2016年山东省八年级上学期期末数学模拟试卷【解析版】
- 格式:doc
- 大小:356.00 KB
- 文档页数:17
山东省济南市历城区2015~2016学年度八年级上学期期末数学试卷一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列实数中是无理数的是()A.B.πC.0.38 D.2.下面有4个汽车标志图案,其中是中心对称图形的是()A.B.C. D.3.下列各组数值是二元一次方程x﹣3y=4的解的是()A.B.C.D.4.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60°B.65°C.75°D.80°5.位于平面直角坐标系中第三象限的点是()A.(3,﹣3)B.(﹣2,﹣2)C.(0,﹣3)D.(﹣3,5)6.将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是()A.将原图向左平移两个单位B.关于原点对称C.将原图向右平移两个单位D.关于y轴对称A.16,14 B.14,14 C.14,15 D.15,148.如图,以两条直线l1,l2的交点坐标为解的方程组是()A.B.C.D.9.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40°B.45°C.60°D.70°10.已知正比例函数y=kx的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()A.B.C.D.11.如图,△ABC中,∠1=∠2,∠3=∠4,若∠D=25°,则∠A=()A.25°B.65°C.50°D.75°12.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个B.2个C.3个D.4个13.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.114.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交于点C、点D.若DB=DC,则直线CD的函数解析式为()A.y=﹣2x+2 B.y=2x﹣2 C.y=﹣x﹣2 D.y=﹣2x﹣215.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为()A.8 B.12 C.4 D.6二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上)16.﹣8的立方根是.17.在射击比赛中,某运动员的6次射击成绩(单位:环)为:7,8,10,8,9,6,计算这组数据的方差为.18.如图,AB=AC,则数轴上点C所表示的数为.19.在△ABC中,AB=AC,AB的垂直平分线交AC于点E,交AB于D,若△BCE的周长为8,且AC﹣BC=2,则AB=.20.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为.21.如图,已知蚂蚁沿着长为2的正方体表面从点A出发,经过3个侧面爬到点B,如果它运动的路径是最短的,则此经过3个侧面的最短路径长为.三、解答题(本大题共7个小题,共57分,解答应写出文字说明、证明过程或演算步骤)22.计算:(1)﹣(2)()﹣1+(π﹣2016)0﹣()2(3)解方程组(4)已知+(x+2016y)2=0,求y x的值.23.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)将△ABC沿x轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标.(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并写出点C2坐标.24.某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.求A、B两种奖品单价各是多少?25.如图,在△ABC中,AD⊥BC,垂足为D,E为AC上一点,BE交AD于点F,且BF=AC,FD=CD,AD=4,求AB的长.26.小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是米/分?在超市逗留了分钟?(2)求小敏从超市回家时,离家的路程y(米)和所经过的时间x(分)之间的关系式,并求小敏是几点几分返回到家的?27.如图,点P是正方形ABCD内一点,点P到点A,B和C的距离分别为1,2,3,将△ABP绕点B旋转至△CBP′,连接PP′.(1)求证:△BPP′是等腰直角三角形;(2)求∠APB的度数.28.如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).(1)求直线AB的解析式和点B的坐标;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.山东省济南市历城区2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列实数中是无理数的是()A.B.πC.0.38 D.【考点】无理数.【分析】根据无理数的三种形式,结合选项找出无理数的选项.【解答】解:A、=2,是有理数,故本选项错误;B、π是无理数,故本选项正确;C、0.38是有理数,故本选项错误;D、﹣是有理数,故本选项错误.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.下面有4个汽车标志图案,其中是中心对称图形的是()A.B.C. D.【考点】中心对称图形.【专题】常规题型.【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此结合各图形的特点求解.【解答】解:根据中心对称的定义可得:A、B、C都不符合中心对称的定义.故选D.【点评】本题考查中心对称的定义,属于基础题,注意掌握基本概念.3.下列各组数值是二元一次方程x﹣3y=4的解的是()A.B.C.D.【考点】二元一次方程的解.【专题】计算题.【分析】将四个选项中的x与y的值代入已知方程检验,即可得到正确的选项.【解答】解:A、将x=1,y=﹣1代入方程左边得:x﹣3y=1+3=4,右边为4,本选项正确;B、将x=2,y=1代入方程左边得:x﹣3y=2﹣3=﹣1,右边为4,本选项错误;C、将x=﹣1,y=﹣2代入方程左边得:x﹣3y=﹣1+6=5,右边为4,本选项错误;D、将x=4,y=﹣1代入方程左边得:x﹣3y=4+3=7,右边为4,本选项错误.故选A【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60°B.65°C.75°D.80°【考点】平行线的性质.【分析】根据三角形外角性质求出∠EOB,根据平行线性质得出∠C=∠EOB,代入即可得出答案.【解答】解:∵∠A+∠E=75°,∴∠EOB=∠A+∠E=75°,∵AB∥CD,∴∠C=∠EOB=75°,故选C.【点评】本题考查了平行线性质和三角形外角性质的应用,关键是得出∠C=∠EOB和求出∠EOB 的度数.5.位于平面直角坐标系中第三象限的点是()A.(3,﹣3)B.(﹣2,﹣2)C.(0,﹣3)D.(﹣3,5)【考点】点的坐标.【分析】应先判断点在第三象限内点的坐标的符号特点,进而找相应坐标.【解答】解:∵第三象限的点的横坐标是负数,纵坐标也是负数,∴结合选项符合第三象限的点是(﹣2,﹣2).故选B.【点评】本题主要考查了点在第三象限内点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是()A.将原图向左平移两个单位B.关于原点对称C.将原图向右平移两个单位D.关于y轴对称【考点】坐标与图形变化-平移.【分析】根据坐标与图形变化,把三角形三个顶点的横坐标都减2,纵坐标不变,就是把三角形向左平移2个单位,大小不变,形状不变.【解答】解:∵将三角形三个顶点的横坐标都减2,纵坐标不变,∴所得三角形与原三角形的关系是:将原图向左平移两个单位.故选:A.【点评】本题考查了坐标位置的确定及坐标与图形的性质,在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)A.16,14 B.14,14 C.14,15 D.15,14【考点】众数;中位数.【专题】探究型.【分析】由表格中的数据可以直接看出众数,然后将这十个数据按照从小到大的顺序排列即可得到中位数,本题得以解决.【解答】解:由表格可知,一共有2+4+3+1=10个数据,其中14出现的次数最多,故这组数据的众数是14,按从小到大的数据排列是:13、13、14、14、14、14、15、15、15、16,故中位数是14,故选B.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义.8.如图,以两条直线l1,l2的交点坐标为解的方程组是()A.B.C.D.【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【解答】解:直线l1经过(2,3)、(0,﹣1),易知其函数解析式为y=2x﹣1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:.故选C.【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.9.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40°B.45°C.60°D.70°【考点】等腰三角形的性质;平行线的性质.【分析】根据平行线的性质可得∠CBD的度数,根据角平分线的性质可得∠CBA的度数,根据等腰三角形的性质可得∠C的度数,根据三角形内角和定理可得∠BAC的度数.【解答】解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选:A.【点评】考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.10.已知正比例函数y=kx的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()A.B.C.D.【考点】一次函数的图象;正比例函数的性质.【分析】根据正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数ykx+k的图象过过一、二、三象限.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而增大,∴k>0,∴一次函数y=x+k的图象过一、二、三象限.故选A.【点评】本题考查了一次函数的图象:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k >0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的减小而减小;当b>0,图象与y轴的正半轴相交;当b=0,图象过原点;当b<0,图象与y轴的负半轴相交.11.如图,△ABC中,∠1=∠2,∠3=∠4,若∠D=25°,则∠A=()A.25°B.65°C.50°D.75°【考点】三角形内角和定理;三角形的外角性质.【分析】先根据BD是∠ABC的平分线可知∠DBC=∠B,再根据CD是△ABC的外角平分线可知∠ACD=(∠A+∠ABC),再根据三角形内角和定理即可求出结论.【解答】解:∵BD是∠ABC的平分线,∴∠DBC=∠ABC,∵CD是△ABC的外角平分线,∴∠ACD=(∠A+∠ABC),∵∠D+∠DBC+∠ACB+∠ACD=180°,即∠ABC+∠ACB+(∠A+∠ABC)=155°①,∠A+∠ABC+∠ACB=180°②,∴∠ABC+∠ACB=130°,∴∠A=50°.故选C.【点评】本题考查的是三角形内角和定理及三角形外角的性质,熟知“三角形的内角和是180°”是解答此题的关键.12.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据三角形外角性质对③进行判断;根据非负数的性质对④进行判断.【解答】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;三角形的一个外角大于任何一个不相邻的内角,所以③错误;如果x2>0,那么x≠0,所以④错误.故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.13.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.1【考点】旋转的性质.【分析】连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.【解答】解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故选:C.【点评】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.14.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交于点C、点D.若DB=DC,则直线CD的函数解析式为()A.y=﹣2x+2 B.y=2x﹣2 C.y=﹣x﹣2 D.y=﹣2x﹣2【考点】一次函数图象与几何变换.【分析】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【解答】解:设直线AB的解析式为y=kx+b,∵A(0,2)、点B(1,0)在直线AB上,∴,解得,∴直线AB的解析式为y=﹣2x+2;∵将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,平移后的图形与原图形平行,∴平移以后的函数解析式为:y=﹣2x﹣2.故选D.【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.15.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为()A.8 B.12 C.4 D.6【考点】角平分线的性质.【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S△GDH,设面积为S,然后根据S△ADF=S△ADH列出方程求解即可.【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△EDF=S△GDH,设面积为S,同理Rt△ADF≌Rt△ADH,∴S△ADF=S△ADH,即38+S=50﹣S,解得S=6.故选D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作辅助线构造出全等三角形并利用角平分线的性质是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上)16.﹣8的立方根是﹣2.【考点】立方根.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a (x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.17.在射击比赛中,某运动员的6次射击成绩(单位:环)为:7,8,10,8,9,6,计算这组数据的方差为.【考点】方差.【专题】计算题.【分析】先计算出这组数据的平均数,然后根据方差公式求解.【解答】解:平均数=(7+8+10+8+9+6)=8,所以方差S2=[(7﹣8)2+(8﹣8)2+(10﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2]=.故答案为.【点评】本题考查方差:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.如图,AB=AC,则数轴上点C所表示的数为﹣1.【考点】勾股定理;实数与数轴.【分析】根据勾股定理列式求出AB的长,即为AC的长,再根据数轴上的点的表示解答.【解答】解:由勾股定理得,AB==,∴AC=,∵点A表示的数是﹣1,∴点C表示的数是﹣1.故答案为:﹣1.【点评】本题考查了勾股定理,实数与数轴,是基础题,熟记定理并求出AB的长是解题的关键.19.在△ABC中,AB=AC,AB的垂直平分线交AC于点E,交AB于D,若△BCE的周长为8,且AC﹣BC=2,则AB=5.【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】计算题.【分析】根据垂直平分线的性质可得出AE=BE,再由△BCE的周长为8,则AC+BC=8,从而列出关于AC、BC的方程组,解方程组即可.【解答】解:∵AB的垂直平分线交AC于点E,交AB于D,∴AE=BE,∵△BCE的周长为8,∴BC+BE+CE=8,∴AC+BC=8,且AC﹣BC=2,∴AC=5,∵AB=AC,∴AB=5.故答案为5.【点评】本题主要考查线段垂直平分线的性质,熟练掌握性质是解题的关键.20.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为10.【考点】平移的性质.【分析】根据平移的基本性质解答即可.【解答】解:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故答案为:10.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.21.如图,已知蚂蚁沿着长为2的正方体表面从点A出发,经过3个侧面爬到点B,如果它运动的路径是最短的,则此经过3个侧面的最短路径长为2.【考点】平面展开-最短路径问题.【分析】将正方体展开,根据两点之间线段最短,构造出直角三角形,进而求出最短路径的长.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB==2,故答案为:2.【点评】此题考查了平面展开﹣最短路径问题,勾股定理,熟练求出AB的长是解本题的关键.三、解答题(本大题共7个小题,共57分,解答应写出文字说明、证明过程或演算步骤)22.计算:(1)﹣(2)()﹣1+(π﹣2016)0﹣()2(3)解方程组(4)已知+(x+2016y)2=0,求y x的值.【考点】实数的运算;非负数的性质:偶次方;非负数的性质:算术平方根;零指数幂;负整数指数幂;解二元一次方程组.【分析】(1)先把各式化为最减二次根式的形式,再根据二次根式混合运算的法则进行计算即可;(2)分别根据0指数幂及负整数指数幂的计算法则、乘方的法则计算出各数,再根据实数混合运算的法则进行计算即可;(3)先用加减消元法求出y的值,再用代入消元法求出x的值即可;(4)先根据非负数的性质求出x、y的值,代入代数式进行计算即可.【解答】解:(1)原式=﹣=﹣=3﹣;(2)原式=3+1﹣(3+1﹣2)=4﹣4+2=2;(3),①×2﹣②得,﹣7y=﹣14,解得y=2,把y=2代入①得,x﹣4=﹣1,解得x=3,故此方程组的解为;(4)∵+(x+2016y)2=0,∴,解得,∴y x=(﹣1)2016=1.【点评】本题考查的是实数的运算,熟知0指数幂及负整数指数幂的计算法则、乘方的法则、非负数的性质等知识是解答此题的关键.23.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)将△ABC沿x轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标.(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并写出点C2坐标.【考点】作图-旋转变换;作图-平移变换.【专题】作图题.【分析】(1)利用点平移的坐标特征写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和性质的性质,画出点A、C的对应点A2,C2,即可得到△A2BC2,然后写出点C2坐标.【解答】解:(1)如图,△A1B1C1为所作,点B1坐标为(0,1);(2)如图,△A2BC2为所作,点C2坐标为(0,﹣1).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.24.某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.求A、B两种奖品单价各是多少?【考点】二元一次方程组的应用.【分析】设A奖品的单价是x元,B奖品的单价是y元,根据条件“购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元”建立方程组求出其解即可.【解答】解:设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元.【点评】本题考查了二元一次方程组的运用,一元一次不等式组的运用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.25.如图,在△ABC中,AD⊥BC,垂足为D,E为AC上一点,BE交AD于点F,且BF=AC,FD=CD,AD=4,求AB的长.【考点】全等三角形的判定与性质.【分析】由HL证明Rt△BDF≌Rt△ADC,得出BD=AD=4,再由勾股定理求出AB即可.【解答】解:∵AD⊥BC,∴∠BDF=∠ADC=90°,在Rt△BDF和Rt△ADC中,,∴Rt△BDF≌Rt△ADC(HL),∴BD=AD=4,∴AB===4.【点评】本题考查了全等三角形的判定与性质;熟记斜边和一条直角边对应相等的两个直角三角形全等是解决问题的关键.26.小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是300米/分?在超市逗留了30分钟?(2)求小敏从超市回家时,离家的路程y(米)和所经过的时间x(分)之间的关系式,并求小敏是几点几分返回到家的?【考点】一次函数的应用.【分析】(1)根据速度=即可解决,小敏在超市逗留的时间直接可由图象可知.(2)用待定系数法求解,到家的时间可以设y=0解决.【解答】解:(1)小敏去超市的速度==300米/分,在超市逗留的时间=40﹣10=30分钟.故答案分别为300,30.(2)设小敏离家的路程y(米)和所经过的时间x(分)之间的关系式为y=kx+b,由题意经过点(40,3000),(45,2000),故解得所以小敏离家的路程y(米)和所经过的时间x(分)之间的关系式为y=﹣200x+11000,∵y=0时,x=55,∴小敏回家的时间是8点55分.【点评】本题考查路程、速度、时间之间的关系,待定系数法求一次函数的解析式,正确运用图象的相信是解题的关键.27.如图,点P是正方形ABCD内一点,点P到点A,B和C的距离分别为1,2,3,将△ABP绕点B旋转至△CBP′,连接PP′.(1)求证:△BPP′是等腰直角三角形;(2)求∠APB的度数.【考点】全等三角形的判定与性质;等腰直角三角形;正方形的性质.【分析】(1)由旋转的性质得出△ABP≌△CBP′,得出∠PBP′=∠ABC=90°,BP=BP′=2,P′C=AP=1,即可得出结论;(2)连接PC,由等腰三角形的性质得出∠BP′P=45°,由勾股定理求出PP′,由勾股定理的逆定理证出△BP′C是直角三角形,∠PP′C=90°,即可得出结果.【解答】(1)证明:∵将△ABP绕点B旋转至△CBP′,∴△ABP≌△CBP′,∴∠PBP′=∠ABC=90°,BP=BP′=2,P′C=AP=1,∠APB=∠BP′C∴△BPP′为等腰直角三角形;(2)解:连接PC,如图所示:由(1)得:△BPP′为等腰直角三角形,∴∠BP′P=45°,PP′==2,∵PP′2+P′C2=8+1=9=PC2,∴△BP′C是直角三角形,∠PP′C=90°,∴∠APB=∠BP′C=90°+45°=135°.【点评】本题考查了正方形的性质、旋转的性质、等腰直角三角形的判定与性质、勾股定理以及勾股定理的逆定理;熟练掌握正方形和旋转的性质,证明△BP′C是直角三角形是解决问题(2)的关键.28.如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).(1)求直线AB的解析式和点B的坐标;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.【考点】一次函数综合题.【分析】(1)把A的坐标代入直线AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐标;(2)过点A作AM⊥PD,垂足为M,求得AM的长,即可求得△BPD和△PAB的面积,二者的和即可求得;(3)当S△ABP=2时,,解得n=2,则∠OBP=45°,然后分A、B、P分别是直角顶点求解.【解答】解:(1)∵经过A(0,1),∴b=1,∴直线AB的解析式是.当y=0时,,解得x=3,(2)过点A作AM⊥PD,垂足为M,则有AM=1,∵x=1时,=,P在点D的上方,∴PD=n﹣,由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,∴,∴;(3)当S△ABP=2时,,解得n=2,∴点P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2种情况,如图2∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3种情况,如图3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB和△PEB中,∴△PCB≌△PEB(SAS),∴PC=CB=PE=EB=2,∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(3,4)或(5,2)或(3,2).【点评】本题是待定系数法求函数的解析式,以及等腰直角三角形的性质的综合应用,正确求得n 的值,判断∠OBP=45°是关键.。
2016-2017学年山东省济南市市中区八年级(上)期末数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)点P(﹣3,﹣4)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)9的算术平方根是()A.3B.﹣3C.±3D.93.(3分)下列四组数据中,不能作为直角三角形的三边长是()A.3,4,5B.3,5,7C.5,12,13D.6,8,10 4.(3分)下列四个方程中,是二元一次方程的是()A.x﹣3=0B.xy﹣x=5C.D.2y﹣x=5 5.(3分)下列命题是真命题的是()A.同旁内角互补B.直角三角形的两个锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于任意一个内角6.(3分)在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20个B.22个、21个C.20个、21个D.20个、22个7.(3分)如果梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是()A.12米B.13米C.14米D.15米8.(3分)如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()A.50°B.45°C.35°D.30°9.(3分)一次函数y=kx﹣b,当k<0,b<0时的图象大致位置是()A.B.C.D.10.(3分)气象台为预测台风,首先要确定台风中心的位置,下列说法能确定台风中心位置的是()A.距台湾200海里B.位于台湾与海口之间C.位于东经120.8度,北纬32.8度D.位于西太平洋11.(3分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0B.1C.2D.312.(3分)下列计算正确的是()A.B.C.D.=×13.(3分)如图,将一等边三角形剪去一个角后,∠1+∠2等于()A.120°B.240°C.300°D.360°14.(3分)如图,以两条直线l1,l2的交点坐标为解的方程组是()A.B.C.D.15.(3分)如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)计算:=.17.(3分)一组数据3,4,5,x,7,8的平均数为6,则这组数据的方差是.18.(3分)已知a,b满足方程组,则3a+b的值为.19.(3分)直线y=kx+1与y=2x﹣1平行,则y=kx+1的图象不经过象限.20.(3分)根据下图给出的信息,则每件T恤价格和每瓶矿泉水的价格分别为.21.(3分)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=.三、解答题(本大题共8小题,共57分)22.(7分)计算:(1)2+﹣15(2)+.23.(7分)(1)解方程组:(2)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,求∠3的度数.24.(4分)(列方程组解应用题)受气候等因素的影响,今年某些农产品的价格有所上涨,张大叔在承包的10亩地里所种植的甲、乙两种蔬菜共获利13800元.其中甲种蔬菜每亩获利1200元,乙种蔬菜每亩获利1500元,则甲、乙两种蔬菜各种植了多少亩?25.(4分)如图,一个小正方形网格的边长表示50米.A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立平面直角坐标系:(2)B同学家的坐标是;(3)在你所建的直角坐标系中,如果C同学家的坐标为(﹣150,100),请你在图中描出表示C同学家的点.26.(8分)在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:(1)统计表中的m=,x=,y=;(2)请将频数分布直方图补充完整,并求出被调查同学劳动时间的中位数是时;(3)求所有被调查同学的平均劳动时间.27.(8分)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:=======﹣1以上这种化简的步骤叫做分母有理化.(1)化简(2)化简.(3)化简:+++…+.28.(9分)问题情景:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC 的度数.(1)天天同学看过图形后立即口答出:∠APC=110°,请你补全他的推理依据.如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD.()∴∠A+∠APE=180°.∠C+∠CPE=180°.()∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°∴∠APC=∠APE+∠CPE=110°.()问题迁移:(2)如图3,AD∥BC,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α、∠β之间有何数量关系?请说明理由.(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O 三点不重合),请你直接写出∠CPD与∠α、∠β之间的数量关系.29.(10分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA 相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.2016-2017学年山东省济南市市中区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)点P(﹣3,﹣4)位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:(﹣3,﹣4)位于第三象限,故选:C.2.(3分)9的算术平方根是()A.3B.﹣3C.±3D.9【解答】解:9的算术平方根是3,故选:A.3.(3分)下列四组数据中,不能作为直角三角形的三边长是()A.3,4,5B.3,5,7C.5,12,13D.6,8,10【解答】解:A、∵32+42=52,∴此三角形为直角三角形,故选项错误;B、∵32+52≠72,∴此三角形不是直角三角形,故选项正确;C、∵52+122=132,∴此三角形为直角三角形,故选项错误;D、∵62+82=102,∴此三角形为直角三角形,故选项错误.故选:B.4.(3分)下列四个方程中,是二元一次方程的是()A.x﹣3=0B.xy﹣x=5C.D.2y﹣x=5【解答】解:A、x﹣3=0是一元一次方程,故A错误;B、xy﹣x=5是二元二次方程,故B错误;C、﹣y=3是分式方程,故C错误;D、2y﹣x=5是二元一次方程,故D正确;故选:D.5.(3分)下列命题是真命题的是()A.同旁内角互补B.直角三角形的两个锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于任意一个内角【解答】解:A、两直线平行,同旁内角互补,所以A选项为假命题;B、直角三角形的两个锐角互余,所以B选项为真命题;C、三角形的一个外角等于与之不相邻的两个内角之和,所以C选项为假命题;D、三角形的一个外角大于任意一个与之不相邻得任意一个内角,所以D选项为假命题.故选:B.6.(3分)在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20个B.22个、21个C.20个、21个D.20个、22个【解答】解:在这一组数据中20出现了3次,次数最多,故众数是20;把数据按从小到大的顺序排列:19,20,20,20,22,22,23,24,处于这组数据中间位置的数20和22,那么由中位数的定义可知,这组数据的中位数是21.故选:C.7.(3分)如果梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是()A.12米B.13米C.14米D.15米【解答】解:如图所示,AB=13米,BC=5米,根据勾股定理AC===12米.故选:A.8.(3分)如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()A.50°B.45°C.35°D.30°【解答】解:如图,∵直线a∥b,∴∠3=∠1=60°.∵AC⊥AB,∴∠3+∠2=90°,∴∠2=90°﹣∠3=90°﹣60°=30°,故选:D.9.(3分)一次函数y=kx﹣b,当k<0,b<0时的图象大致位置是()A.B.C.D.【解答】解:∵一次函数y=kx﹣b,k<0,b<0,∴﹣b>0,∴函数图象经过一二四象限,故选:C.10.(3分)气象台为预测台风,首先要确定台风中心的位置,下列说法能确定台风中心位置的是()A.距台湾200海里B.位于台湾与海口之间C.位于东经120.8度,北纬32.8度D.位于西太平洋【解答】解:A、距台湾200海里,位置不确定,故本选项错误;B、位于台湾与海口之间,位置不确定,故本选项错误;C、位于东经120.8度,北纬32.8度,位置非常明确,故本选项正确;D、位于西太平洋,位置不确定,故本选项错误.故选:C.11.(3分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0B.1C.2D.3【解答】解:∵y1=kx+b的函数值随x的增大而减小,∴k<0;故①正确∵y2=x+a的图象与y轴交于负半轴,∴a<0;当x<3时,相应的x的值,y1图象均高于y2的图象,∴y1>y2,故②③错误.故选:B.12.(3分)下列计算正确的是()A.B.C.D.=×【解答】解:A、原式=3﹣2=,所以A选项正确;B、与不能合并,所以B选项错误;C、2与不能合并,所以C选项错误;D、原式==×,所以D选项错误.故选:A.13.(3分)如图,将一等边三角形剪去一个角后,∠1+∠2等于()A.120°B.240°C.300°D.360°【解答】解:等边三角形的各个内角都是60°,根据三角形的外角的性质得∠1=60°+180°﹣∠2,则∠1+∠2=240°.故选:B.14.(3分)如图,以两条直线l1,l2的交点坐标为解的方程组是()A.B.C.D.【解答】解:直线l1经过(2,3)、(0,﹣1),易知其函数解析式为y=2x﹣1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:.故选:C.15.(3分)如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.【解答】解:当点P由点A向点D运动,即0≤x≤4时,y的值为0;当点P在DC上运动,即4<x≤8时,y随着x的增大而增大;当点P在CB上运动,即8<x≤12时,y不变;当点P在BA上运动,即12<x≤16时,y随x的增大而减小.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)计算:=2.【解答】解:==2.故答案为2.17.(3分)一组数据3,4,5,x,7,8的平均数为6,则这组数据的方差是.【解答】解:∵3,4,5,x,7,8的平均数是6,∴解得:x=9,∴s2=[(3﹣6)2+(4﹣6)2+(5﹣6)2+(9﹣6)2+(7﹣6)2+(8﹣6)2]=×28=,故答案为:.18.(3分)已知a,b满足方程组,则3a+b的值为7.【解答】解:两式相加,得3a+b=7,故答案为:7.19.(3分)直线y=kx+1与y=2x﹣1平行,则y=kx+1的图象不经过四象限.【解答】解:∵直线y=kx+1与y=2x﹣1平行,∴k=2,∴直线y=kx﹣1的解析式为y=2x+1,∴直线y=2x+1经过第一、二、三象限,∴y=kx+1不经过第四象限.故答案为四.20.(3分)根据下图给出的信息,则每件T恤价格和每瓶矿泉水的价格分别为20元和2元.【解答】解:可设每件T恤价格和每瓶矿泉水的价格分别为x元,y元,则解得21.(3分)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′= 1.5.【解答】解:根据折叠可得BE=EB′,AB′=AB=3,设BE=EB′=x,则EC=4﹣x,∵∠B=90°,AB=3,BC=4,∴在Rt△ABC中,由勾股定理得,,∴B′C=5﹣3=2,在Rt△B′EC中,由勾股定理得,x2+22=(4﹣x)2,解得x=1.5,故答案为:1.5.三、解答题(本大题共8小题,共57分)22.(7分)计算:(1)2+﹣15(2)+.【解答】解:(1)2+﹣15=2+5﹣3=4;(2)+=2﹣2+2=2;23.(7分)(1)解方程组:(2)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,求∠3的度数.【解答】解:(1),②﹣①得:6y=﹣18,解得:y=﹣3,则6x﹣5×(﹣3)=3,解得:x=﹣2,故方程组的解为:;(2)∵AB∥CD,∠1=45°,∴∠C=45°,∵∠2=35°,∴∠3=∠C+∠2=80°.24.(4分)(列方程组解应用题)受气候等因素的影响,今年某些农产品的价格有所上涨,张大叔在承包的10亩地里所种植的甲、乙两种蔬菜共获利13800元.其中甲种蔬菜每亩获利1200元,乙种蔬菜每亩获利1500元,则甲、乙两种蔬菜各种植了多少亩?【解答】解:设甲、乙两种蔬菜的种植面积分别为x、y亩.依题意可得:,解这个方程组得:.故甲、乙两种蔬菜各种植了4、6亩.25.(4分)如图,一个小正方形网格的边长表示50米.A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立平面直角坐标系:(2)B同学家的坐标是(200,150);(3)在你所建的直角坐标系中,如果C同学家的坐标为(﹣150,100),请你在图中描出表示C同学家的点.【解答】解:(1)如图,(2)B同学家的坐标是(200,150);(3)如图.故答案为(200,150).26.(8分)在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:(1)统计表中的m=100,x=40,y=0.18;(2)请将频数分布直方图补充完整,并求出被调查同学劳动时间的中位数是1.5时;(3)求所有被调查同学的平均劳动时间.【解答】解:(1)被调查的同学的总人数为m=12÷0.12=100(人),∴x=100×0.4=40,y==0.18,故答案为100,40,0.18.(2)频数分布直方图如图所示,被调查同学劳动时间的中位数是1.5.(3)所有被调查同学的平均劳动时间==1.32小时.27.(8分)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:=======﹣1以上这种化简的步骤叫做分母有理化.(1)化简(2)化简.(3)化简:+++…+.(2)化简==﹣(3)化简:+++…+=(﹣1+﹣+﹣+…+﹣)=(﹣1)28.(9分)问题情景:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC 的度数.(1)天天同学看过图形后立即口答出:∠APC=110°,请你补全他的推理依据.如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD.(平行于同一条直线的两条直线平行)∴∠A+∠APE=180°.∠C+∠CPE=180°.(两直线平行同旁内角互补)∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°∴∠APC=∠APE+∠CPE=110°.(等量代换)问题迁移:(2)如图3,AD∥BC,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α、∠β之间有何数量关系?请说明理由.(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O 三点不重合),请你直接写出∠CPD与∠α、∠β之间的数量关系.∵AB∥CD,∴PE∥AB∥CD.(平行于同一条直线的两条直线平行)∴∠A+∠APE=180°.∠C+∠CPE=180°.(两直线平行同旁内角互补)∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°∴∠APC=∠APE+∠CPE=110°.(等量代换)故答案为:平行于同一条直线的两条直线平行;两直线平行同旁内角互补;等量代换.(2)∠CPD=∠α+∠β,理由是:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)当P在BA延长线时,过P作PE∥AD交CD于E,同(2)可知:∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠β﹣∠α;当P在AB延长线时,同(2)可知:∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠α﹣∠β.29.(10分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA 相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M的坐标是(﹣1,7);综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).。
2015-2016学年山东省济南市XX中学八年级(上)期末数学试卷一、选择题1.下列各式中计算正确的是( )A.B.C.D.2.根据下列表述,能确定具体位置的是( )A.某电影院2排 B.大桥南路C.北偏东30° D.东经118°,北纬40°3.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于( )A.2 B.8 C. D.4.如图,AB∥CD,∠A+∠E=75°,则∠C为( )A.60° B.65° C.75° D.80°5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是( )A.B.C.D.6.下列命题是真命题的是( )A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角7.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:册数0 1 2 3 4人数 3 13 16 17 1则这50名学生读数册数的众数、中位数是( )A.3,3 B.3,2 C.2,3 D.2,28.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对9.对于一次函数y=x+6,下列结论错误的是( )A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)10.如果方程组的解与方程组的解相同,则a+b的值为( )A.﹣1B.2 C.1 D.011.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为( )A.49 B.25 C.13 D.112.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是( )A.B.C.D.13.如图,以两条直线l1,l2的交点坐标为解的方程组是( )A.B.C.D.14.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是( )A. B. C. D.15.如图,AB∥EF,∠C=90°,则α、β、γ的关系为( )A.β=α+γ B.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°二、填空题16.若点A(﹣2,b)在第三象限,则点B(﹣b,4)在第 象限.17.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是 .18.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠BAC的度数是 .19.如图,已知一次函数y=ax+b的图象为直线,则关于x的方程ax+b=1的解x= .20.△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为 .21.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为 .三、解答题22.(1)计算:(2)解方程组:.23.(1)如图1,一住宅楼发生火灾,消防车立即赶到准备在距大厦6米处升起云梯到火灾窗口展开营救,已知云梯AB长15米,云梯底部B距地面2米,此时消防队员能否成功救下等候在距离地面约14米窗口的受困人群?说说你的理由.(2)如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.24.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试75 80 90面试93 70 68根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?25.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与x轴交于点P,若△ABP的面积为,试求点P的坐标.26.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.27.小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min 速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min 时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为s2 m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?28.平面内的两条直线有相交和平行两种位置关系,下面我们就来研究其中的几种位置关系中角所存在的几种数量关系.(1)问题探究1:如图①,若AB∥CD,点P在AB、CD外部,则有∠D=∠BOD,又因为∠BOD是△POB的外角,故∠BOD=∠BPD+∠B,得∠BPD=∠D﹣∠B.将点P移到AB、CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)问题探究2:在图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD延长线于点Q,如图③,则∠BPD﹑∠B﹑∠PDQ﹑∠BQD之间有何数量关系?请证明你的结论;(3)根据(2)的结论直接写出图④中∠A+∠B+∠C+∠D+∠E+∠F的度数.2015-2016学年山东省济南市XX中学八年级(上)期末数学试卷参考答案与试题解析一、选择题1.下列各式中计算正确的是( )A.B.C.D.【考点】立方根;算术平方根.【分析】根据算术平方根和立方根的概念计算即可求解.【解答】解:A、=9,故选项错误;B、=5,故选项错误;C、=﹣1,故选项正确;D、(﹣)2=2,故选项错误.故选:C.【点评】本题考查了算术平方根和立方根的概念.算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.2.根据下列表述,能确定具体位置的是( )A.某电影院2排 B.大桥南路C.北偏东30° D.东经118°,北纬40°【考点】坐标确定位置.【分析】根据坐标的定义,确定位置需要两个数据对各选项分析判断利用排除法求解.【解答】解:A、某电影院2排,不能确定具体位置,故本选项错误;B、大桥南路,不能确定具体位置,故本选项错误;C、北偏东30°,不能确定具体位置,故本选项错误;D、东经118°,北纬40°,能确定具体位置,故本选项正确.故选D.【点评】本题考查了坐标确定位置,理解确定坐标的两个数是解题的关键.3.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于( )A.2 B.8 C. D.【考点】算术平方根.【专题】压轴题;图表型.【分析】根据图中的步骤,把64输入,可得其算术平方根为8,8再输入得其算术平方根是,是无理数则输出.【解答】解:由图表得,64的算术平方根是8,8的算术平方根是;故选D.【点评】本题考查了算术平方根的定义,看懂图表的原理是正确解答的关键.4.如图,AB∥CD,∠A+∠E=75°,则∠C为( )A.60° B.65° C.75° D.80°【考点】平行线的性质.【分析】根据三角形外角性质求出∠EOB,根据平行线性质得出∠C=∠EOB,代入即可得出答案.【解答】解:∵∠A+∠E=75°,∴∠EOB=∠A+∠E=75°,∵AB∥CD,∴∠C=∠EOB=75°,故选C.【点评】本题考查了平行线性质和三角形外角性质的应用,关键是得出∠C=∠EOB和求出∠EOB的度数. 5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是( )A.B.C.D.【考点】一次函数的图象;正比例函数的性质.【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.【解答】解:∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵b=k>0,∴一次函数y=kx+k的图象经过一、二、三象限.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限.6.下列命题是真命题的是( )A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角【考点】命题与定理.【分析】分别根据平行线的性质、直角三角形的性质、三角形的外角分别对每一项进行分析即可.【解答】解:A.两直线平行,同旁内角互补,故本选项错误,是假命题,B.直角三角形的两锐角互余,正确,是真命题,C.三角形的一个外角等于与它不相邻的两个内角之和,故本选项错误,是假命题,D.三角形的一个外角大于与它不相邻的内角,故本选项错误,是假命题,故选:B.【点评】此题考查了命题与定理,用到的知识点是平行线的性质、直角三角形的性质、三角形的外角,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:册数0 1 2 3 4人数 3 13 16 17 1则这50名学生读数册数的众数、中位数是( )A.3,3 B.3,2 C.2,3 D.2,2【考点】众数;中位数.【分析】在这组样本数据中,3出现的次数最多,所以求出了众数,将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2;【解答】解:∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,有=2,∴这组数据的中位数为2;故选B.【点评】本题考查的知识点有:用样本估计总体、众数以及中位数的知识,解题的关键是牢记概念及公式. 8.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对【考点】勾股定理的逆定理;勾股定理.【专题】网格型.【分析】根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解答】解:∵正方形小方格边长为1,∴BC==2,AC==,AB==,在△ABC中,∵BC2+AC2=52+13=65,AB2=65,∴BC2+AC2=AB2,∴△ABC是直角三角形.故选:A.【点评】考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.9.对于一次函数y=x+6,下列结论错误的是( )A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)【考点】一次函数的性质.【专题】探究型.【分析】根据一次函数的性质对各选项进行逐一判断即可.【解答】解:A、∵一次函数y=x+6中k=1>0,∴函数值随自变量增大而增大,故A选项正确;B、∵一次函数y=x+6与x、y轴的交点坐标分别为(﹣6,0),(0,6),∴此函数与x轴所成角度的正切值==1,∴函数图象与x轴正方向成45°角,故B选项正确;C、∵一次函数y=x+6中k=1>0,b=6>0,∴函数图象经过一、二、三象限,故C选项正确;D、∵令y=0,则x=﹣6,∴一次函数y=x+6与x、y轴的交点坐标分别为(﹣6,0),故D选项错误.故选:D.【点评】本题考查的是一次函数的性质,熟知一次函数的增减性及与坐标轴的交点坐标是解答此题的关键. 10.如果方程组的解与方程组的解相同,则a+b的值为( )A.﹣1B.2 C.1 D.0【考点】二元一次方程组的解.【分析】把代入方程组,即可得到一个关于a,b的方程组,即可求解.【解答】解:把代入方程组,得:,方程左右两边相加,得:7(a+b)=7,则a+b=1.故选C.【点评】本题考查了二元一次方程组的解的定义,理解定义是关键.11.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为( )A.49 B.25 C.13 D.1【考点】勾股定理.【专题】图表型.【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=24.根据完全平方公式即可求解.【解答】解:由于大正方形的面积25,小正方形的面积是1,则四个直角三角形的面积和是25﹣1=24,即4×ab=24,即2ab=24,a2+b2=25,则(a+b)2=25+24=49.故选:A.【点评】本题考查了勾股定理的应用,解题的关键是注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.12.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是( )A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得等量关系:①5个馒头的钱+3个包子的钱=10+1元;②(8个馒头的钱+6个包子的钱)×9折=18元,根据等量关系列出方程组即可.【解答】解:若馒头每个x元,包子每个y元,由题意得:,故选:B.【点评】此题主要考查了由实际问题抽象出二元一次方程组的应用,关键是正确理解题意,根据花费列出方程.13.如图,以两条直线l1,l2的交点坐标为解的方程组是( )A.B.C.D.【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【解答】解:直线l1经过(2,3)、(0,﹣1),易知其函数解析式为y=2x﹣1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:.故选C.【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.14.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是( )A. B. C. D.【考点】函数的图象.【分析】根据玉米种子的价格为5元/千克,如果一次购买2千克以上种子,超过2千克的部分的种子的价格打6折,可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,即可得到答案.【解答】解:可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,故选:B.【点评】本题主要考查了函数的图象,关键是分析出分两段,每段y都随x的增大而增大,只不过快慢不同.15.如图,AB∥EF,∠C=90°,则α、β、γ的关系为( )A.β=α+γ B.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°【考点】平行线的性质;垂线.【专题】探究型.【分析】此题可以构造辅助线,利用三角形的外角的性质以及平行线的性质建立角之间的关系.【解答】解:延长DC交AB与G,延长CD交EF于H.直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,因为AB∥EF,所以∠1=∠2,于是90°﹣α=β﹣γ,故α+β﹣γ=90°.故选D.【点评】此题主要是通过作辅助线,构造了三角形以及由平行线构成的内错角.掌握三角形的外角的性质以及平行线的性质:两条直线平行,内错角相等.二、填空题16.若点A(﹣2,b)在第三象限,则点B(﹣b,4)在第 一 象限.【考点】点的坐标.【分析】根据第三象限内点的坐标,可得关于b的不等式,根据不等式的性质,可得b的相反数的取值范围,根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.【解答】解:由点A(﹣2,b)在第三象限,得b<0,两边都除以﹣1,得﹣b>0,4>0,B(﹣b,4)在第一象限,故答案为:一.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).17.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是 2 .【考点】方差;算术平均数.【专题】计算题.【分析】先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x2,…x n的平均数为, =(x1+x2+…+x n),则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:x=5×3﹣1﹣3﹣2﹣5=4,s2= [(1﹣3)2+(3﹣3)2+(2﹣3)2+(5﹣3)2+(4﹣3)2]=2.故答案为2.【点评】本题考查了方差的定义:一般地设n个数据,x1,x2,…x n的平均数为, =(x1+x2+…+x n),则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠BAC的度数是 80° .【考点】三角形内角和定理.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠PCD=∠P+∠PCB,根据角平分线的定义可得∠PCD=∠ACD,∠PBC=∠ABC,然后整理得到∠PCD=∠A,再代入数据计算即可得解.【解答】解:在△ABC中,∠ACD=∠A+∠ABC,在△PBC中,∠PCD=∠P+∠PBC,∵PB、PC分别是∠ABC和∠ACD的平分线,∴∠PCD=∠ACD,∠PBC=∠ABC,∴∠P+∠PCB=(∠A+∠ABC)=∠A+∠ABC=∠A+∠PCB,∴∠PCD=∠A,∴∠BPC=40°,∴∠A=2×40°=80°,即∠BAC=80°.故答案为:80°.【点评】本题考查了三角形内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记定理与性质并求出∠PCD=∠A是解题的关键.19.如图,已知一次函数y=ax+b的图象为直线,则关于x的方程ax+b=1的解x= 4 .【考点】一次函数与一元一次方程.【分析】根据一次函数图象可得一次函数y=ax+b的图象经过(4,1)点,进而得到方程的解.【解答】解:根据图象可得,一次函数y=ax+b的图象经过(4,1)点,因此关于x的方程ax+b=1的解x=4,故答案为:4.【点评】此题主要考查了一次函数与方程,关键是正确利用数形结合的方法从图象中找到正确答案.20.△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为 14或4 .【考点】勾股定理.【专题】分类讨论.【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD﹣BD.【解答】解:(1)如图,锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为DC﹣BD=9﹣5=4.故答案为14或4.【点评】本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.21.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为 (36,0) .【考点】旋转的性质;坐标与图形性质;勾股定理.【专题】压轴题;规律型.【分析】如图,在△AOB中,∠AOB=90°,OA=3,OB=4,则AB=5,每旋转3次为一循环,则图③、④的直角顶点坐标为(12,0),图⑥、⑦的直角顶点坐标为(24,0),所以,图⑨、⑩10的直角顶点为(36,0).【解答】解:∵在△AOB中,∠AOB=90°,OA=3,OB=4,∴AB=5,∴图③、④的直角顶点坐标为(12,0),∵每旋转3次为一循环,∴图⑥、⑦的直角顶点坐标为(24,0),∴图⑨、⑩的直角顶点为(36,0).故答案为:(36,0).【点评】本题主要考查了旋转的性质、坐标与图形的性质及勾股定理,找出图形旋转的规律“旋转3次为一循环”,是解答本题的关键.三、解答题22.(1)计算:(2)解方程组:.【考点】二次根式的混合运算;解二元一次方程组.【分析】(1)直接利用二次根式混合运算法则化简求出答案;(2)直接利用代入消元法解方程得出答案.【解答】解:(1)=3﹣6﹣3=﹣6;(2),由②得:x=6﹣3y,则2(6﹣3y)+y=5,解得:y=﹣1,则2x﹣1=5,解得:x=3,故方程组的解为:.【点评】此题主要考查了二次根式的混合运算以及二元一次方程组的解法,正确化简二次根式是解题关键. 23.(1)如图1,一住宅楼发生火灾,消防车立即赶到准备在距大厦6米处升起云梯到火灾窗口展开营救,已知云梯AB长15米,云梯底部B距地面2米,此时消防队员能否成功救下等候在距离地面约14米窗口的受困人群?说说你的理由.(2)如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.【考点】勾股定理的应用;平行线的判定与性质.【分析】(1)先根据题意建立直角三角形,然后利用勾股定理求出AB的长度,最后于云梯的长度比较即可得出答案.(2)由已知条件和对顶角相等得出∠1=∠3,证出BD∥CE,由平行线的性质得出∠ABD=∠C,在证出∠ABD=∠D,得出AC∥DF,由平行线的性质即可得出结论.【解答】(1)解:能救下.理由如下:如图所示:由题意得,BC=6米,AC=14﹣2=12米,在RT△ABC中,AB2=AC2+BC2,∴AB2=(14﹣2)2+62=144+36=180,而152=225>180,故能救下.(2)证明:∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF,∴∠A=∠F.【点评】此题考查了勾股定理的应用、平行线的判定与性质;熟练掌握勾股定理和平行线的判定与性质,在(1)中,根据题意得出AC、BC的长度,利用勾股定理求出AB是解答本题的关键.24.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试75 80 90面试93 70 68根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?【考点】加权平均数;统计表;扇形统计图.【分析】(1)根据扇形统计图中的数据即可求得甲、乙、丙的民主评议得分;(2)根据平均数的概念求得甲、乙、丙的平均成绩,进行比较;(3)根据加权成绩分别计算三人的个人成绩,进行比较.【解答】解:(1)甲、乙、丙的民主评议得分分别为:200×25%=50分,200×40%=80分,200×35%=70分;(2)甲的平均成绩为:,乙的平均成绩为:,丙的平均成绩为:.由于76.67>76>72.67,所以候选人乙将被录用;(3)如果将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么甲的个人成绩为:,乙的个人成绩为:,丙的个人成绩为:.由于丙的个人成绩最高,所以候选人丙将被录用.【点评】本题考查了加权平均数的概念及求法,属于基础题,牢记加权平均数的计算公式是解题的关键. 25.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与x轴交于点P,若△ABP的面积为,试求点P的坐标.【考点】一次函数图象上点的坐标特征.【分析】(1)把x=0,y=0分别代入函数解析式,即可求得相应的y、x的值,则易得点A、B的坐标;(2)由B、A的坐标易求:OB=3,OA=.然后由三角形面积公式得到S△ABP=AP•OB=,则AP=.设点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,由此可以求得m的值.【解答】解:(1)由x=0得:y=3,即:B(0,3).由y=0得:2x+3=0,解得:x=﹣,即:A(﹣,0);(2)由B(0,3)、A(﹣,0)得:OB=3,OA=∵S△ABP=AP•OB=∴AP=,解得:AP=.设点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,解得:m=1或﹣4,∴P点坐标为(1,0)或(﹣4,0).【点评】本题考查了一次函数图象上点的坐标特征.一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.26.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.【考点】二元一次方程组的应用;二元一次方程的应用.【分析】(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B 型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.【解答】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,。
2016-2017学年山东初二上学期期末数学测试题一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内。
的相反数是( ) A .5B .5-C .5±D .252. Rt 90ABC C BAC ∠∠在△中,=,的角平分线AD 交BC 于 点D ,2CD =,则点D 到AB 的距离是( )A .1B .2C .3D .4 3. 下列运算正确的是( ) A .222()a b a b +=+ B .325a a a =C .632a a a ÷=D .235a b ab +=4.下列不等式中,是一元一次不等式的是 ( )A 012>-x ;B 21<-;C 123-≤-y x ;D 532>+y ; 4. 到三角形三条边的距离都相等的点是这个三角形的( ) A.三条中线的交点B.三条高的交点 C.三条边的垂直平分线的交点D.三条角平分线的交点5. 对于数据组2,4,4,5,3,9,4,5,1,8,其众数,中位数与平均数分别为 ( ) A. 4,4,6 B. 4,6,4,5 C. 4,4,4,6 D. 5,6,4,56.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2(B)m ≥2(C)m ≤1(D)m ≥17. 下列说法正确的个数有( )⑴等边三角形有三条对称轴 ⑵四边形有四条对称轴 ⑶等腰三角形的一边长为4,另一边长为9,则它的周长为17或22 ⑷一个三角形中至少有两个锐角 A 1个 B 2个 C 3个 D 4个8.下列性质中,等腰三角形具有而直角三角形不一定具有的是()A .两边之和大于第三边B .有一个角的平分线垂直于这个角的对边C .有两个锐角的和等于90°D .内角和等于180°9.已知等腰△ABC 的底边BC=8cm ,且|AC-BC |=2cm ,则腰AC 的长为( ).A. 10cm 或6cmB. 10cmC. 6cmD. 8cm 或6cm10.如图,在△ABC 中,AC AB =,︒=∠36A ,BD 、CE 分别是△ABC、△BCD 的角平分线,则图中的等腰三角形有( ) A .5个 B .4个 C .3个 D .2个C(第10题)(第14题)EDCBA二、填空题(每小题3分,共27分) 11. 计算:234(2)a a = .12. k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.13. 10. 因式分解:2242x x ++= .14. 若2x +kx+9是一个完全平方式,则k= _____________ 15. 已知63x y xy +==-,,则22x y xy +=______________.16 不等式组112620x x ⎧<⎪⎨⎪->⎩的解集为 .17. 如图,△ABC 中,DE 垂直平分AC 交AB 于E,∠A=30°,∠ACB=80°,则∠BCE=18. 若数据10,12,9,-1,4,8,10,12,x 的众数是12,则x=__________.19.下列图形中,轴对称图形有 (填编号)20.已知522=+y x ,2=xy 则22y x +=__________三、解答题(本大题7个小题,共60分)21.(8)3(1)22--.22. (8分) ) 已知:如图,Rt △ABC 中,∠C=90°,沿过点B 的一条直线BE 折叠△ABC ,•使点C 恰好落在AB 边的中点D 处,则∠A=23. (8分) (1) 解不等式223125+<-+x x(2) 先化简,再求值:22(3)(2)(2)2x x x x +++--,其中13x =-.24.(8分) 在△ABC 中,∠B =2∠C ,AD 是∠BAC 的平分线.求证:AC =AB +BD .25.(10分) 已知方程组⎩⎨⎧-=++=+②①my x m y x 12,312的解满足x +y <0,求m 的取值范围.ACDB26. (8分) 某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:年龄组 13岁 14岁 15岁 16岁参赛人数 5 19 12 141)求全体参赛选手年龄的众数、中位数;2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%。
2016-2017学年山东省济南市槐荫区八年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.25的平方根是()A.5 B.﹣5 C.±D.±52.下列图形中,是中心对称图形的是()A. B. C. D.3.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是()A.7,7 B.8,7.5 C.7,7.5 D.8,6.54.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.645.化简÷的结果是()A. B.C. D.2(x+1)6.不等式组的解集在数轴上表示为()A.B.C.D.7.如果关于x的不等式(a+1)x>a+1的解集为x<1,则a的取值范围是()A.a<0 B.a<﹣1 C.a>1 D.a>﹣18.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定9.若方程+=,则A、B的值分别为()A.2,1 B.1,2 C.1,1 D.﹣1,﹣110.如图,矩形ABCD中,AB=3,AD=9,将此矩形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6 B.8 C.10 D.1211.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于()A.2﹣B.1 C.D.﹣l12.如图中,∠ACB=90°,AC>BC,分别以△ABC的边AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,连接EF、GM、ND,设△AEF、△CGM、△BND的面积分别为S1、S2、S3,则下列结论正确的是()A.S1=S2=S3 B.S1=S2<S3C.S1=S3<S2D.S2=S3<S1二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)13.化简:﹣=.14.分解因式:x2﹣6x+9=.15.当x=时,分式的值为0.16.已知a+b=3,a2b+ab2=1,则ab=.17.如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则最短距离为.18.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD 的长为.三、解答题(本大题共9个小厦,共78分,解答应写出文字说明,证明过程或演算步骤.)19.计算:(1)﹣3(2)÷.20.(1)因式分解:m3n﹣9mn.(2)求不等式≤的正整数解.21.(1)解方程:=2+(2)解不等式组,并把解集在数轴上表示出来.22.如图,△ABC是边长为2的等边三角形,将△ABC沿直线BC向右平移,使点B与点C重合,得到△DCE,连接BD,交AC于点F.求线段BD的长.23.一次环保知识竞赛共有25道题,评委会决定:答对一道题得4分,答错或不答一题扣1分,在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?24.济南与北京两地相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.25.先化简再求值:(x+1﹣)×,其中x=﹣.26.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.27.如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=2.(1)求CD的长:(2)求四边形ABCD的面积.28.已知,点O是等边△ABC内的任一点,连接OA,OB,OC.(1)如图1,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①∠DAO的度数是②用等式表示线段OA,OB,OC之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.2016-2017学年山东省济南市槐荫区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.25的平方根是()A.5 B.﹣5 C.±D.±5【考点】21:平方根.【分析】根据平方根的定义和性质即可得出答案.【解答】解:∵(±5)2=25,∴25的平方根是±5.故选:D.2.下列图形中,是中心对称图形的是()A. B. C. D.【考点】R5:中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.3.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是()A.7,7 B.8,7.5 C.7,7.5 D.8,6.5【考点】W5:众数;VC:条形统计图;W4:中位数.【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图中出现频数最大条形最高的数据是在第三组,7环,故众数是7(环);因图中是按从小到大的顺序排列的,最中间的环数是7(环)、8(环),故中位数是7.5(环).故选C.4.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.64【考点】KQ:勾股定理.【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选D.5.化简÷的结果是()A. B.C. D.2(x+1)【考点】6A:分式的乘除法.【分析】根据分式的除法,可得答案.【解答】解:原式=•(x﹣1)=,故选:C.6.不等式组的解集在数轴上表示为()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】先求出两个不等式的解集,然后把解集表示在数轴上即可进行选择.【解答】解:,解不等式①得,x≤1,解不等式②得,x>﹣2,在数轴上表示如下:故选B.7.如果关于x的不等式(a+1)x>a+1的解集为x<1,则a的取值范围是()A.a<0 B.a<﹣1 C.a>1 D.a>﹣1【考点】C3:不等式的解集.【分析】根据不等式的性质,可得答案.【解答】解:由题意,得a+1<0,解得a<﹣1,故选:B.8.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定【考点】73:二次根式的性质与化简;29:实数与数轴.【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选A.9.若方程+=,则A、B的值分别为()A.2,1 B.1,2 C.1,1 D.﹣1,﹣1【考点】6B:分式的加减法.【分析】根据同分,可得相等分式,根据相等项的系数相等,可得关于A、B的方程组,根据解方程组,可得答案.【解答】解:通分,得=.得(A+B)x+(4A﹣3B)=2x+1.由相等项的系数相等,得.解得,故选:C.10.如图,矩形ABCD中,AB=3,AD=9,将此矩形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6 B.8 C.10 D.12【考点】PB:翻折变换(折叠问题).【分析】根据折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就可以求解.【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=AE+DE=AE+BE=9.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选:A.11.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于( )A .2﹣B .1C .D .﹣l【考点】R2:旋转的性质;KW :等腰直角三角形.【分析】根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=sin45°AC′=AC′=1,进而求出阴影部分的面积.【解答】解:∵△ABC 绕点A 顺时针旋转45°得到△AB′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°, ∴AD ⊥BC ,B′C′⊥AB ,∴AD=BC=1,AF=FC′=sin45°AC′=AC′=1,∴图中阴影部分的面积等于:S △AFC′﹣S △DEC′=×1×1﹣×(﹣1)2=﹣1.故选D .12.如图中,∠ACB=90°,AC >BC ,分别以△ABC 的边AB 、BC 、CA 为一边向△ABC 外作正方形ABDE 、BCMN 、CAFG ,连接EF 、GM 、ND ,设△AEF 、△CGM 、△BND 的面积分别为S 1、S 2、S 3,则下列结论正确的是( )A.S1=S2=S3 B.S1=S2<S3C.S1=S3<S2D.S2=S3<S1【考点】K3:三角形的面积;KD:全等三角形的判定与性质.【分析】设直角三角形的三边分别为a、b、c,分别表示出三角形的面积比较即可.【解答】解:设△ABC的三边长分别为a、b、c,∵分别以△ABC的边AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,∵AE=AB,∠ARE=∠ACB,∠EAR=∠CAB,∴△AER≌△ACB,∴ER=BC=a,FA=b,∴S1=ab,S2=ab,同理可得HD=AR=AC,∴S1=S2=S3=.故选:A.二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)13.化简:﹣=.【考点】78:二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.14.分解因式:x2﹣6x+9=(x﹣3)2.【考点】54:因式分解﹣运用公式法.【分析】原式利用完全平方公式分解即可.【解答】解:原式=(x﹣3)2.故答案为:(x﹣3)215.当x=﹣3时,分式的值为0.【考点】63:分式的值为零的条件.【分析】根据分式值为零的条件可得x2﹣9=0,且(x﹣1)(x﹣3)≠0,再解即可.【解答】解:由题意得:x2﹣9=0,且(x﹣1)(x﹣3)≠0,解得:x=﹣3,故答案为:﹣3.16.已知a+b=3,a2b+ab2=1,则ab=.【考点】59:因式分解的应用.【分析】将所求式子提取公因式ab,分解因式后,将a+b的值代入即可求出值.【解答】解:∵a+b=3,∴a2b+ab2=ab(a+b)=3ab=1.∴ab=故答案为:.17.如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则最短距离为2.【考点】KV:平面展开﹣最短路径问题.【分析】将正方体展开,根据两点之间线段最短,构造出直角三角形,进而求出最短路径的长.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB==2,故答案为:2.18.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【考点】KD:全等三角形的判定与性质;KQ:勾股定理;KW:等腰直角三角形.【分析】根据等式的性质,可得∠BAD与∠CAD′的关系,根据SAS,可得△BAD 与△CAD′的关系,根据全等三角形的性质,可得BD与CD′的关系,根据勾股定理,可得答案.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=,∠D′DA+∠ADC=90°由勾股定理得CD′=,∴BD=CD′=,故答案为:.三、解答题(本大题共9个小厦,共78分,解答应写出文字说明,证明过程或演算步骤.)19.计算:(1)﹣3(2)÷.【考点】79:二次根式的混合运算;6A:分式的乘除法.【分析】(1)先把化简后合并,再进行二次根式的除法运算,然后进行减法运算;(2)先分解因式,再把除法运算化为乘法运算,然后约分即可.【解答】解:(1)原式=﹣3=﹣3=4﹣3=1;(2)原式=•a(a﹣2)=a(a+2)=a2+2a.20.(1)因式分解:m3n﹣9mn.(2)求不等式≤的正整数解.【考点】55:提公因式法与公式法的综合运用;C7:一元一次不等式的整数解.【分析】(1)直接提取公因式mn,进而利用平方差公式分解因式得出答案;(3)首先去分母,进而解不等式求出答案.【解答】解:(1)m3n﹣9mn=mn(m2﹣9)=mn(m2﹣32)=mn(m+3)(m﹣3);(2)3(x﹣2)≤2(7﹣x)3x﹣6≤14﹣2x5x≤20x≤4故这个不等式的正整数解为:1、2、3、4.21.(1)解方程:=2+(2)解不等式组,并把解集在数轴上表示出来.【考点】B3:解分式方程;C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】(1)根据分式方程的解法即可求出x的值.(2)根据不等式组的解法即可求出x的范围.【解答】(1)1﹣2x=2(x﹣2)﹣31﹣2x=2x﹣4﹣3﹣4x=﹣8x=2经检验x=2是增根,原方程无解(2),解:解不等式①得:x>1,解不等式②得:x>5,∴不等式组的解集为x>5,在数轴上表示不等式组的解集为:.22.如图,△ABC是边长为2的等边三角形,将△ABC沿直线BC向右平移,使点B与点C重合,得到△DCE,连接BD,交AC于点F.求线段BD的长.【考点】KK:等边三角形的性质;Q2:平移的性质.【分析】由平移的性质可知BE=2BC=4,DE=AC=2,故可得出BD⊥DE,由∠E=∠ACB=60°可知AC∥DE,根据勾股定理即可得出BD的长.【解答】解:∵正△ABC沿直线BC向右平移得到正△DCE,∴BE=2BC=4,BC=CD,DE=AC=2,∠E=∠ACB=∠DCE=∠ABC=60°,∴∠DBE=∠DCE=30°,∴∠BDE=90°.在Rt△BDE中,由勾股定理得.23.一次环保知识竞赛共有25道题,评委会决定:答对一道题得4分,答错或不答一题扣1分,在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?【考点】C9:一元一次不等式的应用.【分析】将答对题数所得的分数减去打错或不答所扣的分数,在由题意知小明答题所得的分数大于等于85分,列出不等式即可.【解答】解:设小明答对了x道题,则他答错或不答的共有(25﹣x)道题,由题意得4x﹣(25﹣x)×1≥85,解得x≥22答:小明至少答对了22道题,由于一共有25道题,因而他可能答对了22,23,24或25道题.24.济南与北京两地相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.【考点】B7:分式方程的应用.【分析】首先设普通快车的速度为xkm/h,则高铁列车的平均行驶速度是3xkm/h,根据题意可得等量关系:乘坐普通快车所用时间﹣乘坐高铁列车所用时间=4h,根据等量关系列出方程,再解即可.【解答】解:设普通快车的速度为xkm/h,由题意得:﹣=4,解得:x=80,经检验:x=80是原分式方程的解,3x=3×80=240,答:高铁列车的平均行驶速度是240km/h.25.先化简再求值:(x+1﹣)×,其中x=﹣.【考点】6D:分式的化简求值;76:分母有理化.【分析】先将(x+1﹣)×进行化简,然后将x=﹣代入求解即可.【解答】解:====x+2.当=时,原式==.26.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.【考点】W2:加权平均数.【分析】(1)代入求平均数公式即可求出三人的平均成绩,比较得出结果;(2)由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.83+79+90)÷3=84,【解答】解:(1)甲=(85+80+75)÷3=80,乙=(80+90+73)÷3=81.丙=(从高到低确定三名应聘者的排名顺序为:甲,丙,乙;(2)∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰;乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3,乙将被录取.27.如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=2.(1)求CD的长:(2)求四边形ABCD的面积.【考点】KQ:勾股定理.【分析】(1)过点D作DH⊥AC,根据∠CED=45°可得出△DEH是等腰直角三角形,由勾股定理可得出EH=DH=1,再根据直角三角形的性质可得出DC的长;(2)在Rt△DHC中,根据勾股定理求出HC的长,再由直角三角形的性质得出AB=AE=2,故可得出AC的长,根据S四边形ABCD=S△BAC+S△DAC即可得出结论.【解答】解:(1)过点D作DH⊥AC,∵∠CED=45°,∴∠EDH=45°,∴∠HED=∠EDH,∴EH=DH,∵EH2+DH2=DE2,DE=,∴EH2=1,∴EH=DH=1,又∵∠DCE=30°,∠DHC=90°,∴DC=2;(2)∵在Rt△DHC中,DH2+HC2=DC2,∴12+HC2=22,∴HC=,∵∠AEB=∠CED=45°,∠BAC=90°,BE=2,∴AB=AE=2,∴AC=2+1+=3+,=S△BAC+S△DAC∴S四边形ABCD=×2×(3+)+×1×(3+)=.28.已知,点O是等边△ABC内的任一点,连接OA,OB,OC.(1)如图1,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①∠DAO的度数是90°②用等式表示线段OA,OB,OC之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.【考点】KY:三角形综合题.【分析】(1)①根据旋转变换的性质、四边形内角和为360°计算即可;②连接OD,根据勾股定理解答;(2)①将△AOC绕点C按顺时针方向旋转60°得△A′O′C,连接OO′,根据等边三角形的性质解答;②根据等边三角形的性质计算.【解答】解:(1)①∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°,由旋转的性质可知,∠OCD=60°,∠ADC=∠BOC=120°,∴∠DAO=360°﹣60°﹣90°﹣120°=90°,故答案为:90°;②线段OA,OB,OC之间的数量关系是OA2+OB2=OC2.如图1,连接OD.∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴△ADC≌△BOC,∠OCD=60°.∴CD=OC,∠ADC=∠BOC=120°,AD=OB.∴△OCD是等边三角形,∴OC=OD=CD,∠COD=∠CDO=60°,∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°,∴∠AOD=30°,∠ADO=60°.∴∠DAO=90°.在Rt△ADO中,∠DAO=90°,∴OA2+AD2=OD2.∴OA2+OB2=OC2.(2)①如图2,当α=β=120°时,OA+OB+OC有最小值.作图如图2,如图2,将△AOC绕点C按顺时针方向旋转60°得△A′O′C,连接OO′.∴△A′O′C≌△AOC,∠OCO′=∠ACA′=60°.∴O′C=OC,O′A′=OA,A′C=BC,∠A′O′C=∠AOC.∴△OC O′是等边三角形.∴OC=O′C=OO′,∠COO′=∠CO′O=60°.∵∠AOB=∠BOC=120°,∴∠AOC=∠A′O′C=120°.∴∠BOO′=∠OO′A′=180°.∴四点B,O,O′,A′共线.∴OA+OB+OC=O′A′+OB+OO′=BA′时值最小;②当等边△ABC的边长为1时,OA+OB+OC的最小值A′B=.2017年5月23日。
2016-2017学年山东省泰安市新泰市八年级(上)期末数学试卷(五四学制)一、选择题(本题共20小题,每小题3分,共60分)1.(3分)下列分解因式正确的是()A.﹣a+a3=﹣a(1+a2)B.2a﹣4b+2=2(a﹣2b)C.a2﹣4=(a﹣2)2D.a2﹣2a+1=(a﹣1)22.(3分)如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()A.AB∥CD,AD∥BC B.OA=OC,OB=OD C.AD=BC,AB ∥CD D.AB=CD,AD=BC3.(3分)下列运算正确的是()A.+=B.﹣=0C.1+=D.+=1 4.(3分)下列图形:其中是轴对称图形的共有()A.1个B.2个C.3个D.4个5.(3分)把多项式x2﹣6x+9分解因式,结果正确的是()A.(x+3)(x﹣3)B.(x﹣9)2C.(x﹣3)2D.(x+9)(x﹣9)6.(3分)分式方程=的解是()A.x=﹣1B.x=1C.x=2D.x=37.(3分)如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm8.(3分)如图,为估计池塘岸边A、B两点间的距离,在池塘的一侧选取点O,分别取OA、OB的中点M、N,测得MN=40m,则A、B两点间的距离是()A.20m B.80m C.120m D.160m9.(3分)当a=2时,÷(﹣1)的结果是()A.B.﹣C.D.﹣10.(3分)如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210°D.270°11.(3分)教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选()参加.A.甲、乙都可以B.甲C.乙D.无法确定12.(3分)如图所示,四边形ABCD是平行四边形,按下列条件得到的四边形BFDE是平行四边形的个数是()①图甲,DE⊥AC,BF⊥AC②图乙,DE平分∠ADC,BF平分∠ABC③图丙,E是AB的中点,F是CD的中点④图丁,E是AB上一点,EF⊥AB.A.3个B.4个C.1个D.2个13.(3分)如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A.10°B.15°C.20°D.25°14.(3分)某支青年排球队有12名队员,队员年龄情况如图所示,那么球队队员年龄的众数、中位数分别是()A.19,19B.19,20C.20,20D.22,19 15.(3分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=116.(3分)如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是()A.4B.3C.2D.117.(3分)已知:关于x的分式方程+=无解,则m的值为()A.﹣4或6B.﹣4或1C.6或1D.﹣4或6或118.(3分)如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7B.8C.9D.1019.(3分)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是()A.①B.②C.③D.④20.(3分)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到AQ,连接BQ.若PA=6,PB=8,PC=10,则三角形PBQ的面积为()A.12B.40C.30D.24二、填空题(本题共4小题,满分12分)21.(3分)已知一组数据x1,x2,x3,x4的平均数是5,则数据x1+3,x2+3,x3+3,x4+3的平均数是.22.(3分)一个多边形的内角和为1440°,则它的边数为.23.(3分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.则A1的坐标为.24.(3分)如图,△ABC中,AB=10,AC=7,AD平分∠BAC,AE是BC边上的中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为.三、解答题(本题共5小题,满分48分)25.(15分)(1)分解因式:①﹣x3+6x2﹣9x;②(2a+b)2﹣(a+2b)2(2)计算:(﹣)÷(3)已知=﹣2,求﹣﹣的值.26.(8分)为了从甲.乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:图1 甲、乙射击成绩统计表(1)请补全上述图表(请直接在统计表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由.甲、乙射击成绩折线图27.(8分)已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.28.(8分)2016年“母亲节”前夕,宜宾某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?29.(9分)如图,在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD.过点D作DF⊥AC于点F.(1)如图1若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,如图2,当点F在线段CA的延长线上时,判断线段AF 与线段BE的数量关系,并说明理由.2016-2017学年山东省泰安市新泰市八年级(上)期末数学试卷(五四学制)参考答案与试题解析一、选择题(本题共20小题,每小题3分,共60分)1.(3分)下列分解因式正确的是()A.﹣a+a3=﹣a(1+a2)B.2a﹣4b+2=2(a﹣2b)C.a2﹣4=(a﹣2)2D.a2﹣2a+1=(a﹣1)2【解答】解:A、﹣a+a3=﹣a(1﹣a2)=﹣a(1+a)(1﹣a),故A选项错误;B、2a﹣4b+2=2(a﹣2b+1),故B选项错误;C、a2﹣4=(a﹣2)(a+2),故C选项错误;D、a2﹣2a+1=(a﹣1)2,故D选项正确.故选:D.2.(3分)如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()A.AB∥CD,AD∥BC B.OA=OC,OB=OD C.AD=BC,AB ∥CD D.AB=CD,AD=BC【解答】解:A、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD 为平行四边形,故此选项不合题意;B、根据对角线互相平分的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;C、不能判定四边形ABCD是平行四边形,故此选项符合题意;D、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选:C.3.(3分)下列运算正确的是()A.+=B.﹣=0C.1+=D.+=1【解答】解:A、原式=,错误;B、原式=,错误;C、原式=,错误;D、原式==1,正确,故选:D.4.(3分)下列图形:其中是轴对称图形的共有()A.1个B.2个C.3个D.4个【解答】解:第①③④个图是轴对称图形,②不是轴对称图形,轴对称图形共3个,故选:C.5.(3分)把多项式x2﹣6x+9分解因式,结果正确的是()A.(x+3)(x﹣3)B.(x﹣9)2C.(x﹣3)2D.(x+9)(x﹣9)【解答】解:原式=(x﹣3)2,故选:C.6.(3分)分式方程=的解是()A.x=﹣1B.x=1C.x=2D.x=3【解答】解:两边都乘以x(x+1)得:3(x+1)=4x,去括号,得:3x+3=4x,移项、合并,得:x=3,经检验x=3是原分式方程的解,故选:D.7.(3分)如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm【解答】解:∵△ABE向右平移2cm得到△DCF,∴EF=AD=2cm,AE=DF,∵△ABE的周长为16cm,∴AB+BE+AE=16cm,∴四边形ABFD的周长=AB+BE+EF+DF+AD=AB+BE+AE+EF+AD=16cm+2cm+2cm=20cm.故选:C.8.(3分)如图,为估计池塘岸边A、B两点间的距离,在池塘的一侧选取点O,分别取OA、OB的中点M、N,测得MN=40m,则A、B两点间的距离是()A.20m B.80m C.120m D.160m【解答】解:∵M、N是OA、OB的中点,即MN是△OAB的中位线,∴MN=AB,∴AB=2MN=2×40=80(m).故选:B.9.(3分)当a=2时,÷(﹣1)的结果是()A.B.﹣C.D.﹣【解答】解:原式=÷=•=,当a=2时,原式==﹣.故选:D.10.(3分)如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210°D.270°【解答】解:∵AB∥CD,∴∠B+∠C=180°,∴∠4+∠5=180°,根据多边形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=360°﹣180°=180°.故选:B.11.(3分)教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选()参加.A.甲、乙都可以B.甲C.乙D.无法确定【解答】解:由题意可得,甲的平均数为:=8,方差为:=0.8,乙的平均数为:=8,方差为:×[(10﹣8)2+(8﹣8)2+(9﹣8)2+(7﹣8)2+(6﹣8)2]=2,∵0.8<2,∴选择甲射击运动员,故选:B.12.(3分)如图所示,四边形ABCD是平行四边形,按下列条件得到的四边形BFDE是平行四边形的个数是()①图甲,DE⊥AC,BF⊥AC②图乙,DE平分∠ADC,BF平分∠ABC③图丙,E是AB的中点,F是CD的中点④图丁,E是AB上一点,EF⊥AB.A.3个B.4个C.1个D.2个【解答】解:①∵四边形ABCD是平行四边形,=S△ABC,∴S△ACD∵DE⊥AC,BF⊥AC,∴DE∥BF,S=AC•DE,S△ABC=AC•BF,△ACD∴DE=BF,∴四边形BFDE是平行四边形;②∵四边形ABCD是平行四边形,∴∠ADC=∠ABC,AD=CB,AD∥BC,∴∠DAE=∠BCF,∵DE平分∠ADC,BF平分∠ABC,∴∠ADE=∠CBF,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴DE=BF,∠AED=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴四边形BFDE是平行四边形;③证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵E是AB的中点,F是CD的中点,∴DF=CD,BE=AB,∴DF=BE,∴四边形BFDE是平行四边形;④∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵E是AB上一点,EF⊥AB,无法判定DF=BE,∴四边形BFDE不一定是平行四边形.故选:A.13.(3分)如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A.10°B.15°C.20°D.25°【解答】解:∵△BCE绕点C顺时针方向旋转90°得到△DCF,∴CE=CF,∠DFC=∠BEC=60°,∠EFC=45°,∴∠EFD=60°﹣45°=15°.故选:B.14.(3分)某支青年排球队有12名队员,队员年龄情况如图所示,那么球队队员年龄的众数、中位数分别是()A.19,19B.19,20C.20,20D.22,19【解答】解:由条形统计图可知,某支青年排球队12名队员年龄的众数是19,中位数是19,故选:A.15.(3分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=1【解答】解:设原来的平均车速为xkm/h,则根据题意可列方程为:﹣=1.故选:A.16.(3分)如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是()A.4B.3C.2D.1【解答】解:∵DE=BF,∴DF=BE,在Rt△DCF和Rt△BAE中,,∴Rt△DCF≌Rt△BAE(HL),∴FC=EA,(故①正确);∵AE⊥BD于点E,CF⊥BD于点F,∴AE∥FC,∵FC=EA,∴四边形CFAE是平行四边形,∴EO=FO,(故②正确);∵Rt△DCF≌Rt△BAE,∴∠CDF=∠ABE,∴CD∥AB,∵CD=AB,∴四边形ABCD是平行四边形,(故③正确);由以上可得出:△CDF≌△BAE,△CDO≌△BAO,△CDE≌△BAF,△CFO≌△AEO,△CEO≌△AFO,△ADF≌△CBE,△DOA≌△COB等.(故④错误).故正确的有3个.故选:B.17.(3分)已知:关于x的分式方程+=无解,则m的值为()A.﹣4或6B.﹣4或1C.6或1D.﹣4或6或1【解答】解:两边都乘以(x+2)(x﹣2),得2(x+2)+mx=3(x﹣2),解得x=.因为方程无解,所以m﹣1=0或=﹣2或=2,解得m=1或6或﹣4.故选:D.18.(3分)如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7B.8C.9D.10【解答】解:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是△ABC的中位线,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=8.故选:B.19.(3分)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是()A.①B.②C.③D.④【解答】解:如图,把标有序号②的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形.故选:B.20.(3分)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到AQ,连接BQ.若PA=6,PB=8,PC=10,则三角形PBQ的面积为()A.12B.40C.30D.24【解答】解:连接PQ,如图,∵线段AP绕点A顺时针旋转60°得到AQ,∴AP=AQ=6,∠PAQ=60°,∴△APQ为等边三角形,∴PA=AP=6,∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∴△APC绕点A顺时针旋转60°得到△AQB,∴BQ=PC=10,在△BPQ中,∵PB=8,PQ=6,BQ=10,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∠BPQ=90°,∴三角形PBQ的面积=×6×8=24.故选:D.二、填空题(本题共4小题,满分12分)21.(3分)已知一组数据x1,x2,x3,x4的平均数是5,则数据x1+3,x2+3,x3+3,x4+3的平均数是8.【解答】解:∵x1,x2,x3,x4的平均数为5∴x1+x2+x3+x4=4×5=20,∴x1+3,x2+3,x3+3,x4+3的平均数为:=(x1+3+x2+3+x3+3+x4+3)÷4=(20+12)÷4=8,故答案为:8.22.(3分)一个多边形的内角和为1440°,则它的边数为10.【解答】解:设此多边形的边数为n,由题意,有(n﹣2)•180°=1440°,解得n=10.即此多边形的边数为10.故答案为10.23.(3分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.则A1的坐标为(﹣1,4).【解答】解:所求作△A1B1C如图所示:由A(4,3)、B(4,1)可建立如图所示坐标系,则A1的坐标为(﹣1,4).故答案为:(﹣1,4).24.(3分)如图,△ABC中,AB=10,AC=7,AD平分∠BAC,AE是BC边上的中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为 1.5.【解答】解:∵AD平分∠BAC,∴∠GAF=∠CAF,∵CG⊥AD,∴∠AFG=∠AFC,在△AGF和△ACF中,,∴△AGF≌△ACF(ASA),∴AG=AC=6,GF=CF,则BG=AB﹣AG=10﹣7=3.又∵BE=CE,∴EF是△BCG的中位线,∴EF=BG=1.5.故答案是:1.5.三、解答题(本题共5小题,满分48分)25.(15分)(1)分解因式:①﹣x3+6x2﹣9x;②(2a+b)2﹣(a+2b)2(2)计算:(﹣)÷(3)已知=﹣2,求﹣﹣的值.【解答】解:(1)①原式=﹣x(x2﹣6x+9)=﹣x(x﹣3)2;②原式=(2a+b+a+2b)(2a+b﹣a﹣2b)=3(a+b)(a﹣b);(2)解:原式=•=•=﹣;(3)解:原式===,因为=﹣2,所以x=﹣2y,所以原式==.26.(8分)为了从甲.乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:图1 甲、乙射击成绩统计表(1)请补全上述图表(请直接在统计表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由.甲、乙射击成绩折线图【解答】解:(1)故答案为:4,7.5.(2)甲胜出.因为S甲2<S乙2(甲的方差小于乙的方差),甲的成绩较稳定.27.(8分)已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.【解答】证明:(1)四边形ABCD是平行四边形,∴∠DAB=∠BCD,∴∠EAM=∠FCN,又∵AD∥BC,∴∠E=∠F.∵在△AEM与△CFN中,,∴△AEM≌△CFN(ASA);(2)∵四边形ABCD是平行四边形,∴AB CD,又由(1)得AM=CN,∴BM DN,∴四边形BMDN是平行四边形.28.(8分)2016年“母亲节”前夕,宜宾某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?【解答】解:设第一批花每束的进价是x元/束,依题意得:×1.5=,解得x=20.经检验x=20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束.29.(9分)如图,在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD.过点D作DF⊥AC于点F.(1)如图1若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,如图2,当点F在线段CA的延长线上时,判断线段AF 与线段BE的数量关系,并说明理由.【解答】解:(1)由旋转得,∠BAC=∠BAD,∵DF⊥AC,∴∠CAD=90°,∴∠BAC=∠BAD=45°,∵∠ACB=90°,∴∠ABC=45°,∴AC=CB,(2)AF=BE,理由:由旋转得,AD=AB,∴∠ABD=∠ADB,∵∠DAF=∠ABD,∴∠DAF=∠ADB,∴AF∥BD,∴∠BAC=∠ABD,∵∠ABD=∠FAD由旋转得,∠BAC=∠BAD,∴∠FAD=∠BAC=∠BAD=×180°=60°,由旋转得,AB=AD,∴△ABD是等边三角形,∴AD=BD,在△AFD和△BED中,,∴△AFD≌△BED,∴AF=BE.。
2016-2017学年山东省青岛市市北区八年级(上)期末数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)下面哪个点在函数y=x+1的图象上()A.(2,1)B.(﹣2,1)C.(2,0)D.(﹣2,0)2.(3分)一次物理考试中,九年(1)班和(2)班的学生数和平均分如下表所示,则两班这次物理考试平均成绩为()分A.80B.82.5C.85D.82.63.(3分)如图,数轴上点N表示的数可能是()A.B.C.D.4.(3分)点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1>y2>0C.y1<y2D.y1=y25.(3分)若点A(﹣3,n)在x轴上,则点B(n﹣1,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)若△ABC三边长a,b,c满足+|b﹣a﹣1|+(c﹣5)2=0,则△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形7.(3分)如图,在四边形ABCD中,动点P从点A开始沿A→B→C→D的路径匀速前进到D为止.在这个过程中,△APD的面积S随时间t的变化关系用图象表示正确的是()A.B.C.D.8.(3分)如图,在△ABC中,∠ABC=∠ACB,点P为△ABC内的一点,且∠PBC=∠PCA,∠BPC=110°,则∠A的大小为()A.40°B.50°C.60°D.70°二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)﹣82的立方根是.10.(3分)某市广播电视局欲招聘播音员一名,对A、B两名候选人进行了两项素质测试,两人的两项测试成绩如表所示.根据实际需要,广播电视局将面试、综合知识测试的得分按3:2的比例计算两人的总成绩,那么(填A或B)将被录用.11.(3分)如图,一个正比例函数图象与一次函数y=﹣x+1的图象相交于点P,则这个正比例函数的表达式是.12.(3分)一个三角形的三边的比是3:4:5,它的周长是36,则它的面积是.13.(3分)如图,∠B+∠C=180°,∠A=50°,∠D=40°,则∠AED=.14.(3分)如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是.三、作图题(本题满分4分)15.(4分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,建立平面直角坐标系后,点A的坐标为(﹣6,1),点B的坐标为(﹣3,1),点C的坐标为(﹣4,3).(1)在所给的坐标系里画出△ABC关于y轴对称的图形.(2)△ABC的面积是.四、解答题(本大题共6道小题,满分74分)16.(8分)计算(1).(2).17.(8分)解方程组(1).(2).18.(6分)某中学举行演讲比赛,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班所选出的5名选手的复赛成绩(满分为100分)如图所示.(1)根据上图填写下表:(2)结合两班的复赛成绩分析哪个班级的复赛成绩较好.19.(6分)如图,为了更好的固定电线杆,工人准备从离地面6m高处向地面拉一条缆绳,地面的固定点距离电线杆底部7m远,如果不计连接处的损耗,一条9m长的缆绳够用吗?20.(8分)青岛某高中允许高三学生从寄宿、走读两种方式中选择一种就读,今年新高三学生总人数与去年相比增加了6%,其中选择寄宿的学生增加了20%,选择走读的学生减少了15%,若去年高三学生的总数为500人,求今年新高三学生选择寄宿和走读的人数分别是什么?21.(8分)如图,已知:点A、B、C在一条直线上.(1)请从三个论断①AD∥BE;②∠1=∠2;③∠A=∠E中,选两个作为条件,另一个作为结论构成一个真命题:条件:.结论:.(2)证明你所构建的是真命题.22.(8分)在甲、乙两城市之间有动车,也有普通快车,如图所示,OA是一列动车离开甲城的路程y(km)与运行时间x(h)的函数图象,BC是一列从乙城开往甲城的普通快车距甲城的路程y(km)与运动时间x(h)的函数图象,请根据图中信息,解答下列问题:(1)点B的坐标的实际意义是.(2)求BC所在直线的函数表达式.(3)求动车出发后多长时间与普通列车相遇.23.(10分)某化工厂生产一种产品,每件产品的售价50元,成本价为25元.在生产过程中,平均每生产一件产品有0.5m3的污水排出,为净化环境,工厂设计了如下两种方案对污水进行处理,并准确实施:方案A:工厂将污水先进行处理后再排出,每处理1m3污水所用原料费为2元,每月排污设备的损耗费为3000元.方案B:工厂将污水排到污水处理厂统一处理,每处理1m3污水需付14元排污费.(1)设工厂每月生产x件产品,每月利润为y元,分别求出A、B两种方案处理污水时,y与x的函数关系式.(2)当工厂每月生产量为6000件时,作为厂长在不污染环境又节约资金的前提下,应选用哪种污水的处理方案?请通过计算说明理由.(3)求:一般的,每月产量在什么范围内,适合选用方案A.24.(12分)如图(1),AD,BC交于O点,根据“三角形内角和是180°”,不难得出两个三角形中的角存在以下关系:①∠DOC=∠AOB;②∠D+∠C=∠A+∠B.【提出问题】分别作出∠BAD和∠BCD的平分线,两条角平分线交于点E,如图(2),∠E与∠D、∠B之间是否存在某种数量关系呢?【解决问题】为了解决上面的问题,我们先从几个特殊情况开始探究.已知∠BAD的平分线与∠BCD的平分线交于点E.(1)如图(3),若AB∥CD,∠D=30°,∠B=40°,则∠E=.(2)如图(4),若AB不平行CD,∠D=30°,∠B=50°,则∠E的度数是多少呢?小明是这样思考的,请你帮他完成推理过程:易证∠D+∠1=∠E+∠3,∠B+∠4=∠E+∠2,∴∠D+∠1+∠B+∠4=,∵CE、AE分别是∠BCD、∠BAD的平分线,∴∠1=∠2,∠3=∠4.∴2∠E=,又∵∠D=30°,∠B=50°,∴∠E=度.(3)在总结前两问的基础上,借助图(2),直接写出∠E与∠D、∠B之间的数量关系是:.【类比应用】如图(5),∠BAD的平分线AE与∠BCD的平分线CE交于点E.已知:∠D=m°、∠B=n°,(m<n)求:∠E的度数.2016-2017学年山东省青岛市市北区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.【解答】解:(1)当x=2时,y=2,(2,1)不在函数y=x+1的图象上,(2,0)不在函数y=x+1的图象上;(2)当x=﹣2时,y=0,(﹣2,1)不在函数y=x+1的图象上,(﹣2,0)在函数y =x+1的图象上.故选:D.2.【解答】解:根据题意得:(85×52+80×48)÷(52+48)=82.6(分),则两班这次物理考试平均成绩为82.6分;故选:D.3.【解答】解:∵≈3.16,≈2.24,≈1.73,≈1.41,根据点N在数轴上的位置,知:3<N<4,∴四个选项中只有3<3.16<4,即3<<4.故选:A.4.【解答】解:根据题意,k=﹣4<0,y随x的增大而减小,因为x1<x2,所以y1>y2.故选:A.5.【解答】解:∵点A(﹣3,n)在x轴上,∴n=0,∴点B(﹣1,1),∴点B在第二象限.故选:B.6.【解答】解:∵△ABC三边长a,b,c满足+|b﹣a﹣1|+(c﹣5)2=0,且≥0,|b﹣a﹣1|≥0,(c﹣5)2≥0∴a+b﹣25=0,b﹣a﹣1=0,c﹣5=0,∴a=12,b=13,c=5,∵122+52=132,∴△ABC是直角三角形.故选:C.7.【解答】解:设点P到直线AD的距离为h,∴△APD的面积为:S=AD•h,当P在线段AB运动时,此时h不断增大,S也不端增大当P在线段BC上运动时,此时h不变,S也不变,当P在线段CD上运动时,此时h不断减小,S不断减少,又因为匀速行驶且CD>AB,所以在线段CD上运动的时间大于在线段AB上运动的时间故选:C.8.【解答】解:∵∠BPC=110°,∴∠PBC+∠PCB=70°,∵∠PBC=∠PCA,∴∠PCB+∠PCA=70°,∵∠ABC=∠ACB,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°,故选:A.二、填空题(本题满分18分,共有6道小题,每小题3分)9.【解答】解:﹣82=﹣64.﹣64的立方根是﹣4.故答案为:﹣4.10.【解答】解:A的成绩=(90×3+85×2)÷5=88(分),B的成绩=(95×3+80×2)÷5=89(分).因此B将被录用.故填B.11.【解答】解:∵正比例函数图象与一次函数y=﹣x+1的图象相交于点P,P点的纵坐标为2,∴2=﹣x+1解得:x=﹣1∴点P的坐标为(﹣1,2),∴设正比例函数的解析式为y=kx,∴2=﹣k解得:k=﹣2∴正比例函数的解析式为:y=﹣2x,故答案为:y=﹣2x12.【解答】解:设三角形的三边是3x:4x:5x,∵(3x)2+(4x)2=(5x)2,∴此三角形是直角三角形,∵它的周长是36,∴3x+4x+5x=36,∴3x=9,4x=12,∴三角形的面积=×9×12=54,故答案为:54.13.【解答】解:如图,延长DE交AB于F,∵∠B+∠C=180°,∴AB∥CD,∵∠D=45°,∴∠AFD=∠D=45°,∵∠A=50°,∴∠AED=∠A+∠AFD=50°+40°=90°,故答案为90°.14.【解答】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=2,∴P的坐标是(4,0)或(2,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA=2,∴OA=OP=2,∴P的坐标是(﹣2,0).故答案为:(2,0)或(4,0)或(2,0)或(﹣2,0).三、作图题(本题满分4分)15.【解答】解:(1)如图,△A′B′C′即为所求;(2)S△ABC=×3×2=3,故答案为:3四、解答题(本大题共6道小题,满分74分)16.【解答】解:(1)原式=﹣6=10﹣6;(2)原式=4﹣3﹣(5+2+6)=1﹣11﹣2=﹣10﹣2.17.【解答】解:(1)①×2﹣②,得﹣11y=11,解得y=﹣1,将y=﹣1代入①,得x+3=8,解得x=5,原方程组的解为;(2)原方程组化简为,①﹣②×2,得5y=8,解得y=,将y=代入②,得2x﹣=2,解得x=,原方程组的解为.18.【解答】解:(1)九(1)班的成绩,按从小到大的顺序排列为75、80、85、85、100,第3个数是85,即九(1)班的中位数是85;九(2)班的成绩为:70、100、100、75、80,出现次数最多的是100,则九(2)班的成绩的众数是100;九(2)班成绩的方差是:S2=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160;填表如下:故答案为85,100,160;(2)∵两班的平均数相同,九(1)班的众数较低,但是中位数比九(2)班高,方差比九(2)班小,∴九(1)班的复赛成绩较好.19.【解答】解:在Rt△ABC中AB===(m),∵>=9,∴一条9m长的缆绳不够用.20.【解答】解:设去年有寄宿学生人数为x人,走读学生人数为y人,根据题意得:.解得:,(1+20%)x=1.2×300=360,(1﹣15%)y=0.85×200=170,答:今年新高三学生选择寄宿和走读的人数分别是360人,170人.21.【解答】解:(1)条件:①AD∥BE;②∠1=∠2;结论:③∠A=∠E,故答案为:①AD∥BE,②∠1=∠2;③∠A=∠E;(2)证明:∵AD∥BE,∴∠A=∠EBC,∵∠1=∠2,∴DE∥BC,∴∠E=∠EBC,∴∠A=∠E.22.【解答】解:(1)由题意可知,点B的坐标的实际意义是在此时刻,普通快车从乙城出发,故答案为:在此时刻,普通快车从乙城出发;(2)设点B、C所在直线的解析式为y=ax+b,,得,即BC所在直线的函数表达式是y=﹣100x+350;(3)设动车对应的函数解析式为y=kx,2k=300,得k=150,∴动车对应的函数解析式为y=150x,令﹣100x+350=150x,解得,x=1.4,答:动车出发后1.4小时与普通列车相遇.23.【解答】解:(1)采用方案A时的总利润为:y1=50x﹣25x﹣(0.5x×2+3000)=24x﹣3000;采用方案B是的总利润为:y2=50x﹣25x﹣0.5x×14=18x;(2)x=6000,当采用第一种方案是工厂利润为:y1=24×6000﹣3000=141000;当采用方案B时工厂利润为:y2=18×6000=108000;y1>y2所以工厂采用适合方案A是.(3)假设y1=y2,即方案A和方案B所产生的利润一样多则有:24x﹣3000=18x解得x=500所以当x>500时,y1>y2即每月产量在500件以上时,适合选用方案A.24.【解答】解:【解决问题】(1)如图3,∵∠D+∠DCE=∠E+∠DAE,∠E+∠ECB=∠B+∠EAB,∴∠D+∠DCE+∠B+∠EAB=2∠E+∠DAE+∠ECB,∵EC平分∠ECB,AE平分∠BAD,∴∠DCE=∠ECB,∠DAE=∠BAE,∴2∠E=∠B+∠D,∴∠E=∴∠E=(30°+40°)=×70°=35°;故答案为:35°;(2)如图(4),∠D+∠1=∠E+∠3,∠B+∠4=∠E+∠2,∴∠D+∠1+∠B+∠4=2∠E+∠3+∠2,∵CE、AE分别是∠BCD、∠BAD的平分线,∴∠1=∠2,∠3=∠4.∴2∠E=∠D+∠B,∴∠E=,又∵∠D=30°,∠B=50°,∴∠E=40度.故答案为:2∠E+∠3+∠2,∠D+∠B,40°;(3)由(1)和(2)得:∠E=,故答案为:∠E=;【类比应用】如图(5),延长BC交AD于F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB﹣∠ECB=∠B+∠BAE﹣∠BCD=∠B+∠BAE﹣(∠B+∠BAD+∠D)=(∠B﹣∠D),∵∠D=m°、∠B=n°,即∠E=(n﹣m)°.。
2016-2017学年山东省济南市历下区八年级(上)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)9的平方根为()A.3B.﹣3C.±3D.2.(5分)如图,已知直线a∥b,若∠1=110°,则∠2=()A.60°B.70°C.80°D.90°3.(5分)若a>b,则下列各式中一定成立的是()A.a+1>b+1B.3a<3b C.﹣a>﹣b D.ac<bc4.(5分)在平面直角坐标系中,点P(﹣1,5)在()A.第一象限B.第二象限C.第三象限D.第四象限5.(5分)一次函数y=2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(5分)下列长度的三条线段能组成直角三角形的是()A.3,4,4B.6,8,10C.5,5,5D.6,7,87.(5分)某市五月份连续五天的日最高气温分别为:23、20、20、21、26(单位:℃),这组数据的中位数和众数分别是()A.22℃,26℃B.22℃,20℃C.21℃,26℃D.21℃,20℃8.(5分)如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°9.(5分)若线段CD是由线段AB平移得到的,点A(﹣1,3)的对应点为C(2,2),则点B(﹣3,﹣1)的对应点D的坐标是()A.(0,﹣2)B.(1,﹣2)C.(﹣2,0)D.(4,6)10.(5分)已知方程组,则m﹣n的值是()A.﹣1B.0C.1D.211.(5分)如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D.则BD的长为()A.B.C.D.12.(5分)A(x1,y1)、B(x2,y2)是一次函数y=kx+2(k>0)图象上不同的两点,若t =(x1﹣x2)(y1﹣y2),则()A.t<0B.t=0C.t>0D.t≤0二、填空题(本大题共4小题,每小题4分,共16分)13.(4分)8的立方根是.14.(4分)不等式4x﹣6≥3x﹣5的解集为.15.(4分)如图,一只蚂蚁沿着边长为1的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则最短路径的长为.16.(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是.三、解答题(本大题共8小题,共74分)17.(8分)已知方程组与有相同的解,求代数式a﹣4b的值.18.(8分)已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.AD与BE 平行吗?为什么?解:AD∥BE,理由如下:∵AB∥CD(已知)∴∠4=()∵∠3=∠4(已知)∴∠3=()∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF()即=∴∠3=()∴AD∥BE()19.(8分)为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;(3)求户外活动时间的众数和中位数是多少?(4)本次调查中学生参加户外活动的平均时间是否符合要求?说明理由.20.(9分)阅读对话后,完成下面的要求:张老师:王芳,你怎么哭了?王芳:张老师,我还没来得及记下来,李兵就把这道题后面的擦掉了.张老师:是这么回事呀!如果我告诉你这道题的答案是x≥﹣4,而且后面被擦掉的是一个常数,你能把这个常数补上吗?王芳:…,我知道了,谢谢老师(笑).根据以上信息,你能否求出被擦掉的常数?试试看!21.(9分)某蔬菜公司收购到某种蔬菜104吨,准备加工后上市销售.该公司加工该种蔬菜的能力是:每天可以精加工4吨或粗加工8吨.现计划用16天正好完成加工任务,则该公司应安排几天精加工,几天粗加工?22.(10分)李明骑自行车去上学途中,经过先上坡后下坡的一条路段,在这段路上所走的路程S(米)与时间t(分钟)之间的函数关系如图所示.根据图象,解答下列问题:(1)求李明上坡时所走的路程S1(米)与时间t(分钟)之间的函数关系式和下坡时所走的路程S2(米)与时间t(分钟)之间的函数关系式;(2)若李明放学后按原路返回,且往返过程中,上坡的速度相同,下坡的速度也相同,问李明返回时走这段路所用的时间为多少分钟?23.(10分)如图,在长方形ABCD中,点E,F分别在边AB和BC上,∠AEF的平分线与边AD交于点G,线段EG的反向延长线与∠EFB的平分线交于点H.(1)当∠BEF=50°(图1),试求∠H的度数.(2)当E,F在边AB和BC上任意移动时(不与点B重合)(图2),∠H的大小是否变化?若变化,请说明理由;若不变化,求出∠H的度数.24.(12分)张老师给爱好数学的小林提出这样一个问题:如图①,在△ABC中,AB=AC,点P为边BC上的任意一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C 作CF⊥AB,垂足为F,求证:PD+PE=CF.小林的证明思路是:如图②,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.【变式探究】如图③,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;【结论运用】请运用上述解答中所积累的经验和方法完成下题:如图④,在平面直角坐标系中有两条直线l1:y=x+3,l2:y=﹣3x+3,若l2上的一点M到l1的距离是1,请运用上述的结论求出点M的坐标.2016-2017学年山东省济南市历下区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.【解答】解:9的平方根有:=±3.故选:C.2.【解答】解:∵a∥b,∴∠3=∠1=110°,∴∠2=180°﹣110°=70°,故选:B.3.【解答】解:A、两边都加1,不等号的方向不变,故A符合题意;B、两边都乘以3,不等号的方向不变,故B不符合题意;C、两边都乘以﹣1,不等号的方向不变,故D不符合题意;D、c>0时ac>bc,故D不符合题意;故选:A.4.【解答】解:点P(﹣1,5)在第二象限.故选:B.5.【解答】解:∵k=2>0,图象过一三象限,b=1>0,图象过第二象限,∴直线y=2x+1经过一、二、三象限,不经过第四象限.故选:D.6.【解答】解:A、32+42≠42,不能组成直角三角形,故此选项错误;B、62+82=102,能组成直角三角形,故此选项正确;C、52+52≠52,不能组成直角三角形,故此选项错误;D、62+72≠82,不能组成直角三角形,故此选项错误;故选:B.7.【解答】解:把所给数据按照由小到大的顺序排序后为20、20、21、23、26,∴中位数为21,众数为20.故选:D.8.【解答】解:如图,∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故选:A.9.【解答】解:点A(﹣1,3)的对应点为C(2,2),可知横坐标由﹣1变为2,向右移动了3个单位,3变为2,表示向下移动了1个单位,于是B(﹣3,﹣1)的对应点D的横坐标为﹣3+3=0,点D的纵坐标为﹣1﹣1=﹣2,故D(0,﹣2).故选:A.10.【解答】解:,解①﹣②得,m﹣n=1.故选:C.11.【解答】解:如图,由勾股定理得AC==.∵BC×2=AC•BD,即×2×2=×BD∴BD=.故选:C.12.【解答】解:∵A(x1,y1)、B(x2,y2)是一次函数y=kx+2(k>0)图象上不同的两点,∴x1﹣x2≠0,∴y1=kx1+2,y2=kx2+2则t=(x1﹣x2)(y1﹣y2)=(x1﹣x2)(kx1+2﹣kx2﹣2)=(x1﹣x2)k(x1﹣x2)=k(x1﹣x2)2,∵x1﹣x2≠0,k>0,∴k(x1﹣x2)2>0,∴t>0,故选:C.二、填空题(本大题共4小题,每小题4分,共16分)13.【解答】解:8的立方根为2,故答案为:2.14.【解答】解:4x﹣6≥3x﹣5,4x﹣3x≥﹣5+6,x≥1,故答案为:x≥1.15.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB==,故答案为:.16.【解答】解:∵点B1(1,1),B2(3,2),∴A1(0,1)A2(1,2)A3(3,4),∴直线y=kx+b(k>0)为y=x+1,∴Bn的横坐标为A n+1的横坐标,纵坐标为An的纵坐标又A n的横坐标数列为An=2n﹣1﹣1,所以纵坐标为2n﹣1,∴Bn的坐标为[A(n+1)的横坐标,An的纵坐标]=(2n﹣1,2n﹣1).故答案为:(2n﹣1,2n﹣1).三、解答题(本大题共8小题,共74分)17.【解答】解:联立得:,①+②得:5x=5,解得:x=1,把x=1代入①得:y=1,把代入得:,解得:,则原式=5+4=9.18.【解答】解:AD∥BE,理由如下:∵AB∥CD(已知),∴∠4=∠BAE(两直线平行,同位角相等);∵∠3=∠4(已知),∴∠3=∠BAE(等量代换);∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式的性质),即∠BAF=∠DAC,∴∠3=∠DAC(等量代换),∴AD∥BE(内错角相等,两直线平行).19.【解答】解:(1)根据题意得:=50(名),答:在这次调查中共调查了50名学生;(2)户外活动时间为1.5小时的人数是:50×24%=12(人),(3)∵1小时出现的次数最多,∴众数是1;∵共有50个数,∴中位数是第25、26个数的平均数,∴中位数是:(1+1)÷2=1;(4)∵本次调查中学生参加户外活动的平均时间是:=1.18>1,∴本次调查中学生参加户外活动的平均时间符合要求.20.【解答】解:设被擦掉的常数为m,则原不等式可表示为:+m,不等式两边同时乘以12得:4(2x﹣1)≤3(3x﹣2)+12m,去括号得:8x﹣4≤9x﹣6+12m,移项得:8x﹣9x≤﹣6+12m+4,合并同类项得:﹣x≤12m﹣2,系数化为1得:x≥2﹣12m.∵这道题的答案是x≥﹣4,∴2﹣12m=﹣4,解得:m=,即被擦掉的常数为.21.【解答】解:设该公司安排x天粗加工,安排y天精加工,据题意,得解得:答:该公司安排10天粗加工,安排6天精加工.22.【解答】解:(1)设s1=k1t(0≤t≤6)∵图象经过点(6,900)∴900=6k1解方程,得k1=150∴s1=150t(0≤t≤6)设s2=k2t+b(6<t≤10)∵图象经过点(6,900),(10,2100)∴解这个方程组,得∴s2=300t﹣900(6<t≤10)(2)李明返回时所用时间为(2100﹣900)÷(900÷6)+900÷[(2100﹣900)÷(10﹣6)]=8+3=11(分钟)答:李明返回时所用时间为11分钟.23.【解答】解:(1)∵∠B=90°,∠BEF=50°,∴∠EFB=40°.∵GE是∠AEF的平分线,HF是∠BFE的平分线,∴∠GEF=65°,∠EFH=20°.∵∠GEF=∠H+∠EFH,∴∠H=65°﹣20°=45°.(2)不变化.∵∠B=90°,∴∠EFB=90°﹣∠BEF.∵GE是∠AEF的平分线,HF是∠BFE的平分线,∴∠GEF=∠AEF=(180°﹣∠BEF),∠EFH=∠EFB=(90°﹣∠BEF).∵∠GEF=∠H+∠EFH,∴∠H=∠GEF﹣∠EFH=(180°﹣∠BEF)﹣(90°﹣∠BEF)=45°.24.【解答】解:如图②,连接AP,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABP=AB•PD,S△ACP=AC•PE,S△ABC=AB•CF,∵S△ABP+S△ACP=S△ABC,∴AB•PD+AC•PE=AB•CF,又AB=AC,∴PD+PE=CF;【变式探究】如图③,连接AP,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABP=AB•PD,S△ACP=AC•PE,S△ABC=AB•CF,∵S△ABP﹣S△ACP=S△ABC,∴AB•PD﹣AC•PE=AB•CF,又∵AB=AC,∴PD﹣PE=CF;【结论运用】如图④,由题意可求得A(﹣4,0),B(0,3),C(1,0),∴AB=5,AC=5,BC=,OB=3,当M在线段BC上时,过M分别作MP⊥x轴,MQ⊥AB,垂足分别为P、Q,∵l2上的一点M到l1的距离是1,∴MQ=1,由图②的结论得:MP+MQ=3,∴MP=2,∴M点的纵坐标为2,又∵M在直线y=﹣3x+3,∴当y=2时,x=,∴M坐标为(,2);同理,由前面结论可知当M点在线段BC外时,有|MP﹣MQ|=OB,可求得MP=4或MP=﹣2,即M点的纵坐标为4或﹣2,分别代入y=﹣3x+3,可求得x=﹣或x=(舍,因为它到l1的距离不是1),∴M点的坐标为(﹣,4);综上可知M点的坐标为(,2)或(﹣,4).。
2015-2016平原二中期末模拟检测八年级数学试题2016.1一.选择题1、下列分式中,最简分式是 ( ) A.a b b a -- B.22x y x y++ C.242x x -- D.4422+++a a a 2、根据分式的基本性质,分式b a a--可变形为( )(A )b a a -- (B )b a a + (C )b a a -- (D )b a a +-3、对分式2y x ,23x y ,14xy通分时, 最简公分母是( ) A .24x 2y 2 B .12x2y2 C.24xy2 D.12xy24.如果把分式3x x y+中的x 和y 的值都扩大5倍,那么分式的值( ) (A)扩大5倍; (B)缩小5倍;(C)不改变; (D)扩大25倍。
5.不改变分式的值,下列各式中成立的是( ) (A) 5555a a a a -++=---; (B) 1166x x -=-++; (C) x y x y x y x y -+-=---+; (D) 33x x y x x y-=--。
6.将5a,236,24a a b b 通分后最简公分母是( ) (A)8a 2b 3; (B)4ab 3; (C)8a 2b 4; (D)4a 2b 3。
7.化简242x x---的结果是( ) (A)x+2; (B)x-2; (C)2-x ; (D)-x-2。
8.将分式3325x yx y -+的分子、分母的各项系数都化为整数应为( ) (A) 353x y x y -+; (B) 10301518x y x y-+; (C)1030156x y x y -+; (D) 1010156x y x y -+。
二.填空题1、当x 时,分式51-x 有意义. 2、当x 时,分式11x 2+-x 的值为零。
3、1x-y 当x=,y=1时,分式的值为2xy-1_________________ 4、计算:y x y x y x ⎛⎫÷⋅- ⎪⎝⎭= 5、用科学计数法表示:—0.000302 =6、如果32=b a ,那么=+b a a ____ 。
2016年山东省八年级上学期期末数学模拟试卷一、精心选一选(本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请选出你认为唯一正确的答案,填到后面的表格中,每小题3分,计36分).1.正方形的对称轴的条数为()A. 1 B. 2 C. 3 D. 42.下列各式的运算结果为a6的是()A. a9÷a3 B.(a3)3 C. a2•a3 D. a3+a33.已知x2﹣2=y,则x(x﹣3y)+y(3x﹣1)﹣2的值是()A.﹣2 B. 0 C. 2 D. 44.下列分解因式,错误的是()A. m2﹣16=(m+4)(m﹣4) B. m2+3m+9=(m+3)2C. m2﹣8m+16=(m﹣4)2 D. m2+4m=m(m+4)5.若把分式中的a,b,c都扩大到原来的2倍,则分式的值()A.不变 B.扩大到原来的2倍C.缩小到原来的 D.缩小到原来的6.当a=2时,÷(﹣1)的结果是()A. B.﹣ C. D.﹣7.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A. 90°﹣α B. 90°+α C. D. 360°﹣α8.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A. BC=EC,∠B=∠E B. BC=EC,AC=DC C. BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D9.一个水池有甲、乙两个进水管,单独开甲、乙管各需要x小时、y小时可注满水池,现两管同时打开,则注满空池的时间为()A.小时 B.小时 C.小时 D.小时10.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是以PQ为底的等腰三角形时,运动的时间是()A. 2.5秒 B. 3秒 C. 3.5秒 D. 4秒11.已知关于x的方程的解大于0,则a的取值范围是()A. a>0 B. a<0 C. a>2 D. a<2且a≠﹣212.如图,在Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值是()A. B. C. D.二、细心填一填(本题共8小题,满分24分,只要求填写最后结果,每小题填对得3分)13.已知1微米=0.000001米,那么2.5微米用科学记数法表示为米.14.请写一个含有x的分式,且不论x取任何实数,该分式都有意义:.15.若x2+mx+9是一个完全平方式,则m的值是.16.解方程:﹣1=,则方程的解是.17.若x+y=xy,则的值为.18.如图,在△ABC中,AB=AC,D,A,E三点都在一条直线上,且∠BDA=∠AEC=∠BAC,BD=3,CE=6,则DE的长为.19.如图,OE是∠AOB的平分线,BD⊥OA于点D,AC⊥BO于点C,则关于直线OE对称的三角形共有对.20.三个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2= °.三、耐心做一做,相信你能写出正确的解答过程(共60分,注意审题要细心,书写要规范和解答要完整)21.(1)分解因式:8(a2+1)﹣16a;(2)计算:﹣5x(x2y﹣xy2)÷y;(3)计算:;(4)解方程:.22.如图,D、E分别是AB、AC的中点,CD⊥AB于D,BE⊥AC于E,求证:AC=AB.23.证明:如果两个三角形中有两条边和其中一边上的中线对应相等,那么这两个三角形全等.(写出已知,求证,画出图形并证明)24.如图,在△ABC中,BD平分∠ABC,DE平分∠ADB,且DE∥BC.(1)找出图中所有的等腰三角形,并加以证明;(2)若∠A=90°,AE=1,求BC的长.25.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?参考答案与试题解析一、精心选一选(本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请选出你认为唯一正确的答案,填到后面的表格中,每小题3分,计36分).1.正方形的对称轴的条数为()A. 1 B. 2 C. 3 D. 4考点:轴对称的性质.分析:根据正方形的对称性解答.解答:解:正方形有4条对称轴.故选:D.点评:本题考查了轴对称的性质,熟记正方形的对称性是解题的关键.2.下列各式的运算结果为a6的是()A. a9÷a3 B.(a3)3 C. a2•a3 D. a3+a3考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂相乘,底数不变指数相加;根据同底数幂相除,底数不变指数相减;根据幂的乘方,底数不变指数相乘.解答:解:A、a9÷a3=a9﹣3=a6,故A正确;B、(a3)3=a3×3=a9,故B错误;C、a2•a3=a2+3=a5,故C错误;D、a3+a3=2a3,故D错误;故选:A.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.3.已知x2﹣2=y,则x(x﹣3y)+y(3x﹣1)﹣2的值是()A.﹣2 B. 0 C. 2 D. 4考点:整式的混合运算—化简求值.专题:计算题.分析:原式去括号合并后,将已知等式变形后代入计算即可求出值.解答:解:∵x2﹣2=y,即x2﹣y=2,∴原式=x2﹣3xy+3xy﹣y﹣2=x2﹣y﹣2=2﹣2=0.故选:B.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.4.下列分解因式,错误的是()A. m2﹣16=(m+4)(m﹣4) B. m2+3m+9=(m+3)2C. m2﹣8m+16=(m﹣4)2 D. m2+4m=m(m+4)考点:因式分解-运用公式法.专题:计算题.分析:利用因式分解的定义判断即可.解答:解:不属于因式分解的为:m2+3m+9=(m+3)2,故选B点评:此题考查了因式分解﹣运用公式法,熟练掌握因式分解的方法是解本题的关键.5.若把分式中的a,b,c都扩大到原来的2倍,则分式的值()A.不变 B.扩大到原来的2倍C.缩小到原来的 D.缩小到原来的考点:分式的基本性质.分析:根据分式的基本性质,可得答案.解答:解:分式中的a,b,c都扩大到原来的2倍,则分式的值缩小到原来的,故选:C.点评:本题考查了分式的性质,分子扩大2倍,分母扩大8倍,分是缩小到原来的.6.当a=2时,÷(﹣1)的结果是()A. B.﹣ C. D.﹣考点:分式的化简求值.专题:计算题.分析:通分、因式分解后将除法转化为乘法约分即可.解答:解:原式=÷=•=,当a=2时,原式==﹣.故选:D.点评:本题考查了分式的化简求值,熟悉因式分解和分式除法是解题的关键.7.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A. 90°﹣α B. 90°+α C. D. 360°﹣α考点:多边形内角与外角;三角形内角和定理.专题:几何图形问题.分析:先求出∠ABC+∠BCD的度数,然后根据角平分线的性质以及三角形的内角和定理求解∠P的度数.解答:解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:C.点评:本题考查了多边形的内角和外角以及三角形的内角和定理,属于基础题.8.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A. BC=EC,∠B=∠E B. BC=EC,AC=DC C. BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D考点:全等三角形的判定.分析:根据全等三角形的判定方法分别进行判定即可.解答:解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;故选:C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.一个水池有甲、乙两个进水管,单独开甲、乙管各需要x小时、y小时可注满水池,现两管同时打开,则注满空池的时间为()A.小时 B.小时 C.小时 D.小时考点:列代数式(分式).分析:注满空池的时间=工作总量÷甲乙效率之和,设工作总量为1,求出甲、乙的工作效率,然后求共同工作的时间.解答:解:设工作量为1,∥乙的工作效率分别为、,根据题意得1÷(+)=小时.故选:B.点评:此题考查列代数式,读懂题意,找到所求的量的等量关系,当题中没有一些必须的量时,为了简便,可设其为1.10.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是以PQ为底的等腰三角形时,运动的时间是()A. 2.5秒 B. 3秒 C. 3.5秒 D. 4秒考点:等腰三角形的性质.专题:压轴题;动点型.分析:设运动的时间为x,则AP=20﹣3x,当APQ是等腰三角形时,AP=AQ,则20﹣3x=2x,解得x即可.解答:解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x即20﹣3x=2x,解得x=4.故选D.点评:此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度,属于中档题.11.已知关于x的方程的解大于0,则a的取值范围是()A. a>0 B. a<0 C. a>2 D. a<2且a≠﹣2考点:分式方程的解.分析:分式方程去分母转化为整式方程,求出整式方程的解,令其解大于0列出关于a的不等式,求出不等式的解集即可得到a的范围.解答:解:分式方程去分母得:x+a=﹣x+2,解得:x=,根据题意得:>0且≠2,解得:a<2,且a≠﹣2.故选:D.点评:此题考查了分式方程的解,弄清题意是解本题的关键.12.如图,在Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值是()A. B. C. D.考点:轴对称-最短路线问题.分析:求△BDE周长的最小值,就是要求DE+BE的最小值,根据勾股定理即可求得.解答:解:过点B做BO⊥AC于点O,延长BO到B′,使OB′=OB,连接DB′,交AC于E,此时DB′=DE+EB′=DE+BE的值最小,连接CB′易证CB′⊥BC在RT△DCB′中,根据勾股定理可得DB′=.故△BDE周长的最小值为.故选:A.点评:此题考查了线路最短的问题,确定动点E何位置时,使DE+BE的值最小是关键.二、细心填一填(本题共8小题,满分24分,只要求填写最后结果,每小题填对得3分)13.已知1微米=0.000001米,那么2.5微米用科学记数法表示为 2.5×10﹣6米.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:∵1微米=0.000001米=1×10﹣6米∴2.5微米=2.5×1×10﹣6米=2.5×10﹣6米故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.请写一个含有x的分式,且不论x取任何实数,该分式都有意义:.考点:分式有意义的条件.专题:开放型.分析:所写的分式只要使分母不等于0即可,答案不唯一.解答:解:该分式是.故答案为:.点评:此题主要考查了分式有意义的条件,关键是掌握分母不为零,分式有意义.15.若x2+mx+9是一个完全平方式,则m的值是±6 .考点:完全平方式.专题:计算题.分析:利用完全平方公式的结构特征判断即可确定出m的值.解答:解:∵x2+mx+9是一个完全平方式,∴m=±6,故答案为:±6.点评:此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.解方程:﹣1=,则方程的解是x=﹣.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:4x﹣x+2=﹣3,解得:x=﹣,经检验是分式方程的解.故答案为:x=﹣.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.若x+y=xy,则的值为0 .考点:分式的化简求值.专题:计算题.分析:原式前两项通分并利用同分母分式的加法法则计算,第三项利用多项式乘多项式法则计算,把已知等式代入计算即可求出值.解答:解:∵x+y=xy,∴原式=﹣[1﹣(x+y)+xy]=1﹣1=0.故答案为:0.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.如图,在△ABC中,AB=AC,D,A,E三点都在一条直线上,且∠BDA=∠AEC=∠BAC,BD=3,CE=6,则DE的长为9 .考点:全等三角形的判定与性质.分析:由条件可知∠BDA=∠AEC=∠BAC,可得∠DBA=∠CAE,结合条件可证明△ABD≌△CAE,利用全等三角形的性质解答即可.解答:解:∵∠BDA=∠AEC=∠BAC,∴∠DBA+∠BAD=∠BAD+∠CAE,∴∠DBA=∠CAE,∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE,∴DE=AE+AD=BD+CE=3+6=9.故答案为:9.点评:本题主要考查全等三角形的判定和性质,由条件证明三角形全等得到BD=AE、CE=AD 是解题的关键.19.如图,OE是∠AOB的平分线,BD⊥OA于点D,AC⊥BO于点C,则关于直线OE对称的三角形共有 4 对.考点:轴对称图形.分析:关于直线OE对称的三角形就是全等的三角形,据此即可判断.解答:解:△ODE和△OCE,△OAE和△OBE,△ADE和△BCE,△OCA和△ODB共4对.故答案为:4.点评:能够理解对称的意义,把找对称三角形的问题转化为找全等三角形的问题,是解决本题的关键.20.三个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2= 130 °.考点:等边三角形的性质;三角形内角和定理.分析:先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.解答:解:∵图中是三个等边三角形,∠3=50°,∴∠ABC=180°﹣60°﹣50°=70°,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,∠BAC=180°﹣60°﹣∠1=120°﹣∠1,∵∠ABC+∠ACB+∠BAC=180°,∴70°+(120°﹣∠2)+(120°﹣∠1)=180°,∴∠1+∠2=130°.故答案为:130.点评:本题考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.三、耐心做一做,相信你能写出正确的解答过程(共60分,注意审题要细心,书写要规范和解答要完整)21.(1)分解因式:8(a2+1)﹣16a;(2)计算:﹣5x(x2y﹣xy2)÷y;(3)计算:;(4)解方程:.考点:分式的混合运算;整式的混合运算;提公因式法与公式法的综合运用;解分式方程.分析:(1)首先去括号,进而提取公因式,再利用完全平方公式分解因式得出即可;(2)首先去括号,进而利用多项式除以单项式运算法则求出即可;(3)首先将括号里面通分,再利用分式的除法运算法则求出即可;(4)利用分式方程的解法首先去分母,进而得出即可.解答:解:(1)8(a2+1)﹣16a=8a2+8﹣16a,=8(a2﹣2a+1),=8(a﹣1)2;(2)﹣5x(x2y﹣xy2)÷y=(﹣5x3y+5x2y2)÷y,=﹣5x3+5x2y;(3)=÷[+]=×=﹣;(4)去分母得:6×(2x+1)=5x,解得:经检验是原方程的解,故原分式方程的解为:.点评:此题主要考查了分式方程的解法以及分式的混合运算以及整式的混合运算,正确掌握运算法则是解题关键.22.如图,D、E分别是AB、AC的中点,CD⊥AB于D,BE⊥AC于E,求证:AC=AB.考点:轴对称的性质;全等三角形的判定.专题:证明题.分析:作辅助线:连接BC,由CD垂直于AB,且D为AB中点,即CD所在直线为AB的垂直平分线,根据线段垂直平分线上的点到线段两端点的距离相等,得到AC=BC,又E为AC中点,且BE垂直于AC,即BE所在的直线为AC的垂直平分线,同理可得BC=AB,等量代换即可得证.解答:证明:如图,连接BC∵CD⊥AB于D,D是AB的中点,即CD垂直平分AB,∴AC=BC(中垂线的性质),∵E为AC中点,BE⊥AC,∴BC=AB(中垂线的性质),∴AC=AB.点评:本题主要考查了中垂线的性质.做这类题,要学会作辅助线,以便使解题更简便.23.证明:如果两个三角形中有两条边和其中一边上的中线对应相等,那么这两个三角形全等.(写出已知,求证,画出图形并证明)考点:全等三角形的判定.专题:证明题.分析:先根据条件,利用“SSS”证明△ABD≌△A1B1D1,从而可得∠B=∠B1,再根据“SAS”判断△ABC≌△A1B1C1.解答:已知:△ABC,△A1B1C1中,AB=A1B1,BC=B1C1,AD,A1D1分别为BC,B1C1边上的中线,AD=A1D1,求证:△ABC≌△A1B1C1.证明:∵AD,A1D1分别为BC,B1C1边上的中线,∴BD=BC,B1D1=B1C1,又∵BC=B1C1,∴BD=B1D1,在△ABD和△A1B1D1中,,∴△ABD≌△A1B1D1(SSS),∴∠B=∠B1,∵在△ABC与△A1B1C1中,,∴△ABC≌△A1B1C1(SAS).点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.24.如图,在△ABC中,BD平分∠ABC,DE平分∠ADB,且DE∥BC.(1)找出图中所有的等腰三角形,并加以证明;(2)若∠A=90°,AE=1,求BC的长.考点:等腰三角形的判定与性质;平行线的性质.分析:(1)在△ABC中,由BD平分∠ABC,得到∠1=∠2在△ABC中,由DE平分∠ADB,得到∠3=∠4,由DE∥BC得到∠3=∠5由DE∥BC得到∠2=∠4,由等量代换得到相等的边,证得△BED是等腰三角形,△BDC是等腰三角形;(2)由DE∥BC得到∠AED=∠ABC=∠1+∠2,因为∠A=90°,∠AED+∠3=90°,∠1+∠2+∠3=90°,求得∠3=30°,根据AE=1得到ED=2EB=ED=2,求得AB=AE+EB=1+2=3,同理BC=2AB=2×3=6.解答:(1)证明:∵在△ABC中,BD平分∠ABC,∴∠1=∠2∵在△ABC中,DE平分∠ADB,∴∠3=∠4,∵DE∥BC∴∠3=∠5,∵DE∥BC∴∠2=∠4,∴∠1=∠2=∠3=∠4=∠5,∴∠1=∠4,∠2=∠5,∴△BED是等腰三角形,△BDC是等腰三角形;(2)解:∵DE∥BC,∴∠AED=∠ABC=∠1+∠2,∵∠A=90°,∴∠AED+∠3=90°,∴∠1+∠2+∠3=90°,∴∠3=30°,∵AE=1,∴ED=2,∴EB=ED=2,∴AB=AE+EB=1+2=3,同理BC=2AB=2×3=6.点评:本题主要考查了平行线的判定与性质,等腰三角形的判定,角平分线的性质.25.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?考点:分式方程的应用.专题:销售问题.分析:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x 元.根据第二次购进干果数量是第一次的2倍还多300千克,列出方程,解方程即可求解;(2)根据利润=售价﹣进价,可求出结果.解答:解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.点评:本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.。