→y x 时,022→y x ,从而122→y x e又因为022→+y x 为无穷小,由无穷小替换定理,)(21~cos12222y x y x ++- 从而2121lim )()(21lim )(cos 1lim 2222220022*******200==++=++-→→→→→→y x y x y x y x y x y x e e y x y x e y x y x 3.讨论函数()22222(,)x y f x y x y x y =+-当(,)(0,0)x y →时的极限存在性.(总习题七A ,5)解答 取y x =和y x =-两条路径,有10lim )(lim 4402222200=+=-+→=→→x x y x y x y x x xy y x 04lim 4lim )(lim 22024********0=+=+=-+→→-=→→x x x x x y x y x y x x x xy y x 因此()22222(,)(0,0)limx y x y x y x y →+-不存在.4.讨论函数的连续性:(总习题七A ,6)⎪⎩⎪⎨⎧=≠=00)tan(),(22y x y yy x y x f解答 当0≠y 时,yy x y x f )tan(),(2=为初等函数,因此连续;当0=y 时,考虑)0,(0x 处的连续性.由于)0,(1)t an (lim )tan(lim ),(lim 020202220200000x f x x x y x y x y y x y x f y x x y x x y x x ==⋅=⎥⎦⎤⎢⎣⎡⋅==→→→→→→,因此函数在)0,(0x 处也连续,故函数处处连续.5.设x y u yf xg y x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,其中函数,f g 具有二阶连续导数,求222u u x y x x y ∂∂+∂∂∂.(总习题七A ,11) 解答21u y y yf g xg f g g x y x x ∂-⎛⎫''''=⋅++⋅=+- ⎪∂⎝⎭, 2222223311u y y y y f g g g f g x y x xx y x ∂⎛⎫''''''''''=+⋅-++=+ ⎪∂⎝⎭, 2222211u x y x y f g g g f g x y y x x x y x ⎛⎫∂⎛⎫''''''''''''=-+⋅--=-- ⎪ ⎪∂∂⎝⎭⎝⎭, 故2220.u ux y x x y∂∂+=∂∂∂6.设函数()y y x =由(cos )(sin )1y xx y +=确定,求d d yx.(总习题七A ,12) 解答 由ln(cos )ln(sin )1y x x y ee +=,两边关于x 求导,得ln(cos )ln(sin )(sin )cos ln cos lnsin 0cos sin y x x y x y e y x y e y x y x y ⎛⎫-⎛⎫''+++= ⎪ ⎪⎝⎭⎝⎭. 即 ()()(cos )lncos tan (sin )lnsin cot 0y x x y x y x y y x y y ''-++⋅=.故 (cos )tan (sin )ln sin (cos )ln cos (sin )cot y x y x x y x y yy x x y x y-'=+.7.在已知的圆锥内嵌入一个长方体,如何选择其长、宽、高,使它的体积最大.(总习题七A ,15)解答 设圆锥的底半径为R ,高为h ,以底面圆心为坐标原点,底面圆心到顶点射线方向为z 轴正方向,建立坐标系,则圆锥的表面方程为z h -=, 在圆锥面上取点),,(z y x ,以之为顶点的长方体的体积则为 224.V x y z xyz =⨯⨯=设(,,,)[()F x y z xyz R z h λλ=+-+,令0,0,0,()0.x y z F yz F xz F xy R R z h λ⎧'=+=⎪⎪⎪⎪'=+=⎨⎪⎪'=+=⎪⎪-+=⎩解得3x y R ==,13z h =,此时当长宽高分别为3,322,322hR R 时,长方体体积最大,最大体积为2max 827V R h =. 8.求极限222(,)(,)limx x y xy x y →+∞+∞⎛⎫ ⎪+⎝⎭.(总习题七B ,1) 解答 由于2212xy x y ≤+,有2221022x x y x xy ⎪⎭⎫ ⎝⎛≤+≤,而021lim 2=⎪⎭⎫⎝⎛+∞→x x由夹逼准则知222(,)(,)lim0x x y xy x y →+∞+∞⎛⎫= ⎪+⎝⎭. 9.设函数(,)f x y 在点(0,0)的某邻域内有定义,且(0,0)3x f =,(0,0)1y f =-,则有 .(总习题七B ,4) A.(0,0)d 3d d z x y =-.B.曲面(,)z f x y =在点(0,0,(0,0))f 的一个法向量为(3,1,1)-.C.曲线(,),0z f x y y =⎧⎨=⎩在点(0,0,(0,0))f 的一个切向量为(1,0,3).D .曲线(,),z f x y y =⎧⎨=⎩在点(0,0,(0,0))f 的一个切向量为(3,0,1).解答 选C函数(,)f x y 在点(0,0)处的两个偏导数存在,但不一定可微分,故(A )不对;曲面(,)z f x y =可化为0),(=-z y x f ,其法向量为)1,,(-y x f f ,故在点(0,0,(0,0))f 处的一个法向量是(3,1,1)--,而不是(3,1,1)-,故(B )不对;以x 为参数,则曲线x x =,0y =,(,0)z f x =的切向量为),,1(x f y ',故在点(0,0,(0,0))f 处的一个切向量为(1,0,3),故(C )对,(D )不对.10.设(,)f xy 具有连续偏导数,且当0x ≠时有2(,)1f x x =,2(,)x f x x x '=,求2(,)y f xx '.(总习题七B ,5)解答 方程2(,)1f x x =左右两边对x 求导,得02),(),(22=⋅'+'x x x f x x f y x即 22(,)0y x xf x x '+=,求得21(,)2y f x x '=-. 11.设,sin ,sin u v x y u x v y +=+⎧⎪⎨=⎪⎩确定函数(,)u u x y =,(,)v v x y =,求d u ,d v .(总习题七B ,7)解答 将方程组改写成,sin sin ,u v x y y u x v +=+⎧⎨=⎩两式两边微分得,sin cos sin cos .du dv dx dy udy y udu vdx x vdv +=+⎧⎨+=+⎩消去dv ,得 ()sin cos (sin cos )cos cos v x v dx u x v dy du x v y u+--=+,消去du ,得 ()cos sin (sin cos )cos cos y u v dx u y u dy dv x v y u-++=+.12.=(0a >,为常数)上任何点处的切平面在各坐标轴上截距之和为a .(总习题七B ,8)证设(,,)F x y z =(,,)x y z 的法向量为⎛⎫=n , 该点的切平面方程为)))0X x Y y Z z ---=,即X Z =这样,切平面在三个坐标轴上截距之和为a ==.13.在椭球面2222221x y z ++=上求一点,使得函数222(,,)f x y z x y z =++沿着点(1,1,1)A 到点(2,0,1)B 的方向导数具有最大值.(总习题七B ,9)解答 由)0,1,1(-=知0cos ,21cos ,21cos =-==γβα,而(2,2,2)f x y z =grad因此2220)f z x y l ∂=-+⋅=-∂ 作222(,,))(2221)L x y z x y x y z λ=-+++-,令22240,40,40,222 1.x y z L x L y L z x y z λλλ⎧==⎪==⎪⎨==⎪⎪++=⎩解得11,,022⎛⎫- ⎪⎝⎭,11,,022⎛⎫- ⎪⎝⎭.比较得知方向导数在点11,,022⎛⎫- ⎪⎝⎭14.证明:函数(1)cos yyz e x ye =+-有无穷多个极大值,但无极小值.(总习题七B ,10)证明 由(1)sin 0,(cos 1)0,yy z e x xz e x y y∂⎧=-+=⎪∂⎪⎨∂⎪=--=∂⎪⎩解得⎩⎨⎧==02y k x π或⎩⎨⎧-=+=2)12(y k x π.22(1)cos y z e x x ∂=-+∂,2sin y z e x x y ∂=-∂∂,22(cos 2)y z e x y y∂=--∂. 当0,2==y k x π时,1,0,2-==-=C B A ,由于0,022<>=-A B AC ,所以此时z 取得无穷多个极大值;当2,)12(-=+=y k x π时22,0,1---==+=e C B e A ,由0)1(222<+-=---e e B AC 知,此时z 没有极值.从而结论成立。