高中数学必修2第三章单元复习教案
- 格式:doc
- 大小:667.50 KB
- 文档页数:5
高中必修二数学全册教案
第一节:直线和平面的方程
教学目标:学生能够理解和应用直线和平面的方程。
教学重点:直线和平面的一般方程、截距式方程、点斜式方程、交点坐标、平面的截距式方程。
教学难点:平面的一般方程的推导。
教学过程:
1.引入直线和平面的方程。
通过实际例子引导学生了解直线和平面的一般方程。
2.介绍直线的方程。
讲解直线的截距式方程和点斜式方程,并通过例题演示如何转换。
3.介绍平面的方程。
学习平面的一般方程和截距式方程,并讲解如何根据平面上的点和法向量来确定平面的方程。
4.练习。
让学生进行练习,巩固直线和平面的方程的知识。
5.总结。
总结本节课的重点内容,并提醒学生注意要点。
教学资源:教材、黑板、彩色粉笔、习题册。
课后作业:完成课后习题,练习直线和平面的方程,并思考如何应用到实际生活中。
扩展阅读:了解不同方程的应用领域,并与实际生活进行联系。
课题 2.1.1倾斜角与斜率授课年级高二课型新授课授课时间主备人授课教师教学目标1.初步了解解析几何的产生及其意义,初步认识坐标法思想2.掌握直线的倾斜角与斜率的概念3.掌握过两点的直线的斜率公式教学重难点重点:直线的倾斜角与斜率的概念,过两点的直线斜率公式难点:用直线的倾斜角和斜率刻画直线的几何特征教学方法自主探究、合作交流教学过程环节设计学生活动引导语:十六、十七世纪,为了描述现实世界中的运动变化现象,如行星的运动、平面抛体的运动等,需要对它们的运动轨迹进行精确的代数刻画,运动变化进入了数学,变量观念成为数学中的重要理念。
在众多数学家工作的基础上,法国数学家笛卡尔、费马集其大成,创立了坐标系,用坐标刻画运动变化。
这是解析几何的创始。
新课导入:我们知道,点是构成直线的基本元素,在平面直角坐标系中,可以用坐标表示点,本节我们首先在平面直角坐标系中探索确定直线位置的几何要素。
引入课题学生阅读材料了解解析几何的创始问题1过一点能确定一条直线吗?这些直线有何不同? 新课讲解: 一、倾斜角1. 直线的倾斜角当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角练习:下列四图中,表示直线的倾斜角的是( )2. 直线倾斜角的范围当直线 与 轴平行或重合时,我们规定它的倾斜角为0度 ,因此,直线的倾斜角的取值范围为:学生动手画直线学生口答定义并找出其中的关键词学生口答巩固倾斜角的概念学生自助探究y x olαay xoAyxoaBayxoC yx aoD按倾斜角去分类,直线可分几类?问题2请在平面直角坐标系中,作出倾斜角为 45度 的直线,并对比你与其他同学所作的图像,你发现了什么?若增加条件过点(0,0),你能作多少条直线?3.确定平面直角坐标系中一条直线的几何要素: 直线上的一个定点 直线的倾斜角问:日常生活中有没有表示倾斜程度的量?坡度(比)二、直线的斜率直线倾斜角 的正切值,常用小写字母k 表示,即: αtan =k注意:倾斜角为90度的直线的斜率不存在.探究:借助几何画板,分析直线的倾斜角与斜率的关系。
建筑物高度的测量
【教学目标】
通过数学建模来计算建筑的高度.
【教学重难点】
数学模型的选择.
【教学过程】
一、基础知识
数学建模活动的主要步骤如下:
教师小结:
数学建模活动是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的过程.主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,确定参数、计算求解,检验结果、改进模型,最终解决实际问题.数学建模活动是基于数学思维运用模型解决实际问题的一类综合实践活动,是高中阶段数学课程的重要内容. 二、实例探究
(一)问题情境和任务
选择适用的方法,测量下面3个物体的高度.
1.学校内的旗杆;
2.学校内的一座教学楼;
3.学校外一座看得见,但底部不可到达的建筑物.
(二)实践流程建议
1.成立测量小组.
2.学习研讨,完成下列工作。
(1)选定测量目标和测量方法(注意控制测量误差、计算误差);
(2)制订测量方案,写出计划书,最好选用两套方案测量同一个物体;(3)准备相应的测量工具(需要时也可以自制一些简单的测量工具);
(4)明确小组成员的任务分工.
3.实施现场测量,记录测量数据.
4.完成计算和报告,填写“测量工作报告表”.
5.成果交流.
交流时,关注测量过程和创新点,以实物、照片、幻灯片等形式展示.
测量工作报告表
根据制定的测量方案,完成实际测量活动.。
3.3.1 两条直线的交点坐标教学目的:使学生了解两条直线交点坐标的求法,会联立两条直线所表示的方程成方 程组求交点坐标。
教学重点:两直线交点坐标的求法。
教学难点:两直线交点坐标的求法。
教学过程一、复习提问平面内两条直线有什么位置关系?空间里呢?二、新课已知两条直线l 1:A 1x +B 1y +C 1=0l 2:A 2x +B 2y +C 2=0如何求它们的交点坐标呢?一般地将它们联立成方程组,若方程组有唯一的解,则两条直线相交,此解就是 交点的坐标;若方程组无解,则两条直线无公共点,此时两直线平行。
例1、求下列两条直线的交点坐标:l 1:3x +4y -2=0l 2:2x +y +2=0解:解方程组:⎩⎨⎧=++=-+0220243y x y x ,解得:⎩⎨⎧=-=22y x 所以两条直线的交点是M (-2,2)。
探究:当λ变化时,方程3x +4y -2+λ(2x +y +2)=0表示什么图形?图形有何特点?例2、判断下列各对直线的位置关系,如果相交,求出交点坐标:(1)l 1:x -y =0, l 2:3x +3y -10=0(2)l 1:3x -y +4=0, l 2:6x -2y =0(3)l 1:3x +4y -5=0, l 2:6x +8y -10=0解:(1)解方程组:⎩⎨⎧=-+=-010330y x y x ,解得:⎪⎪⎩⎪⎪⎨⎧==3535y x 所以,l 1,l 2相交,交点是M (35,35) (2)解方程组:⎩⎨⎧=-=+-026043y x y x ,①×2-② 得:9=0,矛盾!方程组无解,所以两直线无交点,l 1∥l 2(3)解方程组::⎩⎨⎧=-+=-+010860543y x y x ,①×2得:6x +8y -10=0,两个方程可以化为同一个方程,即它们表示同一条直线,l 1,l 2重合。
必修2第三章 第二节直线的方程第一课时3.2.1 直线的点斜式方程教学目标:1.掌握由一点和斜率导出直线方程的方法,掌握直线的点斜式方程;了解直线方程的斜截式是点斜式的特例2.掌握斜率不存在时的直线方程,即1x x =3.能通过待定系数(直线上的一个点的坐标11(,)x y 及斜率k ,或者直线的斜率k 及在y 轴上的截距b )求直线方程教学重点:直线的点斜式、斜截式方程的推导及运用教学难点:直线的点斜式、斜截式方程的意义及运用教学过程:(一)、复习准备:1. 直线的倾斜角与斜率有何关系?什么样的直线没有斜率?2.两条不重合的直线,斜率都存在. 它们的斜率有何关系.如何用直线的斜率判定两直线垂直? 直线l 经过点(1,3)A -,(0,1)B ,则(1)直线l 的斜率是多少?(2)当(,)P x y 在直线l 上运动,那么点P 的坐标(,)x y 应满足什么条件? 解:(1)31210k -==---;(2)直线l 的斜率恒为2-,当(,)P x y 除(1,3)A -外,则32(1)y x -=---,32[(1)]y x ∴-=---(点(1,3)A -的坐标也满足方程),∴点P 的坐标(,)x y 应满足210x y +-=,反过来,以方程210x y +-=的解为坐标的点都在直线l 上 (二)、讲授新课: 直线点斜式方程已知直线l 上一点000(,)p x y 与这条直线的斜率k ,设(,)p x y 为直线上的任意一点,则有:00y y k x x -=-00()y y k x x ⇒-=- ⑴探究: 两点可以确定一直线,那么知道直线上一点的坐标与直线的斜率能不能确定一直线呢? 满足方程⑴的所有点是否都在直线 l 上?点斜式方程 :方程 ⑴:00()y y k x x -=-称为直线的点斜式方程.简称点斜式. 讨论:直线的点斜式方程能否表示平面上的所有直线?(引导学生从斜率的角度去考虑)结论:不能表示垂直于x 轴的直线.只有当直线存在斜率时,直线才具有点斜式方程.两种特殊的直线方程直线l 经过点111(,)P x y ,倾斜角为0︒,则tan 00k =︒=,直线l 的方程是1y y =;直线l 经过点111(,)P x y ,倾斜角为90︒,则斜率不存在,因为直线l 上每一点的横坐标都等于1x ,直线l 的方程是1x x =.斜截式方程:直线l 斜率为k ,与y 轴的交点是(0,)P b ,求直线l 的方程。
_3.1直线的倾斜角与斜率3.1.1倾斜角与斜率[提出问题]在平面直角坐标系中,直线l经过点P.问题1:直线l的位置能够确定吗?提示:不能.问题2:过点P可以作与l相交的直线多少条?提示:无数条.问题3:上述问题中的所有直线有什么区别?提示:倾斜程度不同.[导入新知]1.倾斜角的定义:当直线l与x轴相交时,取x轴作为基准,x轴正方向与直线l向上方向之间所成的角叫做直线l的倾斜角.如图所示,直线l 的倾斜角是∠APx,直线l′的倾斜角是∠BPx.2.倾斜角的范围:直线的倾斜角α的取值范围是0°≤α<180°,并规定与x轴平行或重合的直线的倾斜角为0°.3.倾斜角与直线形状的关系[化解疑难]对直线的倾斜角的理解(1)倾斜角定义中含有三个条件:①x 轴正向;②直线向上的方向;③小于180°的非负角.(2)从运动变化的观点来看,直线的倾斜角是由x 轴按逆时针方向旋转到与直线重合时所成的角.(3)倾斜角是一个几何概念,它直观地描述且表现了直线对x 轴的倾斜程度.(4)平面直角坐标系中的每一条直线都有一个确定的倾斜角,且倾斜程度相同的直线,其倾斜角相等;倾斜程度不同的直线,其倾斜角不相等.[提出问题]日常生活中,常用坡度(坡度=升高量前进量)表示倾斜程度,例如,“进2升3”与“进2升2”比较,前者更陡一些,因为坡度32>22.问题1:对于直线可利用倾斜角描述倾斜程度,可否借助于坡度来描述直线的倾斜程度?提示:可以.问题2:由上图中坡度为升高量与水平前进量的比值,那么对于平面直角坐标系中直线的倾斜程度能否如此度量?提示:可以.问题3:通过坐标比,你会发现它与倾斜角有何关系? 提示:与倾斜角的正切值相等. [导入新知]1.斜率的定义:一条直线的倾斜角α的正切值叫做这条直线的斜率.常用小写字母k 表示,即k =tan_α.2.斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.当x 1=x 2时,直线P 1P 2没有斜率.3.斜率作用:用实数反映了平面直角坐标系内的直线的倾斜程度.[化解疑难]1.倾斜角α与斜率k 的关系(1)直线都有倾斜角,但并不是所有的直线都有斜率.当倾斜角是90°时,直线的斜率不存在,此时,直线垂直于x 轴(平行于y 轴或与y 轴重合).(2)直线的斜率也反映了直线相对于x 轴的正方向的倾斜程度.当0°≤α<90°时,斜率越大,直线的倾斜程度越大;当90°<α<180°时,斜率越大,直线的倾斜程度也越大.2.斜率公式(1)直线的斜率与两点的顺序无关,即两点的纵坐标和横坐标在公式中的次序可以同时调换,就是说, 如果分子是y 2-y 1,分母必须是x 2-x 1;反过来,如果分子是y 1-y 2,分母必须是x 1-x 2,即k =y 1-y 2x 1-x 2=y 2-y 1x 2-x 1.(2)用斜率公式时要一看,二用,三求值.一看,就是看所给两点的横坐标是否相等,若相等,则直线的斜率不存在,若不相等,则进行第二步;二用,就是将点的坐标代入斜率公式;三求值,就是计算斜率的值,尤其是点的坐标中含有参数时,应用斜率公式时要对参数进行讨论.[例1] (1)若直线l 的向上方向与y 轴的正方向成30°角,则直线l 的倾斜角为( ) A .30° B .60° C .30°或150°D .60°或120°(2)下列说法中,正确的是( )A .直线的倾斜角为α,则此直线的斜率为tan αB .直线的斜率为tan α,则此直线的倾斜角为αC .若直线的倾斜角为α,则sin α>0D .任意直线都有倾斜角α,且α≠90°时,斜率为tan α[解析] (1)如图,直线l 有两种情况,故l 的倾斜角为60°或120°.(2)对于A ,当α=90°时,直线的斜率不存在,故不正确;对于B ,虽然直线的斜率为tan α,但只有0°≤α<180°时,α才是此直线的倾斜角,故不正确;对于C ,当直线平行于x 轴时,α=0°,sin α=0,故C 不正确,故选D.[答案] (1)D (2)D [类题通法]求直线的倾斜角的方法及两点注意(1)方法:结合图形,利用特殊三角形(如直角三角形)求角.(2)两点注意:①当直线与x 轴平行或重合时,倾斜角为0°,当直线与x 轴垂直时,倾斜角为90°.②注意直线倾斜角的取值范围是0°≤α<180°. [活学活用]1.直线l 经过第二、四象限,则直线l 的倾斜角范围是( ) A .[0°,90°) B .[90°,180°) C .(90°,180°)D .(0°,180°)解析:选C 直线倾斜角的取值范围是[0°,180°),又直线l 经过第二、四象限,所以直线l 的倾斜角范围是(90°,180°).2.设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45°,得到直线l 1,则直线l 1的倾斜角为( )A .α+45°B .α-135°C .135°-αD .当0°≤α<135°时为α+45°,当135°≤α<180°时为α-135°解析:选D 当0°≤α<135°时,l 1的倾斜角是α+45°.当135°≤α<180°时,结合图形和倾斜角的概念,即可得到l 1的倾斜角为α-135°,故应选D.[例2] (1)已知过两点A (4,y ),B (2,-3)的直线的倾斜角为135°,则y =________; (2)过点P (-2,m ),Q (m,4)的直线的斜率为1,则m 的值为________; (3)已知过A (3,1),B (m ,-2)的直线的斜率为1,则m 的值为________. [解析] (1)直线AB 的斜率k =tan 135°=-1, 又k =-3-y 2-4,由-3-y 2-4=-1,得y =-5.(2)由斜率公式k =4-mm +2=1,得m =1.(3)当m =3时,直线AB 平行于y 轴,斜率不存在. 当m ≠3时,k =-2-1m -3=-3m -3=1,解得m =0.[答案] (1)-5 (2)1 (3)0 [类题通法]利用斜率公式求直线的斜率应注意的事项(1)运用公式的前提条件是“x 1≠x 2”,即直线不与x 轴垂直,因为当直线与x 轴垂直时,斜率是不存在的;(2)斜率公式与两点P 1,P 2的先后顺序无关,也就是说公式中的x 1与x 2,y 1与y 2可以同时交换位置.[活学活用]3.(2012·河南平顶山高一调研)若直线过点 (1,2),(4,2+3),则此直线的倾斜角是( ) A .30° B .45° C .60° D .90°解析:选A 设直线的倾斜角为α, 直线斜率k =(2+3)-24-1=33,∴tan α=33. 又∵0°≤α<180°,∴α=30°.[例3] 已知实数x ,y 满足y =-2x +8,且2≤x ≤3,求yx 的最大值和最小值.[解] 如图所示,由于点(x ,y )满足关系式2x +y =8,且2≤x ≤3,可知点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标可分别求得为A (2,4),B (3,2).由于y x 的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以可求得yx 的最大值为2,最小值为23.[类题通法]根据题目中代数式的特征,看是否可以写成y 2-y 1x 2-x 1的形式,若能,则联想其几何意义(即直线的斜率),再利用图形的直观性来分析解决问题.[活学活用]4.点M (x ,y )在函数y =-2x +8的图象上,当x ∈[2,5]时,求y +1x +1的取值范围.解:y +1x +1=y -(-1)x -(-1)的几何意义是过M (x ,y ),N (-1,-1)两点的直线的斜率.∵点M 在函数y =-2x +8的图象上,且x ∈[2,5], ∴设该线段为AB 且A (2,4),B (5,-2). ∵k NA =53,k NB =-16,∴-16≤y +1x +1≤53.∴y +1x +1的取值范围为[-16,53].6.倾斜角与斜率的关系[典例] 已知两点A (-3,4),B (3,2),过点P (1,0)的直线l 与线段AB 有公共点,则l 的倾斜角的取值范围________;直线l 的斜率k 的取值范围________.[解析] 如图,由题意可知k P A =4-0-3-1=-1,k PB =2-03-1=1,则直线l 的倾斜角介于直线PB 与P A 的倾斜角之间,又PB 的倾斜角是45°,P A 的倾斜角是135°,∴直线l 的倾斜角α的取值范围是45°≤α≤135°;要使l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是k ≤-1或k ≥1.[答案] 45°≤α≤135° k ≤-1或k ≥1 [易错防范]1.本题易错误地认为-1≤k ≤1,结合图形考虑,l 的倾斜角应介于直线PB 与直线P A 的倾斜角之间,要特别注意,当l 的倾斜角小于90°时,有k ≥k PB ;当l 的倾斜角大于90°时,则有k ≤k P A .2.如图,过点P 的直线l 与直线段AB 相交时,因为过点P 且与x 轴垂直的直线PC 的斜率不存在,而PC 所在的直线与线段AB 不相交,所以满足题意的斜率夹在中间,即k P A ≤k ≤k PB .解决这类问题时,可利用数形结合思想直观地判断直线是夹在中间还是在两边.[成功破障]已知直线l 过点P (3,4),且与以A (-1,0),B (2,1)为端点的线段AB 有公共点,求直线l 的斜率k 的取值范围.解:∵直线P A 的斜率k P A =4-03-(-1)=1,直线PB 的斜率k PB =4-13-2=3,∴要使直线l与线段AB 有公共点,k 的取值范围为[1,3].[随堂即时演练]1.关于直线的倾斜角和斜率,下列说法正确的是( ) A .任一直线都有倾斜角,都存在斜率 B .倾斜角为135°的直线的斜率为1C .若一条直线的倾斜角为α,则它的斜率为k =tan αD .直线斜率的取值范围是(-∞,+∞)解析:选D 任一直线都有倾斜角,但当倾斜角为90°时,斜率不存在.所以A 、C 错误;倾斜角为135°的直线的斜率为-1,所以B 错误;只有D 正确.2.已知经过两点(5,m )和(m,8)的直线的斜率等于1,则m 的值是( ) A .5 B .8 C.132D .7解析:选C 由斜率公式可得8-m m -5=1,解之得m =132.3.直线l 经过原点和(-1,1),则它的倾斜角为________. 解析:k l =1-0-1-0=-1,因此倾斜角为135°. 答案:135°4.已知三点A (a,2),B (3,7),C (-2,-9a )在同一条直线上,实数a 的值为________.解析:∵A 、B 、C 三点共线, ∴k AB =k BC ,即53-a=9a +75,∴a =2或29.答案:2或295.已知A (m ,-m +3),B (2,m -1),C (-1,4),直线AC 的斜率等于直线BC 的斜率的3倍,求m 的值.解:由题意直线AC 的斜率存在,即m ≠-1. ∴k AC =(-m +3)-4m +1,k BC =(m -1)-42-(-1).∴(-m +3)-4m +1=3·(m -1)-42-(-1).整理得:-m -1=(m -5)(m +1), 即(m +1)(m -4)=0, ∴m =4或m =-1(舍去). ∴m =4.[课时达标检测]一、选择题1.给出下列说法,正确的个数是( )①若两直线的倾斜角相等,则它们的斜率也一定相等; ②一条直线的倾斜角为-30°; ③倾斜角为0°的直线只有一条;④直线的倾斜角α的集合{α|0°≤α<180°}与直线集合建立了一一对应关系. A .0 B .1 C .2D .3解析:选A 若两直线的倾斜角为90°,则它们的斜率不存在,①错;直线倾斜角的取值范围是[0°,180°),②错;所有垂直于y 轴的直线倾斜角均为0°,③错;不同的直线可以有相同的倾斜角,④错.2.过两点A (4,y ),B (2,-3)的直线的倾斜角为45°,则y =( ) A .-32B.32C .-1D .1解析:选C tan 45°=k AB =y +34-2,即y +34-2=1,所以y =-1.3.如图,设直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则k 1,k 2,k 3的大小关系为( )A .k 1<k 2<k 3B .k 1<k 3<k 2C .k 2<k 1<k 3D .k 3<k 2<k 1解析:选A 根据“斜率越大,直线的倾斜程度越大”可知选项A 正确. 4.经过两点A (2,1),B (1,m 2)的直线l 的倾斜角为锐角,则m 的取值范围是( ) A .m <1 B .m >-1 C .-1<m <1D .m >1或m <-1解析:选C ∵直线l 的倾斜角为锐角, ∴斜率k =m 2-11-2>0,∴-1<m <1.5.(2012·广州高一检测)如果直线l 过点(1,2),且不通过第四象限,那么l 的斜率的取值范围是( )A .[0,1]B .[0,2] C.⎣⎡⎦⎤0,12 D .(0,3]解析:选B 过点(1,2)的斜率为非负且最大斜率为此点与原点的连线斜率时,图象不过第四象限.二、填空题6.已知a >0,若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =________. 解析:若平面内三点共线,则k AB =k BC ,即a 2+a 2-1=a 3-a 23-2,整理得a 2-2a -1=0,解得a =1+2,或a =1-2(舍去).答案:1+ 27.如果直线l 1的倾斜角是150°,l 2⊥l 1,垂足为B .l 1,l 2与x 轴分别相交于点C ,A ,l 3平分∠BAC ,则l 3的倾斜角为________.解析:因为直线l 1的倾斜角为150°,所以∠BCA =30°,所以l 3的倾斜角为12×(90°-30°)=30°.答案:30°8.已知实数x ,y 满足方程x +2y =6,当1≤x ≤3时,y -1x -2的取值范围为________.解析:y -1x -2的几何意义是过M (x ,y ),N (2,1)两点的直线的斜率,因为点M 在函数x +2y=6的图象上,且1≤x ≤3,所以可设该线段为AB ,且A ⎝⎛⎭⎫1,52,B ⎝⎛⎭⎫3,32,由于k NA =-32,k NB =12,所以y -1x -2的取值范围是⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫12,+∞. 答案:⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫12,+∞三、解答题9.已知直线l 过点A (1,2),B (m,3),求直线l 的斜率和倾斜角的取值范围. 解:设l 的斜率为k ,倾斜角为α, 当m =1时,斜率k 不存在,α=90°, 当m ≠1时,k =3-2m -1=1m -1,当m >1时,k =1m -1>0,此时α为锐角,0°<α<90°,当m <1时,k =1m -1<0,此时α为钝角,90°<α<180°.所以α∈(0°,180°),k ∈(-∞,0)∪(0,+∞). 10.已知A (3,3),B (-4,2),C (0,-2), (1)求直线AB 和AC 的斜率.(2)若点D 在线段BC (包括端点)上移动时,求直线AD 的斜率的变化范围. 解:(1)由斜率公式可得直线AB 的斜率k AB =2-3-4-3=17.直线AC 的斜率k AC =-2-30-3=53.故直线AB 的斜率为17,直线AC 的斜率为53.(2)如图所示,当D 由B 运动到C 时,直线AD 的斜率由k AB 增大到k AC ,所以直线AD 的斜率的变化范围是⎣⎡⎦⎤17,53.3.1.2 两条直线平行与垂直的判定[提出问题]平面几何中,两条直线平行同位角相等.问题1:在平面直角坐标中,若l1∥l2,则它们的倾斜角α1与α2有什么关系?提示:相等.问题2:若l1∥l2,则l1,l2的斜率相等吗?提示:不一定,可能相等,也可能都不存在.问题3:若l1与l2的斜率相等,则l1与l2一定平行吗?提示:不一定.可能平行也可能重合.[导入新知]对于两条不重合的直线l1,l2,其斜率分别为k1,k2,有l1∥l2⇔k1=k2.[化解疑难]对两直线平行与斜率的关系要注意以下几点(1)l1∥l2⇔k1=k2成立的前提条件是:①两条直线的斜率都存在;②l1与l2不重合.(2)当两条直线不重合且斜率都不存在时,l1与l2的倾斜角都是90°,则l1∥l2.(3)两条不重合直线平行的判定的一般结论是:l1∥l2⇔k1=k2或l1,l2斜率都不存在.[提出问题]已知两条直线l1,l2,若l1的倾斜角为30°,l1⊥l2.问题1:上述问题中,l1,l2的斜率是多少?提示:k1=33,k2=- 3.问题2:上述问题中两直线l1、l2的斜率有何关系?提示:k1k2=-1.问题3:若两条直线垂直且都有斜率,它们的斜率之积一定为-1吗?提示:一定.[导入新知]如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直,即l 1⊥l 2⇔k 1·k 2=-1.[化解疑难]对两直线垂直与斜率的关系要注意以下几点(1)l 1⊥l 2⇔k 1·k 2=-1成立的前提条件是:①两条直线的斜率都存在;②k 1≠0且k 2≠0. (2)两条直线中,一条直线的斜率不存在,同时另一条直线的斜率等于零,则两条直线垂直.(3)判定两条直线垂直的一般结论为:l 1⊥l 2⇔k 1·k 2=-1或一条直线的斜率不存在,同时另一条直线的斜率等于零.[例1] 根据下列给定的条件,判断直线l 1与直线l 2是否平行. (1)l 1经过点A (2,1),B (-3,5),l 2经过点C (3,-3),D (8,-7); (2)l 1经过点E (0,1),F (-2,-1),l 2经过点G (3,4),H (2,3); (3)l 1的倾斜角为60°,l 2经过点M (1,3),N (-2,-23); (4)l 1平行于y 轴,l 2经过点P (0,-2),Q (0,5).[解] (1)由题意知,k 1=5-1-3-2=-45,k 2=-7+38-3=-45,所以直线l 1与直线l 2平行或重合,又k BC =5-(-3)-3-3=-43≠-45,故l 1∥l 2.(2)由题意知,k 1=-1-1-2-0=1,k 2=3-42-3=1,所以直线l 1与直线l 2平行或重合,k FG =4-(-1)3-(-2)=1,故直线l 1与直线l 2重合.(3)由题意知,k 1=tan 60°=3,k 2=-23-3-2-1=3,k 1=k 2,所以直线l 1与直线l 2平行或重合.(4)由题意知l 1的斜率不存在,且不是y 轴,l 2的斜率也不存在,恰好是y 轴,所以l 1∥l 2. [类题通法]判断两条不重合直线是否平行的步骤[活学活用]1.试确定m 的值,使过点A (m +1,0),B (-5,m )的直线与过点C (-4,3),D (0,5)的直线平行.解:由题意直线CD 的斜率存在,则与其平行的直线AB 的斜率也存在.k AB =m -0-5-(m +1)=m -6-m ,k CD =5-30-(-4)=12,由于AB ∥CD ,即k AB =k CD ,所以m -6-m =12,得m =-2.经验证m =-2时直线AB 的斜率存在,所以m =-2.[例2] 已知直线l 1经过点A (3,a ),B (a -2,-3),直线l 2经过点C (2,3),D (-1,a -2),如果l 1⊥l 2,求a 的值.[解] 设直线l 1,l 2的斜率分别为k 1,k 2.∵直线l 2经过点C (2,3),D (-1,a -2),且2≠-1, ∴l 2的斜率存在.当k 2=0时,a -2=3,则a =5,此时k 1不存在,符合题意.当k 2≠0时,即a ≠5,此时k 1≠0,由k 1·k 2=-1,得-3-a a -2-3·a -2-3-1-2=-1,解得a =-6.综上可知,a 的值为5或-6. [类题通法]使用斜率公式判定两直线垂直的步骤(1)一看,就是看所给两点的横坐标是否相等,若相等,则直线的斜率不存在,若不相等,则进行第一步.(2)二用:就是将点的坐标代入斜率公式.(3)求值:计算斜率的值,进行判断.尤其是点的坐标中含有参数时,应用斜率公式要对参数进行讨论.总之,l 1与l 2一个斜率为0,另一个斜率不存在时,l 1⊥l 2;l 1与l 2斜率都存在时,满足k 1·k 2=-1.[活学活用]2.已知定点A (-1,3),B (4,2),以A 、B 为直径作圆,与x 轴有交点C ,则交点C 的坐标是________.解析:以线段AB 为直径的圆与x 轴的交点为C ,则AC ⊥BC .设C (x,0),则k AC =-3x +1,k BC =-2x -4,所以-3x +1·-2x -4=-1,得x =1或2,所以C (1,0)或(2,0). 答案:(1,0)或(2,0)[例3] 已知A (-4,3),B (2,5),C (6,3),D (-3,0)四点,若顺次连接A ,B ,C ,D 四点,试判定图形ABCD 的形状.[解] 由题意知A ,B ,C ,D 四点在坐标平面内的位置,如图所示,由斜率公式可得k AB =5-32-(-4)=13,k CD =0-3-3-6=13,k AD =0-3-3-(-4)=-3,k BC =3-56-2=-12.所以k AB =k CD ,由图可知AB 与CD 不重合, 所以AB ∥CD .由k AD ≠k BC ,所以AD 与BC 不平行. 又因为k AB ·k AD =13×(-3)=-1,所以AB ⊥AD ,故四边形ABCD 为直角梯形. [类题通法]1.在顶点确定的情况下,确定多边形形状时,要先画出图形,由图形猜测其形状,为下面证明提供明确目标.2.证明两直线平行时,仅有k 1=k 2是不够的,注意排除两直线重合的情况. [活学活用]3.已知A (1,0),B (3,2),C (0,4),点D 满足AB ⊥CD ,且AD ∥BC ,试求点D 的坐标. 解:设D (x ,y ),则k AB =23-1=1,k BC =4-20-3=-23,k CD =y -4x ,k DA =yx -1.因为AB ⊥CD ,AD ∥BC ,所以,k AB ·k CD =-1,k DA =k BC,所以⎩⎨⎧1×y -4x=-1,y x -1=-23.解得⎩⎪⎨⎪⎧x =10,y =-6.即D (10,-6).8.利用平行或垂直确定参数值[典例] 已知直线l 1经过A (3,m ),B (m -1,2),直线l 2经过点C (1,2),D (-2,m +2). (1)若l 1∥l 2,求m 的值; (2)若l 1⊥l 2,求m 的值. [解题流程]欲求m 的值,需根据l 1∥l 2或l 1⊥l 2列出关于m 的关系式由直线l 1过A 、B 两点,直线l 2过C 、D 两点,求斜率[规范解答]由题知直线l 2的斜率存在且k 2=2-(m +2)1-(-2)=-m 3①.(2分)(1)若l 1∥l 2,则直线l 1的斜率也存在,由k 1=k 2,得2-m m -4=-m 3,解得m =1或m =6,(4分)经检验,当m =1或m =6时,l 1∥l ③2.(6分)(2)若l 1⊥l 2,当k 2=0②时,此时m =0,l 1斜率存在,不符合题意;(8分)当k 2≠0②时,直线l 2的斜率存在且不为0,则直线l 1的斜率也存在,且k 1·k 2=-1,即-m 3·2-m m -4=-1,解得m =3或m =-4,(10分) 所以m =3或m =-4时,l 1⊥l ③2.(12分)[名师批注]①处易漏掉而直接利用两直线平行或垂直所具备的条件来求m 值,解答过程不严谨 ②处讨论k 2=0和k 2≠0两种情况③此处易漏掉检验做解答题要注意解题的规范 [活学活用]已知A (-m -3,2),B (-2m -4,4),C (-m ,m ),D (3,3m +2),若直线AB ⊥CD ,求m 的值.解:因为A ,B 两点纵坐标不等,所以AB 与x 轴不平行.因为AB ⊥CD ,所以CD 与x 轴不垂直,故m ≠-3.当AB 与x 轴垂直时,-m -3=-2m -4,解得m =-1,而m =-1时,C ,D 纵坐标均为-1,所以CD ∥x 轴,此时AB ⊥CD ,满足题意.当AB 与x 轴不垂直时,由斜率公式得k AB =4-2-2m -4-(-m -3)=2-(m +1),k CD=3m +2-m 3-(-m )=2(m +1)m +3.因为AB ⊥CD ,所以k AB ·k CD =-1,解得m =1. 综上,m 的值为1或-1.[随堂即时演练]1.下列说法正确的有( )①若两条直线的斜率相等,则这两条直线平行; ②若l 1∥l 2,则k 1=k 2;③若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线垂直; ④若两条直线的斜率都不存在且两直线不重合,则这两条直线平行. A .1个 B .2个 C .3个D .4个解析:选A 若k 1=k 2,则这两条直线平行或重合,所以①错;当两条直线垂直于x 轴时,两条直线平行,但斜率不存在,所以②错;若两直线中有一条直线的斜率不存在,另一条直线的斜率为0时,才有这两条直线垂直,所以③错;④正确.2.直线l 1,l 2的斜率是方程x 2-3x -1=0的两根,则l 1与l 2的位置关系是( ) A .平行 B .重合 C .相交但不垂直D .垂直解析:选D 设l 1,l 2的斜率分别为k 1,k 2,则k 1·k 2=-1.3.已知△ABC 中,A (0,3)、B (2,-1),E 、F 分别为AC 、BC 的中点,则直线EF 的斜率为________.解析:∵E 、F 分别为AC 、BC 的中点, ∴EF ∥AB . ∴k EF =k AB =-1-32-0=-2. 答案:-24.经过点(m,3)和(2,m )的直线l 与斜率为-4的直线互相垂直,则m 的值是________. 解析:由题意可知k l =14,又因为k l =m -32-m ,所以m -32-m =14,解得m =145.答案:1455.判断下列各小题中的直线l 1与l 2的位置关系. (1)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(2)l 1过点A (3,4),B (3,100),l 2过点M (-10,40),N (10,40); (3)l 1过点A (0,1),B (1,0),l 2过点M (-1,3),N (2,0); (4)l 1过点A (-3,2),B (-3,10),l 2过点M (5,-2),N (5,5). 解:(1)k 1=-10,k 2=3-220-10=110.∵k 1k 2=-1,∴l 1⊥l 2.(2)l 1的倾斜角为90°,则l 1⊥x 轴.k 2=40-4010-(-10)=0,则l 2∥x 轴,∴l 1⊥l 2.(3)k 1=0-11-0=-1,k 2=0-32-(-1)=-1,∴k 1=k 2.又k AM =3-1-1-0=-2≠k 1,∴l 1∥l 2. (4)∵l 1与l 2都与x 轴垂直,∴l 1∥l 2.[课时达标检测]一、选择题1.已知过点P (3,2m )和点Q (m,2)的直线与过点M (2,-1)和点N (-3,4)的直线平行,则m 的值是( )A .1B .-1C .2D .-2解析:选B 因为MN ∥PQ ,所以k MN =k PQ ,即4-(-1)-3-2=2-2mm -3,解得m =-1.2.以A (-1,1),B (2,-1),C (1,4)为顶点的三角形是( ) A .锐角三角形 B .钝角三角形C .以A 点为直角顶点的直角三角形D .以B 点为直角顶点的直角三角形解析:选C 如右图所示,易知k AB =-1-12-(-1)=-23,k AC =4-11-(-1)=32,由k AB ·k AC =-1知三角形是以A 点为直角顶点的直角三角形.3.已知点A (-2,-5),B (6,6),点P 在y 轴上,且∠APB =90°,则点P 的坐标为( )A .(0,-6)B .(0,7)C .(0,-6)或(0,7)D .(-6,0)或(7,0)解析:选C 由题意可设点P 的坐标为(0,y ).因为∠APB =90°,所以AP ⊥BP ,且直线AP 与直线BP 的斜率都存在.又k AP =y +52,k BP =y -6-6,k AP ·k BP =-1, 即y +52·(-y -66)=-1,解得y =-6或y =7.所以点P 的坐标为(0,-6)或(0,7). 4.若A (-4,2),B (6,-4),C (12,6),D (2,12),则下面四个结论:①AB ∥CD ;②AB ⊥AD ;③AC ∥BD ;④AC ⊥BD 中正确的个数为( )A .1B .2C .3D .4解析:选C 由题意得k AB =-4-26-(-4)=-35,k CD =12-62-12=-35,k AD =12-22-(-4)=53,k AC=6-212-(-4)=14,k BD =12-(-4)2-6=-4,所以AB ∥CD ,AB ⊥AD ,AC ⊥BD .5.已知点A (2,3),B (-2,6),C (6,6),D (10,3),则以A ,B ,C ,D 为顶点的四边形是( ) A .梯形 B .平行四边形 C .菱形D .矩形解析:选B 如图所示,易知k AB =-34,k BC =0,k CD =-34,k AD =0,k BD =-14,k AC =34,所以k AB =k CD ,k BC =k AD ,k AB ·k AD =0,k AC ·k BD =-312, 故AD ∥BC ,AB ∥CD ,AB 与AD 不垂直,BD 与AC 不垂直. 所以四边形ABCD 为平行四边形. 二、填空题6.l 1过点A (m,1),B (-3,4),l 2过点C (0,2),D (1,1),且l 1∥l 2,则m =________. 解析:∵l 1∥l 2,且k 2=1-21-0=-1,∴k 1=4-1-3-m =-1,∴m =0.答案:07.已知直线l 1的倾斜角为45°,直线l 2∥l 1,且l 2过点A (-2,-1)和B (3,a ),则a 的值为________.解析:∵l 2∥l 1,且l 1的倾斜角为45°,∴kl 2=kl 1=tan 45°=1,即a -(-1)3-(-2)=1,所以a=4.答案:48.已知A (2,3),B (1,-1),C (-1,-2),点D 在x 轴上,则当点D 坐标为________时,AB ⊥CD .解析:设点D (x,0),因为k AB =-1-31-2=4≠0,所以直线CD 的斜率存在. 则由AB ⊥CD 知,k AB ·k CD =-1,所以4·-2-0-1-x =-1,解得x =-9.答案:(-9,0) 三、解答题9.当m 为何值时,过两点A (1,1),B (2m 2+1,m -2)的直线: (1)倾斜角为135°;(2)与过两点(3,2),(0,-7)的直线垂直; (3)与过两点(2,-3),(-4,9)的直线平行? 解:(1)由k AB =m -32m 2=tan 135°=-1,解得m =-32,或m =1. (2)由k AB =m -32m 2,且-7-20-3=3. 则m -32m 2=-13,解得m =32,或m =-3. (3)令m -32m 2=9+3-4-2=-2, 解得m =34,或m =-1.10.直线l 1经过点A (m,1),B (-3,4),直线l 2经过点C (1,m ),D (-1,m +1),当l 1∥l 2或l 1⊥l 2时,分别求实数m 的值.解:当l 1∥l 2时,由于直线l 2的斜率存在,则直线l 1的斜率也存在,则k AB =k CD ,即4-1-3-m =m +1-m-1-1,解得m =3;当l 1⊥l 2时,由于直线l 2的斜率存在且不为0,则直线l 1的斜率也存在,则k AB k CD =-1, 即4-1-3-m ·m +1-m -1-1=-1,解得m =-92.综上,当l 1∥l 2时,m 的值为3; 当l 1⊥l 2时,m 的值为-92.3.2直线的方程3.2.1 直线的点斜式方程[提出问题]斜拉桥又称斜张桥,桥身简约刚毅,力感十足.若以桥面所在直线为x 轴,桥塔所在直线为y 轴建立平面直角坐标系,那么斜拉索可看成过桥塔上同一点的直线.问题1:已知某一斜拉索过桥塔上一点B ,那么该斜拉索位置确定吗?提示:不确定.从一点可引出多条斜拉索.问题2:若某条斜拉索过点B (0,b ),斜率为k ,则该斜拉索所在直线上的点P (x ,y )满足什么条件?提示:满足y -bx -0=k .问题3:可以写出问题2中的直线方程吗? 提示:可以.方程为y -b =kx . [导入新知]1.直线的点斜式方程(1)定义:如图所示,直线l 过定点P (x 0,y 0),斜率为k ,则把方程y -y 0=k (x -x 0)叫做直线l 的点斜式方程,简称点斜式.(2)说明:如图所示,过定点P (x 0,y 0),倾斜角是90°的直线没有点斜式,其方程为x -x 0=0,或x =x 0.2.直线的斜截式方程(1)定义:如图所示,直线l 的斜率为k ,且与y 轴的交点为(0,b ),则方程y =kx +b 叫做直线l 的斜截式方程,简称斜截式.(2)说明:一条直线与y 轴的交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.倾斜角是直角的直线没有斜截式方程.[化解疑难]1.关于点斜式的几点说明:(1)直线的点斜式方程的前提条件是:①已知一点P (x 0,y 0)和斜率k ;②斜率必须存在.只有这两个条件都具备,才可以写出点斜式方程.(2)方程y -y 0=k (x -x 0)与方程k =y -y 0x -x 0不是等价的,前者是整条直线,后者表示去掉点P (x 0,y 0)的一条直线.(3)当k 取任意实数时,方程y -y 0=k (x -x 0)表示恒过定点(x 0,y 0)的无数条直线. 2.斜截式与一次函数的解析式相同,都是y =kx +b 的形式,但有区别,当k ≠0时,y =kx +b 即为一次函数;当k =0时,y =b ,不是一次函数,一次函数y =kx +b (k ≠0)必是一条直线的斜截式方程.截距不是距离,可正、可负也可为零.[例1](1)经过点(-5,2)且平行于y轴的直线方程为________.(2)直线y=x+1绕着其上一点P(3,4)逆时针旋转90°后得直线l,则直线l的点斜式方程为________.(3)求过点P(1,2)且与直线y=2x+1平行的直线方程为________.[解析](1)∵直线平行于y轴,∴直线不存在斜率,∴方程为x=-5.(2)直线y=x+1的斜率k=1,所以倾斜角为45°.由题意知,直线l的倾斜角为135°,所以直线l的斜率k′=tan 135°=-1,又点P(3,4)在直线l上,由点斜式方程知,直线l的方程为y-4=-(x-3).(3)由题意知,所求直线的斜率为2,且过点P(1,2),∴直线方程为y-2=2(x-1),即2x -y=0.[答案](1)x=-5(2)y-4=-(x-3)(3)2x-y=0[类题通法]已知直线上一点的坐标以及直线斜率或已知直线上两点的坐标,均可用直线方程的点斜式表示,直线方程的点斜式,应在直线斜率存在的条件下使用.当直线的斜率不存在时,直线方程为x=x0.[活学活用]1.写出下列直线的点斜式方程:(1)经过点A(2,5),斜率是4;(2)经过点B(2,3),倾斜角是45°;(3)经过点C(-1,-1),与x轴平行.解:(1)由点斜式方程可知,所求直线的点斜式方程为y-5=4(x-2).(2)∵直线的倾斜角为45°,∴此直线的斜率k=tan45°=1.∴直线的点斜式方程为y-3=x-2.(3)∵直线与x轴平行,∴倾斜角为0°,斜率k=0.∴直线的点斜式方程为y+1=0×(x+1),即y=-1.[例2] (1)倾斜角为150°,在y 轴上的截距是-3的直线的斜截式方程为________. (2)已知直线l 1的方程为y =-2x +3,l 2的方程为y =4x -2,直线l 与l 1平行且与l 2在y 轴上的截距相同,求直线l 的方程.[解析] (1)∵倾斜角α=150°,∴斜率k =tan 150°=-33,由斜截式可得所求的直线方程为y =-33x -3. (2)由斜截式方程知直线l 1的斜率k 1=-2, 又∵l ∥l 1,∴l 的斜率k =k 1=-2.由题意知l 2在y 轴上的截距为-2,∴l 在y 轴上的截距b =-2,由斜截式可得直线l 的方程为y =-2x -2.[答案] (1)y =-33x -3 [类题通法]1.斜截式方程的应用前提是直线的斜率存在.当b =0时,y =kx 表示过原点的直线;当k =0时,y =b 表示与x 轴平行(或重合)的直线.2.截距不同于日常生活中的距离,截距是一个点的横(纵)坐标,是一个实数,可以是正数,也可以是负数或零,而距离是一个非负数.[活学活用]2.求倾斜角是直线y =-3x +1的倾斜角的14,且在y 轴上的截距是-5的直线方程.解:∵直线y =-3x +1的斜率k =-3,∴其倾斜角α=120°,由题意,得所求直线的倾斜角α1=14α=30°,故所求直线的斜率k 1=tan 30°=33.∵所求直线的斜率是33,在y 轴上的截距为-5, ∴所求直线的方程为y =33x -5.[例3] 当a 为何值时,(1)两直线y =ax -2与y =(a +2)x +1互相垂直? (2)两直线y =-x +4a 与y =(a 2-2)x +4互相平行? [解] (1)设两直线的斜率分别为k 1,k 2,则k 1=a ,k 2=a +2. ∵两直线互相垂直,∴k 1k 2=a (a +2)=-1, 解得a =-1.故当a =-1时,两条直线互相垂直. (2)设两直线的斜率分别为k 3,k 4, 则k 3=-1,k 4=a 2-2. ∵两条直线互相平行,∴⎩⎪⎨⎪⎧a 2-2=-1,4a ≠4,解得a =-1. 故当a =-1时,两条直线互相平行. [类题通法]判断两条直线位置关系的方法直线l 1:y =k 1x +b 1,直线l 2:y =k 2x +b 2. (1)若k 1≠k 2,则两直线相交. (2)若k 1=k 2,则两直线平行或重合, 当b 1≠b 2时,两直线平行; 当b 1=b 2时,两直线重合.(3)特别地,当k 1·k 2=-1时,两直线垂直. (4)对于斜率不存在的情况,应单独考虑. [活学活用]3.(1)若直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3垂直,则a =________. (2)若直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2平行,则a =________. 解析:(1)由题意可知kl 1=2a -1,kl 2=4. ∵l 1⊥l 2,∴4(2a -1)=-1,解得a =38.(2)因为l 1∥l 2,所以a 2-2=-1,且2a ≠2,解得a =-1,所以a =-1时两直线平行. 答案:(1)38(2)-17.斜截式判断两条直线平行的误区[典例] 已知直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,当l 1∥l 2时,求m 的值.[解] 由题设l 2的方程可化为y =-m -23x -23m ,则其斜率k 2=-m -23,在y 轴上的截距b 2=-23m .∵l 1∥l 2,∴l 1的斜率一定存在,即m ≠0. ∴l 1的方程为y =-1m x -6m.由l 1∥l 2,得⎩⎨⎧-m -23=-1m,-23m ≠-6m,解得m =-1.∴m 的值为-1. [易错防范]1.两条直线平行时,斜率存在且相等,截距不相等.当两条直线的斜率相等时,也可能平行,也可能重合.2.解决此类问题要明确两直线平行的条件,尤其是在求参数时要考虑两直线是否重合. [成功破障]当a 为何值时,直线l 1:y =-2ax +2a 与直线l 2:y =(a 2-3)x +2平行? 解:∵l 1∥l 2,∴a 2-3=-2a 且2a ≠2, 解得a =-3.[随堂即时演练]1.直线y =2x -3的斜率和在y 轴上的截距分别等于( ) A .2,3 B .-3,-3 C .-3,2 D .2,-3答案:D2.直线l 经过点P (2,-3),且倾斜角α=45°,则直线的点斜式方程是( ) A .y +3=x -2 B .y -3=x +2 C .y +2=x -3D .y -2=x +3 解析:选A ∵直线l 的斜率k =tan 45°=1, ∴直线l 的方程为y +3=x -2.3.过点(-2,-4),倾斜角为60°的直线的点斜式方程是________. 解析:α=60°,k =tan 60°=3, 由点斜式方程,得y +4=3(x +2).答案:y +4=3(x +2)4.在y 轴上的截距为2,且与直线y =-3x -4平行的直线的斜截式方程为________. 解析:∵直线y =-3x -4的斜率为-3, 所求直线与此直线平行,∴斜率为-3,又截距为2,∴由斜截式方程可得y =-3x +2. 答案:y =-3x +25.(1)求经过点(1,1),且与直线y =2x +7平行的直线的方程; (2)求经过点(-2,-2),且与直线y =3x -5垂直的直线的方程. 解:(1)由y =2x +7得其斜率为2,由两直线平行知所求直线的斜率是2. ∴所求直线方程为y -1=2(x -1), 即2x -y -1=0.(2)由y =3x -5得其斜率为3,由两直线垂直知,所求直线的斜率是-13.∴所求直线方程为y +2=-13(x +2),即x +3y +8=0.[课时达标检测]一、选择题1.已知直线的方程是y +2=-x -1,则( ) A .直线经过点(-1,2),斜率为-1 B .直线经过点(2,-1),斜率为-1 C .直线经过点(-1,-2),斜率为-1 D .直线经过点(-2,-1),斜率为1解析:选C 直线的方程可化为y -(-2)=-[x -(-1)],故直线经过点(-1,-2),斜率为-1.2.直线y =ax -1a的图象可能是( )解析:选B 由y =ax -1a可知,斜率和截距必须异号,故B 正确.3.与直线y =2x +1垂直,且在y 轴上的截距为4的直线的斜截式方程是( ) A .y =12x +4B .y =2x +4C .y =-2x +4D .y =-12x +4。
第一章:空间几何体一、教学目标1.知识与技能1通过实物操作,增强学生的直观感知;2能根据几何结构特征对空间物体进行分类;3会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征;4会表示有关于几何体以及柱、锥、台的分类;2.过程与方法1让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征;2让学生观察、讨论、归纳、概括所学的知识;3.情感态度与价值观1使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力;2培养学生的空间想象能力和抽象括能力;二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征;难点:柱、锥、台、球的结构特征的概括;三、教学用具1学法:观察、思考、交流、讨论、概括;2实物模型、投影仪四、教学思路一创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗这些建筑的几何结构特征如何引导学生回忆,举例和相互交流;教师对学生的活动及时给予评价;2.所举的建筑物基本上都是由这些几何体组合而成的,展示具有柱、锥、台、球结构特征的空间物体,你能通过观察;根据某种标准对这些空间物体进行分类吗这是我们所要学习的内容;二、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥;2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么它们的共同特点是什么3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果;在此基础上得出棱柱的主要结构特征;1有两个面互相平行;2其余各面都是平行四边形;3每相邻两上四边形的公共边互相平行;概括出棱柱的概念;4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示;5.提出问题:各种这样的棱柱,主要有什么不同可不可以根据不同对棱柱分类请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征它们由哪些基本几何体组成的6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示;7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示;8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括;9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体;10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成;请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征它们由哪些基本几何体组成的三质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考;1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱举反例说明,如图2.棱柱的何两个平面都可以作为棱柱的底面吗3.课本P8,习题组第1题;4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到如何旋转5.棱台与棱柱、棱锥有什么关系圆台与圆柱、圆锥呢四、巩固深化练习:课本P7练习1、212课本P8习题第2、3、4题五、归纳整理由学生整理学习了哪些内容六、布置作业课本P8练习题组第1题课外练习课本P8习题组第2题空间几何体的三视图1课时一、教学目标1.知识与技能1掌握画三视图的基本技能2丰富学生的空间想象力2.过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用;3.情感态度与价值观1提高学生空间想象力2体会三视图的作用二、教学重点、难点重点:画出简单组合体的三视图难点:识别三视图所表示的空间几何体三、学法与教学用具1.学法:观察、动手实践、讨论、类比2.教学用具:实物模型、三角板四、教学思路一创设情景,揭开课题“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图;在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图正视图、侧视图、俯视图,你能画出空间几何体的三视图吗二实践动手作图1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;2.教师引导学生用类比方法画出简单组合体的三视图1画出球放在长方体上的三视图2画出矿泉水瓶实物放在桌面上的三视图学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得;作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图;3.三视图与几何体之间的相互转化;1投影出示图片课本P10,图请同学们思考图中的三视图表示的几何体是什么2你能画出圆台的三视图吗3三视图对于认识空间几何体有何作用你有何体会教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法;4.请同学们画出中其他物体表示的空间几何体的三视图,并与其他同学交流;三巩固练习课本P12练习1、2P18习题组1四归纳整理请学生回顾发表如何作好空间几何体的三视图五课外练习1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图;2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图;空间几何体的直观图1课时一、教学目标1.知识与技能1掌握斜二测画法画水平设置的平面图形的直观图;2采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点;2.过程与方法学生通过观察和类比,利用斜二测画法画出空间几何体的直观图;3.情感态度与价值观1提高空间想象力与直观感受;2体会对比在学习中的作用;3感受几何作图在生产活动中的应用;二、教学重点、难点重点、难点:用斜二测画法画空间几何值的直观图;三、学法与教学用具1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程;2.教学用具:三角板、圆规四、教学思路一创设情景,揭示课题1.我们都学过画画,这节课我们画一物体:圆柱把实物圆柱放在讲台上让学生画;2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢这是我们这节主要学习的内容;二研探新知1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评;画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法;强调斜二测画法的步骤;练习反馈根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查;2.例2,用斜二测画法画水平放置的圆的直观图教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点;教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法;3.探求空间几何体的直观图的画法1例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图;教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事;2投影出示几何体的三视图、课本P15图,请说出三视图表示的几何体并用斜二测画法画出它的直观图;教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系;4.平行投影与中心投影投影出示课本P17图,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点;5.巩固练习,课本P16练习11,2,3,4三、归纳整理学生回顾斜二测画法的关键与步骤四、作业1.书画作业,课本P17练习第5题2.课外思考课本P16,探究12一、教学目标1、知识与技能1通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法;2能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系;3培养学生空间想象能力和思维能力;2、过程与方法1让学生经历几何全的侧面展一过程,感知几何体的形状;2让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系;3、情感与价值通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响;从而增强学习的积极性;二、教学重点、难点重点:柱体、锥体、台体的表面积和体积计算难点:台体体积公式的推导三、学法与教学用具1、学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标;2、教学用具:实物几何体,投影仪四、教学设想1、创设情境1教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积引导学生回忆,互相交流,教师归类;2教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的你能否计算引入本节内容;2、探究新知1利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图2组织学生分组讨论:这三个图形的表面由哪些平面图形构成表面积如何求3教师对学生讨论归纳的结果进行点评;3、质疑答辩、排难解惑、发展思维1教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:r1为上底半径r为下底半径l为母线长2组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系;3教师引导学生探究:如何把一个三棱柱分割成三个等体积的棱锥由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解;如图:4教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系;s’,s分别我上下底面面积,h为台柱高4、例题分析讲解课本例1、例2、例35、巩固深化、反馈矫正教师投影练习1、已知圆锥的表面积为a ㎡,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为;答案:m a ππ3322、棱台的两个底面面积分别是245c ㎡和80c㎡,截得这个棱台的棱锥的高为35cm,求这个棱台的体积;答案:2325cm 36、课堂小结本节课学习了柱体、锥体与台体的表面积和体积的结构和求解方法及公式;用联系的关点看待三者之间的关系,更加方便于我们对空间几何体的了解和掌握;7、评价设计 习题组§球的体积和表面积一. 教学目标1. 知识与技能⑴通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分 割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识; ⑵能运用球的面积和体积公式灵活解决实际问题; ⑶培养学生的空间思维能力和空间想象能力; 2. 过程与方法通过球的体积和面积公式的推导,从而得到一种推导球体积公式V=34πR 3和面积公式S=4πR 2的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想;3. 情感与价值观通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心; 二. 教学重点、难点重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法; 难点:推导体积和面积公式中空间想象能力的形成; 三. 学法和教学用具1. 学法:学生通过阅读教材,发挥空间想象能力,了解并初步掌握“分割、求近似值的、再由近似值的和转化为球的体积和面积”的解题方法和步骤; 2. 教学用具:投影仪四. 教学设计(一) 创设情景⑴教师提出问题:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢 引导学生进行思考;⑵教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积 激发学生推导球的体积和面积公式;(二) 探究新知 1.球的体积:如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片”的体积的体积之和正好是球的体积,由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的体积有也近似于相应的圆柱和体积,因此求球的体积可以按“分割——求和——化为准确和”的方法来进行; 步骤: 第一步:分割如图:把半球的垂直于底面的半径OA作n 等分,过这些等分点,用一组平行于底面的平面把半球切割成n 个“小圆片”,“小圆片”厚度近似为nR,底面是“小圆片”的底面; 如图:得)1(])1(1[232n i ni n R n R r V i i ⋯⋯=--=⋅⋅≈、2 ππ 第二步:求和 第三步:化为准确的和当n →∞时,n 1→0同学们讨论得出所以3332)6211(R R ππ=⨯-=V半球 得到定理:半径是R的球的体积334R π=球V 练习:一种空心钢球的质量是142g,外径是5cm,求它的内径钢的密度是cm 32.球的表面积:球的表面积是球的表面大小的度量,它也是球半径R 的函数,由于球面是不可展的曲面,所以不能像推导圆柱、圆锥的表面积公式那样推导球的表面积公式,所以仍然用“分割、求近似和,再由近似和转化为准确和”方法推导;思考:推导过程是以什么量作为等量变换的 半径为R 的球的表面积为S=4πR 2练习:长方体的一个顶点上三条棱长分别为3、4、5,是它的八个顶点都在同一球面上,则这个球的表面积是;答案50元 (三) 典例分析 课本P 47例4和P 29例5 (四) 巩固深化、反馈矫正⑴正方形的内切球和外接球的体积的比为,表面积比为; 答案:1:33; 3:1⑵在球心同侧有相距9cm 的两个平行截面,它们的面积分别为49πcm 2和400πcm 2,求球的表面积;答案:2500πcm 2分析:可画出球的轴截面,利用球的截面性质求球的半径(五)课堂小结本节课主要学习了球的体积和球的表面积公式的推导,以及利用公式解决相关的球的问题,了解了推导中的“分割、求近似和,再由近似和转化为准确和”的解题方法;(六)评价设计作业P30练习1、3,B1第二章直线与平面的位置关系§平面一、教学目标:1、知识与技能1利用生活中的实物对平面进行描述;2掌握平面的表示法及水平放置的直观图;3掌握平面的基本性质及作用;4培养学生的空间想象能力;2、过程与方法1通过师生的共同讨论,使学生对平面有了感性认识;2让学生归纳整理本节所学知识;3、情感与价值使用学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣;二、教学重点、难点重点:1、平面的概念及表示;2、平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言;难点:平面基本性质的掌握与运用;三、学法与教学用具1、学法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地完成本节课的教学目标;2、教学用具:投影仪、投影片、正长方形模型、三角板四、教学思想一实物引入、揭示课题师:生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象,你们能举出更多例子吗引导学生观察、思考、举例和互相交流;与此同时,教师对学生的活动给予评价; 师:那么,平面的含义是什么呢这就是我们这节课所要学习的内容;二研探新知1、平面含义师:以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出来的,但是,几何里的平面是无限延展的;2、平面的画法及表示师:在平面几何中,怎样画直线一学生上黑板画之后教师加以肯定,解说、类比,将知识迁移,得出平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长如图平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等; 如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成虚线或不画打出投影片课本P41图说明平面内有无数个点,平面可以看成点的集合; 点A 在平面α内,记作:A ∈α点B 在平面α外,记作:B α3、平面的基本性质教师引导学生思考教材P41的思考题,让学生充分发表自己的见解;师:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上,用事实引导学生归纳出以下公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 教师引导学生阅读教材P42前几行相关内容,并加以解析 符号表示为A ∈LB ∈L=>L α A ∈α B ∈α公理1作用:判断直线是否在平面内师:生活中,我们看到三脚架可以牢固地支撑照相机或测量用的平板仪等等…… 引导学生归纳出公理2公理2:过不在一条直线上的三点,有且只有一个平面; 符号表示为:A 、B 、C 三点不共线=>有且只有一个平面α, 使A ∈α、B ∈α、C ∈α;公理2作用:确定一个平面的依据;教师用正长方形模型,让学生理解两个平面的交线的含义; 引导学生阅读P42的思考题,从而归纳出公理3公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线; 符号表示为:P ∈α∩β=>α∩β=L,且P ∈L 公理3作用:判定两个平面是否相交的依据 4、教材P43例1通过例子,让学生掌握图形中点、线、面的位置关系及符号的正确使用;5、课堂练习:课本P44练习1、2、3、46、课时小结:师生互动,共同归纳1本节课我们学习了哪些知识内容2三个公理的内容及作用是什么7、作业布置 1复习本节课内容;2预习:同一平面内的两条直线有几种位置关系D C B A αα βαβ·B·AαLA·α C ·B·A· α P ·αLβ·B§空间中直线与直线之间的位置关系一、教学目标:1、知识与技能1了解空间中两条直线的位置关系;2理解异面直线的概念、画法,培养学生的空间想象能力;3理解并掌握公理4;4理解并掌握等角定理;5异面直线所成角的定义、范围及应用;2、过程与方法1师生的共同讨论与讲授法相结合;2让学生在学习过程不断归纳整理所学知识;3、情感与价值让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣;二、教学重点、难点重点:1、异面直线的概念;2、公理4及等角定理;难点:异面直线所成角的计算;三、学法与教学用具1、学法:学生通过阅读教材、思考与教师交流、概括,从而较好地完成本节课的教学目标;2、教学用具:投影仪、投影片、长方体模型、三角板四、教学思想一创设情景、导入课题1、通过身边诸多实物,引导学生思考、举例和相互交流得出异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线;2、师:那么,空间两条直线有多少种位置关系板书课题二讲授新课1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点;教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如下图:2、1师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行;在空间中,是否有类似的规律组织学生思考:长方体ABCD-A'B'C'D'中,BB'∥AA',DD'∥AA',BB'与DD'平行吗生:平行再联系其他相应实例归纳出公理4公理4:平行于同一条直线的两条直线互相平行;符号表示为:设a、b、c是三条直线a∥b c∥b =>a∥c共面直线强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用; 公理4作用:判断空间两条直线平行的依据; 2例2投影片例2的讲解让学生掌握了公理4的运用 3教材P47探究让学生在思考和交流中提升了对公理4的运用能力; 3、组织学生思考教材P47的思考题 投影让学生观察、思考:∠ADC 与A'D'C'、∠ADC 与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何生:∠ADC=A'D'C',∠ADC+∠A'B'C'=1800教师画出更具一般性的图形,师生共同归纳出如下定理等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补; 教师强调:并非所有关于平面图形的结论都可以推广到空间中来; 4、以教师讲授为主,师生共同交流,导出异面直线所成的角的概念;1师:如图,已知异面直线a 、b,经过空间中任一点O 作直线a'∥a 、b'∥b,我们把a'与b'所成的锐角或直角叫异面直线a 与b 所成的角夹角; 2强调:①a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上;②两条异面直线所成的角θ∈0,;③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角; 3例3投影例3的给出让学生掌握了如何求异面直线所成的角,从而巩固了所学知识; 三课堂练习 教材P49练习1、2充分调动学生动手的积极性,教师适时给予肯定; 四课堂小结在师生互动中让学生了解: 1本节课学习了哪些知识内容 2计算异面直线所成的角应注意什么 五课后作业 1、判断题: 1a ∥bc ⊥a=>c ⊥b 1a ⊥cb ⊥c=>a ⊥b 2、填空题:在正方体ABCD-A'B'C'D'中,与BD'成异面直线的有________条;§—空间中直线与平面、 平面与平面之间的位置关系一、教学目标:2。
_3.1直线的倾斜角与斜率3.1.1倾斜角与斜率[提出问题]在平面直角坐标系中,直线l经过点P.问题1:直线l的位置能够确定吗?提示:不能.问题2:过点P可以作与l相交的直线多少条?提示:无数条.问题3:上述问题中的所有直线有什么区别?提示:倾斜程度不同.[导入新知]1.倾斜角的定义:当直线l与x轴相交时,取x轴作为基准,x轴正方向与直线l向上方向之间所成的角叫做直线l的倾斜角.如图所示,直线l 的倾斜角是∠APx,直线l′的倾斜角是∠BPx.2.倾斜角的范围:直线的倾斜角α的取值范围是0°≤α<180°,并规定与x轴平行或重合的直线的倾斜角为0°.3.倾斜角与直线形状的关系[化解疑难]对直线的倾斜角的理解(1)倾斜角定义中含有三个条件:①x 轴正向;②直线向上的方向;③小于180°的非负角.(2)从运动变化的观点来看,直线的倾斜角是由x 轴按逆时针方向旋转到与直线重合时所成的角.(3)倾斜角是一个几何概念,它直观地描述且表现了直线对x 轴的倾斜程度.(4)平面直角坐标系中的每一条直线都有一个确定的倾斜角,且倾斜程度相同的直线,其倾斜角相等;倾斜程度不同的直线,其倾斜角不相等.[提出问题]日常生活中,常用坡度(坡度=升高量前进量)表示倾斜程度,例如,“进2升3”与“进2升2”比较,前者更陡一些,因为坡度32>22.问题1:对于直线可利用倾斜角描述倾斜程度,可否借助于坡度来描述直线的倾斜程度?提示:可以.问题2:由上图中坡度为升高量与水平前进量的比值,那么对于平面直角坐标系中直线的倾斜程度能否如此度量?提示:可以.问题3:通过坐标比,你会发现它与倾斜角有何关系? 提示:与倾斜角的正切值相等. [导入新知]1.斜率的定义:一条直线的倾斜角α的正切值叫做这条直线的斜率.常用小写字母k 表示,即k =tan_α.2.斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.当x 1=x 2时,直线P 1P 2没有斜率.3.斜率作用:用实数反映了平面直角坐标系内的直线的倾斜程度.[化解疑难]1.倾斜角α与斜率k 的关系(1)直线都有倾斜角,但并不是所有的直线都有斜率.当倾斜角是90°时,直线的斜率不存在,此时,直线垂直于x 轴(平行于y 轴或与y 轴重合).(2)直线的斜率也反映了直线相对于x 轴的正方向的倾斜程度.当0°≤α<90°时,斜率越大,直线的倾斜程度越大;当90°<α<180°时,斜率越大,直线的倾斜程度也越大.2.斜率公式(1)直线的斜率与两点的顺序无关,即两点的纵坐标和横坐标在公式中的次序可以同时调换,就是说, 如果分子是y 2-y 1,分母必须是x 2-x 1;反过来,如果分子是y 1-y 2,分母必须是x 1-x 2,即k =y 1-y 2x 1-x 2=y 2-y 1x 2-x 1.(2)用斜率公式时要一看,二用,三求值.一看,就是看所给两点的横坐标是否相等,若相等,则直线的斜率不存在,若不相等,则进行第二步;二用,就是将点的坐标代入斜率公式;三求值,就是计算斜率的值,尤其是点的坐标中含有参数时,应用斜率公式时要对参数进行讨论.[例1] (1)若直线l 的向上方向与y 轴的正方向成30°角,则直线l 的倾斜角为( ) A .30° B .60° C .30°或150°D .60°或120°(2)下列说法中,正确的是( )A .直线的倾斜角为α,则此直线的斜率为tan αB .直线的斜率为tan α,则此直线的倾斜角为αC .若直线的倾斜角为α,则sin α>0D .任意直线都有倾斜角α,且α≠90°时,斜率为tan α[解析] (1)如图,直线l 有两种情况,故l 的倾斜角为60°或120°.(2)对于A ,当α=90°时,直线的斜率不存在,故不正确;对于B ,虽然直线的斜率为tan α,但只有0°≤α<180°时,α才是此直线的倾斜角,故不正确;对于C ,当直线平行于x 轴时,α=0°,sin α=0,故C 不正确,故选D.[答案] (1)D (2)D [类题通法]求直线的倾斜角的方法及两点注意(1)方法:结合图形,利用特殊三角形(如直角三角形)求角.(2)两点注意:①当直线与x 轴平行或重合时,倾斜角为0°,当直线与x 轴垂直时,倾斜角为90°.②注意直线倾斜角的取值范围是0°≤α<180°. [活学活用]1.直线l 经过第二、四象限,则直线l 的倾斜角范围是( ) A .[0°,90°) B .[90°,180°) C .(90°,180°)D .(0°,180°)解析:选C 直线倾斜角的取值范围是[0°,180°),又直线l 经过第二、四象限,所以直线l 的倾斜角范围是(90°,180°).2.设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45°,得到直线l 1,则直线l 1的倾斜角为( )A .α+45°B .α-135°C .135°-αD .当0°≤α<135°时为α+45°,当135°≤α<180°时为α-135°解析:选D 当0°≤α<135°时,l 1的倾斜角是α+45°.当135°≤α<180°时,结合图形和倾斜角的概念,即可得到l 1的倾斜角为α-135°,故应选D.[例2] (1)已知过两点A (4,y ),B (2,-3)的直线的倾斜角为135°,则y =________; (2)过点P (-2,m ),Q (m,4)的直线的斜率为1,则m 的值为________; (3)已知过A (3,1),B (m ,-2)的直线的斜率为1,则m 的值为________. [解析] (1)直线AB 的斜率k =tan 135°=-1, 又k =-3-y 2-4,由-3-y 2-4=-1,得y =-5.(2)由斜率公式k =4-mm +2=1,得m =1.(3)当m =3时,直线AB 平行于y 轴,斜率不存在. 当m ≠3时,k =-2-1m -3=-3m -3=1,解得m =0.[答案] (1)-5 (2)1 (3)0 [类题通法]利用斜率公式求直线的斜率应注意的事项(1)运用公式的前提条件是“x 1≠x 2”,即直线不与x 轴垂直,因为当直线与x 轴垂直时,斜率是不存在的;(2)斜率公式与两点P 1,P 2的先后顺序无关,也就是说公式中的x 1与x 2,y 1与y 2可以同时交换位置.[活学活用]3.(2012·河南平顶山高一调研)若直线过点 (1,2),(4,2+3),则此直线的倾斜角是( ) A .30° B .45° C .60° D .90°解析:选A 设直线的倾斜角为α, 直线斜率k =(2+3)-24-1=33,∴tan α=33. 又∵0°≤α<180°,∴α=30°.[例3] 已知实数x ,y 满足y =-2x +8,且2≤x ≤3,求yx 的最大值和最小值.[解] 如图所示,由于点(x ,y )满足关系式2x +y =8,且2≤x ≤3,可知点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标可分别求得为A (2,4),B (3,2).由于y x 的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以可求得yx 的最大值为2,最小值为23.[类题通法]根据题目中代数式的特征,看是否可以写成y 2-y 1x 2-x 1的形式,若能,则联想其几何意义(即直线的斜率),再利用图形的直观性来分析解决问题.[活学活用]4.点M (x ,y )在函数y =-2x +8的图象上,当x ∈[2,5]时,求y +1x +1的取值范围.解:y +1x +1=y -(-1)x -(-1)的几何意义是过M (x ,y ),N (-1,-1)两点的直线的斜率.∵点M 在函数y =-2x +8的图象上,且x ∈[2,5], ∴设该线段为AB 且A (2,4),B (5,-2). ∵k NA =53,k NB =-16,∴-16≤y +1x +1≤53.∴y +1x +1的取值范围为[-16,53].6.倾斜角与斜率的关系[典例] 已知两点A (-3,4),B (3,2),过点P (1,0)的直线l 与线段AB 有公共点,则l 的倾斜角的取值范围________;直线l 的斜率k 的取值范围________.[解析] 如图,由题意可知k P A =4-0-3-1=-1,k PB =2-03-1=1,则直线l 的倾斜角介于直线PB 与P A 的倾斜角之间,又PB 的倾斜角是45°,P A 的倾斜角是135°,∴直线l 的倾斜角α的取值范围是45°≤α≤135°;要使l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是k ≤-1或k ≥1.[答案] 45°≤α≤135° k ≤-1或k ≥1 [易错防范]1.本题易错误地认为-1≤k ≤1,结合图形考虑,l 的倾斜角应介于直线PB 与直线P A 的倾斜角之间,要特别注意,当l 的倾斜角小于90°时,有k ≥k PB ;当l 的倾斜角大于90°时,则有k ≤k P A .2.如图,过点P 的直线l 与直线段AB 相交时,因为过点P 且与x 轴垂直的直线PC 的斜率不存在,而PC 所在的直线与线段AB 不相交,所以满足题意的斜率夹在中间,即k P A ≤k ≤k PB .解决这类问题时,可利用数形结合思想直观地判断直线是夹在中间还是在两边.[成功破障]已知直线l 过点P (3,4),且与以A (-1,0),B (2,1)为端点的线段AB 有公共点,求直线l 的斜率k 的取值范围.解:∵直线P A 的斜率k P A =4-03-(-1)=1,直线PB 的斜率k PB =4-13-2=3,∴要使直线l与线段AB 有公共点,k 的取值范围为[1,3].[随堂即时演练]1.关于直线的倾斜角和斜率,下列说法正确的是( ) A .任一直线都有倾斜角,都存在斜率 B .倾斜角为135°的直线的斜率为1C .若一条直线的倾斜角为α,则它的斜率为k =tan αD .直线斜率的取值范围是(-∞,+∞)解析:选D 任一直线都有倾斜角,但当倾斜角为90°时,斜率不存在.所以A 、C 错误;倾斜角为135°的直线的斜率为-1,所以B 错误;只有D 正确.2.已知经过两点(5,m )和(m,8)的直线的斜率等于1,则m 的值是( ) A .5 B .8 C.132D .7解析:选C 由斜率公式可得8-m m -5=1,解之得m =132.3.直线l 经过原点和(-1,1),则它的倾斜角为________. 解析:k l =1-0-1-0=-1,因此倾斜角为135°. 答案:135°4.已知三点A (a,2),B (3,7),C (-2,-9a )在同一条直线上,实数a 的值为________.解析:∵A 、B 、C 三点共线, ∴k AB =k BC ,即53-a=9a +75,∴a =2或29.答案:2或295.已知A (m ,-m +3),B (2,m -1),C (-1,4),直线AC 的斜率等于直线BC 的斜率的3倍,求m 的值.解:由题意直线AC 的斜率存在,即m ≠-1. ∴k AC =(-m +3)-4m +1,k BC =(m -1)-42-(-1).∴(-m +3)-4m +1=3·(m -1)-42-(-1).整理得:-m -1=(m -5)(m +1), 即(m +1)(m -4)=0, ∴m =4或m =-1(舍去). ∴m =4.[课时达标检测]一、选择题1.给出下列说法,正确的个数是( )①若两直线的倾斜角相等,则它们的斜率也一定相等; ②一条直线的倾斜角为-30°; ③倾斜角为0°的直线只有一条;④直线的倾斜角α的集合{α|0°≤α<180°}与直线集合建立了一一对应关系. A .0 B .1 C .2D .3解析:选A 若两直线的倾斜角为90°,则它们的斜率不存在,①错;直线倾斜角的取值范围是[0°,180°),②错;所有垂直于y 轴的直线倾斜角均为0°,③错;不同的直线可以有相同的倾斜角,④错.2.过两点A (4,y ),B (2,-3)的直线的倾斜角为45°,则y =( ) A .-32B.32C .-1D .1解析:选C tan 45°=k AB =y +34-2,即y +34-2=1,所以y =-1.3.如图,设直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则k 1,k 2,k 3的大小关系为( )A .k 1<k 2<k 3B .k 1<k 3<k 2C .k 2<k 1<k 3D .k 3<k 2<k 1解析:选A 根据“斜率越大,直线的倾斜程度越大”可知选项A 正确. 4.经过两点A (2,1),B (1,m 2)的直线l 的倾斜角为锐角,则m 的取值范围是( ) A .m <1 B .m >-1 C .-1<m <1D .m >1或m <-1解析:选C ∵直线l 的倾斜角为锐角, ∴斜率k =m 2-11-2>0,∴-1<m <1.5.(2012·广州高一检测)如果直线l 过点(1,2),且不通过第四象限,那么l 的斜率的取值范围是( )A .[0,1]B .[0,2] C.⎣⎡⎦⎤0,12 D .(0,3]解析:选B 过点(1,2)的斜率为非负且最大斜率为此点与原点的连线斜率时,图象不过第四象限.二、填空题6.已知a >0,若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =________. 解析:若平面内三点共线,则k AB =k BC ,即a 2+a 2-1=a 3-a 23-2,整理得a 2-2a -1=0,解得a =1+2,或a =1-2(舍去).答案:1+ 27.如果直线l 1的倾斜角是150°,l 2⊥l 1,垂足为B .l 1,l 2与x 轴分别相交于点C ,A ,l 3平分∠BAC ,则l 3的倾斜角为________.解析:因为直线l 1的倾斜角为150°,所以∠BCA =30°,所以l 3的倾斜角为12×(90°-30°)=30°.答案:30°8.已知实数x ,y 满足方程x +2y =6,当1≤x ≤3时,y -1x -2的取值范围为________.解析:y -1x -2的几何意义是过M (x ,y ),N (2,1)两点的直线的斜率,因为点M 在函数x +2y=6的图象上,且1≤x ≤3,所以可设该线段为AB ,且A ⎝⎛⎭⎫1,52,B ⎝⎛⎭⎫3,32,由于k NA =-32,k NB =12,所以y -1x -2的取值范围是⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫12,+∞. 答案:⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫12,+∞三、解答题9.已知直线l 过点A (1,2),B (m,3),求直线l 的斜率和倾斜角的取值范围. 解:设l 的斜率为k ,倾斜角为α, 当m =1时,斜率k 不存在,α=90°, 当m ≠1时,k =3-2m -1=1m -1,当m >1时,k =1m -1>0,此时α为锐角,0°<α<90°,当m <1时,k =1m -1<0,此时α为钝角,90°<α<180°.所以α∈(0°,180°),k ∈(-∞,0)∪(0,+∞). 10.已知A (3,3),B (-4,2),C (0,-2), (1)求直线AB 和AC 的斜率.(2)若点D 在线段BC (包括端点)上移动时,求直线AD 的斜率的变化范围. 解:(1)由斜率公式可得直线AB 的斜率k AB =2-3-4-3=17.直线AC 的斜率k AC =-2-30-3=53.故直线AB 的斜率为17,直线AC 的斜率为53.(2)如图所示,当D 由B 运动到C 时,直线AD 的斜率由k AB 增大到k AC ,所以直线AD 的斜率的变化范围是⎣⎡⎦⎤17,53.3.1.2 两条直线平行与垂直的判定[提出问题]平面几何中,两条直线平行同位角相等.问题1:在平面直角坐标中,若l1∥l2,则它们的倾斜角α1与α2有什么关系?提示:相等.问题2:若l1∥l2,则l1,l2的斜率相等吗?提示:不一定,可能相等,也可能都不存在.问题3:若l1与l2的斜率相等,则l1与l2一定平行吗?提示:不一定.可能平行也可能重合.[导入新知]对于两条不重合的直线l1,l2,其斜率分别为k1,k2,有l1∥l2⇔k1=k2.[化解疑难]对两直线平行与斜率的关系要注意以下几点(1)l1∥l2⇔k1=k2成立的前提条件是:①两条直线的斜率都存在;②l1与l2不重合.(2)当两条直线不重合且斜率都不存在时,l1与l2的倾斜角都是90°,则l1∥l2.(3)两条不重合直线平行的判定的一般结论是:l1∥l2⇔k1=k2或l1,l2斜率都不存在.[提出问题]已知两条直线l1,l2,若l1的倾斜角为30°,l1⊥l2.问题1:上述问题中,l1,l2的斜率是多少?提示:k1=33,k2=- 3.问题2:上述问题中两直线l1、l2的斜率有何关系?提示:k1k2=-1.问题3:若两条直线垂直且都有斜率,它们的斜率之积一定为-1吗?提示:一定.[导入新知]如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直,即l 1⊥l 2⇔k 1·k 2=-1.[化解疑难]对两直线垂直与斜率的关系要注意以下几点(1)l 1⊥l 2⇔k 1·k 2=-1成立的前提条件是:①两条直线的斜率都存在;②k 1≠0且k 2≠0. (2)两条直线中,一条直线的斜率不存在,同时另一条直线的斜率等于零,则两条直线垂直.(3)判定两条直线垂直的一般结论为:l 1⊥l 2⇔k 1·k 2=-1或一条直线的斜率不存在,同时另一条直线的斜率等于零.[例1] 根据下列给定的条件,判断直线l 1与直线l 2是否平行. (1)l 1经过点A (2,1),B (-3,5),l 2经过点C (3,-3),D (8,-7); (2)l 1经过点E (0,1),F (-2,-1),l 2经过点G (3,4),H (2,3); (3)l 1的倾斜角为60°,l 2经过点M (1,3),N (-2,-23); (4)l 1平行于y 轴,l 2经过点P (0,-2),Q (0,5).[解] (1)由题意知,k 1=5-1-3-2=-45,k 2=-7+38-3=-45,所以直线l 1与直线l 2平行或重合,又k BC =5-(-3)-3-3=-43≠-45,故l 1∥l 2.(2)由题意知,k 1=-1-1-2-0=1,k 2=3-42-3=1,所以直线l 1与直线l 2平行或重合,k FG =4-(-1)3-(-2)=1,故直线l 1与直线l 2重合.(3)由题意知,k 1=tan 60°=3,k 2=-23-3-2-1=3,k 1=k 2,所以直线l 1与直线l 2平行或重合.(4)由题意知l 1的斜率不存在,且不是y 轴,l 2的斜率也不存在,恰好是y 轴,所以l 1∥l 2. [类题通法]判断两条不重合直线是否平行的步骤[活学活用]1.试确定m 的值,使过点A (m +1,0),B (-5,m )的直线与过点C (-4,3),D (0,5)的直线平行.解:由题意直线CD 的斜率存在,则与其平行的直线AB 的斜率也存在.k AB =m -0-5-(m +1)=m -6-m ,k CD =5-30-(-4)=12,由于AB ∥CD ,即k AB =k CD ,所以m -6-m =12,得m =-2.经验证m =-2时直线AB 的斜率存在,所以m =-2.[例2] 已知直线l 1经过点A (3,a ),B (a -2,-3),直线l 2经过点C (2,3),D (-1,a -2),如果l 1⊥l 2,求a 的值.[解] 设直线l 1,l 2的斜率分别为k 1,k 2.∵直线l 2经过点C (2,3),D (-1,a -2),且2≠-1, ∴l 2的斜率存在.当k 2=0时,a -2=3,则a =5,此时k 1不存在,符合题意.当k 2≠0时,即a ≠5,此时k 1≠0,由k 1·k 2=-1,得-3-a a -2-3·a -2-3-1-2=-1,解得a =-6.综上可知,a 的值为5或-6. [类题通法]使用斜率公式判定两直线垂直的步骤(1)一看,就是看所给两点的横坐标是否相等,若相等,则直线的斜率不存在,若不相等,则进行第一步.(2)二用:就是将点的坐标代入斜率公式.(3)求值:计算斜率的值,进行判断.尤其是点的坐标中含有参数时,应用斜率公式要对参数进行讨论.总之,l 1与l 2一个斜率为0,另一个斜率不存在时,l 1⊥l 2;l 1与l 2斜率都存在时,满足k 1·k 2=-1.[活学活用]2.已知定点A (-1,3),B (4,2),以A 、B 为直径作圆,与x 轴有交点C ,则交点C 的坐标是________.解析:以线段AB 为直径的圆与x 轴的交点为C ,则AC ⊥BC .设C (x,0),则k AC =-3x +1,k BC =-2x -4,所以-3x +1·-2x -4=-1,得x =1或2,所以C (1,0)或(2,0). 答案:(1,0)或(2,0)[例3] 已知A (-4,3),B (2,5),C (6,3),D (-3,0)四点,若顺次连接A ,B ,C ,D 四点,试判定图形ABCD 的形状.[解] 由题意知A ,B ,C ,D 四点在坐标平面内的位置,如图所示,由斜率公式可得k AB =5-32-(-4)=13,k CD =0-3-3-6=13,k AD =0-3-3-(-4)=-3,k BC =3-56-2=-12.所以k AB =k CD ,由图可知AB 与CD 不重合, 所以AB ∥CD .由k AD ≠k BC ,所以AD 与BC 不平行. 又因为k AB ·k AD =13×(-3)=-1,所以AB ⊥AD ,故四边形ABCD 为直角梯形. [类题通法]1.在顶点确定的情况下,确定多边形形状时,要先画出图形,由图形猜测其形状,为下面证明提供明确目标.2.证明两直线平行时,仅有k 1=k 2是不够的,注意排除两直线重合的情况. [活学活用]3.已知A (1,0),B (3,2),C (0,4),点D 满足AB ⊥CD ,且AD ∥BC ,试求点D 的坐标. 解:设D (x ,y ),则k AB =23-1=1,k BC =4-20-3=-23,k CD =y -4x ,k DA =yx -1.因为AB ⊥CD ,AD ∥BC ,所以,k AB ·k CD =-1,k DA =k BC,所以⎩⎨⎧1×y -4x=-1,y x -1=-23.解得⎩⎪⎨⎪⎧x =10,y =-6.即D (10,-6).8.利用平行或垂直确定参数值[典例] 已知直线l 1经过A (3,m ),B (m -1,2),直线l 2经过点C (1,2),D (-2,m +2). (1)若l 1∥l 2,求m 的值; (2)若l 1⊥l 2,求m 的值. [解题流程]欲求m 的值,需根据l 1∥l 2或l 1⊥l 2列出关于m 的关系式由直线l 1过A 、B 两点,直线l 2过C 、D 两点,求斜率[规范解答]由题知直线l 2的斜率存在且k 2=2-(m +2)1-(-2)=-m 3①.(2分)(1)若l 1∥l 2,则直线l 1的斜率也存在,由k 1=k 2,得2-m m -4=-m 3,解得m =1或m =6,(4分)经检验,当m =1或m =6时,l 1∥l ③2.(6分)(2)若l 1⊥l 2,当k 2=0②时,此时m =0,l 1斜率存在,不符合题意;(8分)当k 2≠0②时,直线l 2的斜率存在且不为0,则直线l 1的斜率也存在,且k 1·k 2=-1,即-m 3·2-m m -4=-1,解得m =3或m =-4,(10分) 所以m =3或m =-4时,l 1⊥l ③2.(12分)[名师批注]①处易漏掉而直接利用两直线平行或垂直所具备的条件来求m 值,解答过程不严谨 ②处讨论k 2=0和k 2≠0两种情况③此处易漏掉检验做解答题要注意解题的规范 [活学活用]已知A (-m -3,2),B (-2m -4,4),C (-m ,m ),D (3,3m +2),若直线AB ⊥CD ,求m 的值.解:因为A ,B 两点纵坐标不等,所以AB 与x 轴不平行.因为AB ⊥CD ,所以CD 与x 轴不垂直,故m ≠-3.当AB 与x 轴垂直时,-m -3=-2m -4,解得m =-1,而m =-1时,C ,D 纵坐标均为-1,所以CD ∥x 轴,此时AB ⊥CD ,满足题意.当AB 与x 轴不垂直时,由斜率公式得k AB =4-2-2m -4-(-m -3)=2-(m +1),k CD=3m +2-m 3-(-m )=2(m +1)m +3.因为AB ⊥CD ,所以k AB ·k CD =-1,解得m =1. 综上,m 的值为1或-1.[随堂即时演练]1.下列说法正确的有( )①若两条直线的斜率相等,则这两条直线平行; ②若l 1∥l 2,则k 1=k 2;③若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线垂直; ④若两条直线的斜率都不存在且两直线不重合,则这两条直线平行. A .1个 B .2个 C .3个D .4个解析:选A 若k 1=k 2,则这两条直线平行或重合,所以①错;当两条直线垂直于x 轴时,两条直线平行,但斜率不存在,所以②错;若两直线中有一条直线的斜率不存在,另一条直线的斜率为0时,才有这两条直线垂直,所以③错;④正确.2.直线l 1,l 2的斜率是方程x 2-3x -1=0的两根,则l 1与l 2的位置关系是( ) A .平行 B .重合 C .相交但不垂直D .垂直解析:选D 设l 1,l 2的斜率分别为k 1,k 2,则k 1·k 2=-1.3.已知△ABC 中,A (0,3)、B (2,-1),E 、F 分别为AC 、BC 的中点,则直线EF 的斜率为________.解析:∵E 、F 分别为AC 、BC 的中点, ∴EF ∥AB . ∴k EF =k AB =-1-32-0=-2. 答案:-24.经过点(m,3)和(2,m )的直线l 与斜率为-4的直线互相垂直,则m 的值是________. 解析:由题意可知k l =14,又因为k l =m -32-m ,所以m -32-m =14,解得m =145.答案:1455.判断下列各小题中的直线l 1与l 2的位置关系. (1)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(2)l 1过点A (3,4),B (3,100),l 2过点M (-10,40),N (10,40); (3)l 1过点A (0,1),B (1,0),l 2过点M (-1,3),N (2,0); (4)l 1过点A (-3,2),B (-3,10),l 2过点M (5,-2),N (5,5). 解:(1)k 1=-10,k 2=3-220-10=110.∵k 1k 2=-1,∴l 1⊥l 2.(2)l 1的倾斜角为90°,则l 1⊥x 轴.k 2=40-4010-(-10)=0,则l 2∥x 轴,∴l 1⊥l 2.(3)k 1=0-11-0=-1,k 2=0-32-(-1)=-1,∴k 1=k 2.又k AM =3-1-1-0=-2≠k 1,∴l 1∥l 2. (4)∵l 1与l 2都与x 轴垂直,∴l 1∥l 2.[课时达标检测]一、选择题1.已知过点P (3,2m )和点Q (m,2)的直线与过点M (2,-1)和点N (-3,4)的直线平行,则m 的值是( )A .1B .-1C .2D .-2解析:选B 因为MN ∥PQ ,所以k MN =k PQ ,即4-(-1)-3-2=2-2mm -3,解得m =-1.2.以A (-1,1),B (2,-1),C (1,4)为顶点的三角形是( ) A .锐角三角形 B .钝角三角形C .以A 点为直角顶点的直角三角形D .以B 点为直角顶点的直角三角形解析:选C 如右图所示,易知k AB =-1-12-(-1)=-23,k AC =4-11-(-1)=32,由k AB ·k AC =-1知三角形是以A 点为直角顶点的直角三角形.3.已知点A (-2,-5),B (6,6),点P 在y 轴上,且∠APB =90°,则点P 的坐标为( )A .(0,-6)B .(0,7)C .(0,-6)或(0,7)D .(-6,0)或(7,0)解析:选C 由题意可设点P 的坐标为(0,y ).因为∠APB =90°,所以AP ⊥BP ,且直线AP 与直线BP 的斜率都存在.又k AP =y +52,k BP =y -6-6,k AP ·k BP =-1, 即y +52·(-y -66)=-1,解得y =-6或y =7.所以点P 的坐标为(0,-6)或(0,7). 4.若A (-4,2),B (6,-4),C (12,6),D (2,12),则下面四个结论:①AB ∥CD ;②AB ⊥AD ;③AC ∥BD ;④AC ⊥BD 中正确的个数为( )A .1B .2C .3D .4解析:选C 由题意得k AB =-4-26-(-4)=-35,k CD =12-62-12=-35,k AD =12-22-(-4)=53,k AC=6-212-(-4)=14,k BD =12-(-4)2-6=-4,所以AB ∥CD ,AB ⊥AD ,AC ⊥BD .5.已知点A (2,3),B (-2,6),C (6,6),D (10,3),则以A ,B ,C ,D 为顶点的四边形是( ) A .梯形 B .平行四边形 C .菱形D .矩形解析:选B 如图所示,易知k AB =-34,k BC =0,k CD =-34,k AD =0,k BD =-14,k AC =34,所以k AB =k CD ,k BC =k AD ,k AB ·k AD =0,k AC ·k BD =-312, 故AD ∥BC ,AB ∥CD ,AB 与AD 不垂直,BD 与AC 不垂直. 所以四边形ABCD 为平行四边形. 二、填空题6.l 1过点A (m,1),B (-3,4),l 2过点C (0,2),D (1,1),且l 1∥l 2,则m =________. 解析:∵l 1∥l 2,且k 2=1-21-0=-1,∴k 1=4-1-3-m =-1,∴m =0.答案:07.已知直线l 1的倾斜角为45°,直线l 2∥l 1,且l 2过点A (-2,-1)和B (3,a ),则a 的值为________.解析:∵l 2∥l 1,且l 1的倾斜角为45°,∴kl 2=kl 1=tan 45°=1,即a -(-1)3-(-2)=1,所以a=4.答案:48.已知A (2,3),B (1,-1),C (-1,-2),点D 在x 轴上,则当点D 坐标为________时,AB ⊥CD .解析:设点D (x,0),因为k AB =-1-31-2=4≠0,所以直线CD 的斜率存在. 则由AB ⊥CD 知,k AB ·k CD =-1,所以4·-2-0-1-x =-1,解得x =-9.答案:(-9,0) 三、解答题9.当m 为何值时,过两点A (1,1),B (2m 2+1,m -2)的直线: (1)倾斜角为135°;(2)与过两点(3,2),(0,-7)的直线垂直; (3)与过两点(2,-3),(-4,9)的直线平行? 解:(1)由k AB =m -32m 2=tan 135°=-1,解得m =-32,或m =1. (2)由k AB =m -32m 2,且-7-20-3=3. 则m -32m 2=-13,解得m =32,或m =-3. (3)令m -32m 2=9+3-4-2=-2, 解得m =34,或m =-1.10.直线l 1经过点A (m,1),B (-3,4),直线l 2经过点C (1,m ),D (-1,m +1),当l 1∥l 2或l 1⊥l 2时,分别求实数m 的值.解:当l 1∥l 2时,由于直线l 2的斜率存在,则直线l 1的斜率也存在,则k AB =k CD ,即4-1-3-m =m +1-m-1-1,解得m =3;当l 1⊥l 2时,由于直线l 2的斜率存在且不为0,则直线l 1的斜率也存在,则k AB k CD =-1, 即4-1-3-m ·m +1-m -1-1=-1,解得m =-92.综上,当l 1∥l 2时,m 的值为3; 当l 1⊥l 2时,m 的值为-92.3.2直线的方程3.2.1 直线的点斜式方程[提出问题]斜拉桥又称斜张桥,桥身简约刚毅,力感十足.若以桥面所在直线为x 轴,桥塔所在直线为y 轴建立平面直角坐标系,那么斜拉索可看成过桥塔上同一点的直线.问题1:已知某一斜拉索过桥塔上一点B ,那么该斜拉索位置确定吗?提示:不确定.从一点可引出多条斜拉索.问题2:若某条斜拉索过点B (0,b ),斜率为k ,则该斜拉索所在直线上的点P (x ,y )满足什么条件?提示:满足y -bx -0=k .问题3:可以写出问题2中的直线方程吗? 提示:可以.方程为y -b =kx . [导入新知]1.直线的点斜式方程(1)定义:如图所示,直线l 过定点P (x 0,y 0),斜率为k ,则把方程y -y 0=k (x -x 0)叫做直线l 的点斜式方程,简称点斜式.(2)说明:如图所示,过定点P (x 0,y 0),倾斜角是90°的直线没有点斜式,其方程为x -x 0=0,或x =x 0.2.直线的斜截式方程(1)定义:如图所示,直线l 的斜率为k ,且与y 轴的交点为(0,b ),则方程y =kx +b 叫做直线l 的斜截式方程,简称斜截式.(2)说明:一条直线与y 轴的交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.倾斜角是直角的直线没有斜截式方程.[化解疑难]1.关于点斜式的几点说明:(1)直线的点斜式方程的前提条件是:①已知一点P (x 0,y 0)和斜率k ;②斜率必须存在.只有这两个条件都具备,才可以写出点斜式方程.(2)方程y -y 0=k (x -x 0)与方程k =y -y 0x -x 0不是等价的,前者是整条直线,后者表示去掉点P (x 0,y 0)的一条直线.(3)当k 取任意实数时,方程y -y 0=k (x -x 0)表示恒过定点(x 0,y 0)的无数条直线. 2.斜截式与一次函数的解析式相同,都是y =kx +b 的形式,但有区别,当k ≠0时,y =kx +b 即为一次函数;当k =0时,y =b ,不是一次函数,一次函数y =kx +b (k ≠0)必是一条直线的斜截式方程.截距不是距离,可正、可负也可为零.[例1](1)经过点(-5,2)且平行于y轴的直线方程为________.(2)直线y=x+1绕着其上一点P(3,4)逆时针旋转90°后得直线l,则直线l的点斜式方程为________.(3)求过点P(1,2)且与直线y=2x+1平行的直线方程为________.[解析](1)∵直线平行于y轴,∴直线不存在斜率,∴方程为x=-5.(2)直线y=x+1的斜率k=1,所以倾斜角为45°.由题意知,直线l的倾斜角为135°,所以直线l的斜率k′=tan 135°=-1,又点P(3,4)在直线l上,由点斜式方程知,直线l的方程为y-4=-(x-3).(3)由题意知,所求直线的斜率为2,且过点P(1,2),∴直线方程为y-2=2(x-1),即2x -y=0.[答案](1)x=-5(2)y-4=-(x-3)(3)2x-y=0[类题通法]已知直线上一点的坐标以及直线斜率或已知直线上两点的坐标,均可用直线方程的点斜式表示,直线方程的点斜式,应在直线斜率存在的条件下使用.当直线的斜率不存在时,直线方程为x=x0.[活学活用]1.写出下列直线的点斜式方程:(1)经过点A(2,5),斜率是4;(2)经过点B(2,3),倾斜角是45°;(3)经过点C(-1,-1),与x轴平行.解:(1)由点斜式方程可知,所求直线的点斜式方程为y-5=4(x-2).(2)∵直线的倾斜角为45°,∴此直线的斜率k=tan45°=1.∴直线的点斜式方程为y-3=x-2.(3)∵直线与x轴平行,∴倾斜角为0°,斜率k=0.∴直线的点斜式方程为y+1=0×(x+1),即y=-1.[例2] (1)倾斜角为150°,在y 轴上的截距是-3的直线的斜截式方程为________. (2)已知直线l 1的方程为y =-2x +3,l 2的方程为y =4x -2,直线l 与l 1平行且与l 2在y 轴上的截距相同,求直线l 的方程.[解析] (1)∵倾斜角α=150°,∴斜率k =tan 150°=-33,由斜截式可得所求的直线方程为y =-33x -3. (2)由斜截式方程知直线l 1的斜率k 1=-2, 又∵l ∥l 1,∴l 的斜率k =k 1=-2.由题意知l 2在y 轴上的截距为-2,∴l 在y 轴上的截距b =-2,由斜截式可得直线l 的方程为y =-2x -2.[答案] (1)y =-33x -3 [类题通法]1.斜截式方程的应用前提是直线的斜率存在.当b =0时,y =kx 表示过原点的直线;当k =0时,y =b 表示与x 轴平行(或重合)的直线.2.截距不同于日常生活中的距离,截距是一个点的横(纵)坐标,是一个实数,可以是正数,也可以是负数或零,而距离是一个非负数.[活学活用]2.求倾斜角是直线y =-3x +1的倾斜角的14,且在y 轴上的截距是-5的直线方程.解:∵直线y =-3x +1的斜率k =-3,∴其倾斜角α=120°,由题意,得所求直线的倾斜角α1=14α=30°,故所求直线的斜率k 1=tan 30°=33.∵所求直线的斜率是33,在y 轴上的截距为-5, ∴所求直线的方程为y =33x -5.[例3] 当a 为何值时,(1)两直线y =ax -2与y =(a +2)x +1互相垂直? (2)两直线y =-x +4a 与y =(a 2-2)x +4互相平行? [解] (1)设两直线的斜率分别为k 1,k 2,则k 1=a ,k 2=a +2. ∵两直线互相垂直,∴k 1k 2=a (a +2)=-1, 解得a =-1.故当a =-1时,两条直线互相垂直. (2)设两直线的斜率分别为k 3,k 4, 则k 3=-1,k 4=a 2-2. ∵两条直线互相平行,∴⎩⎪⎨⎪⎧a 2-2=-1,4a ≠4,解得a =-1. 故当a =-1时,两条直线互相平行. [类题通法]判断两条直线位置关系的方法直线l 1:y =k 1x +b 1,直线l 2:y =k 2x +b 2. (1)若k 1≠k 2,则两直线相交. (2)若k 1=k 2,则两直线平行或重合, 当b 1≠b 2时,两直线平行; 当b 1=b 2时,两直线重合.(3)特别地,当k 1·k 2=-1时,两直线垂直. (4)对于斜率不存在的情况,应单独考虑. [活学活用]3.(1)若直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3垂直,则a =________. (2)若直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2平行,则a =________. 解析:(1)由题意可知kl 1=2a -1,kl 2=4. ∵l 1⊥l 2,∴4(2a -1)=-1,解得a =38.(2)因为l 1∥l 2,所以a 2-2=-1,且2a ≠2,解得a =-1,所以a =-1时两直线平行. 答案:(1)38(2)-17.斜截式判断两条直线平行的误区[典例] 已知直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,当l 1∥l 2时,求m 的值.[解] 由题设l 2的方程可化为y =-m -23x -23m ,则其斜率k 2=-m -23,在y 轴上的截距b 2=-23m .∵l 1∥l 2,∴l 1的斜率一定存在,即m ≠0. ∴l 1的方程为y =-1m x -6m.由l 1∥l 2,得⎩⎨⎧-m -23=-1m,-23m ≠-6m,解得m =-1.∴m 的值为-1. [易错防范]1.两条直线平行时,斜率存在且相等,截距不相等.当两条直线的斜率相等时,也可能平行,也可能重合.2.解决此类问题要明确两直线平行的条件,尤其是在求参数时要考虑两直线是否重合. [成功破障]当a 为何值时,直线l 1:y =-2ax +2a 与直线l 2:y =(a 2-3)x +2平行? 解:∵l 1∥l 2,∴a 2-3=-2a 且2a ≠2, 解得a =-3.[随堂即时演练]1.直线y =2x -3的斜率和在y 轴上的截距分别等于( ) A .2,3 B .-3,-3 C .-3,2 D .2,-3答案:D2.直线l 经过点P (2,-3),且倾斜角α=45°,则直线的点斜式方程是( ) A .y +3=x -2 B .y -3=x +2 C .y +2=x -3D .y -2=x +3 解析:选A ∵直线l 的斜率k =tan 45°=1, ∴直线l 的方程为y +3=x -2.3.过点(-2,-4),倾斜角为60°的直线的点斜式方程是________. 解析:α=60°,k =tan 60°=3, 由点斜式方程,得y +4=3(x +2).答案:y +4=3(x +2)4.在y 轴上的截距为2,且与直线y =-3x -4平行的直线的斜截式方程为________. 解析:∵直线y =-3x -4的斜率为-3, 所求直线与此直线平行,∴斜率为-3,又截距为2,∴由斜截式方程可得y =-3x +2. 答案:y =-3x +25.(1)求经过点(1,1),且与直线y =2x +7平行的直线的方程; (2)求经过点(-2,-2),且与直线y =3x -5垂直的直线的方程. 解:(1)由y =2x +7得其斜率为2,由两直线平行知所求直线的斜率是2. ∴所求直线方程为y -1=2(x -1), 即2x -y -1=0.(2)由y =3x -5得其斜率为3,由两直线垂直知,所求直线的斜率是-13.∴所求直线方程为y +2=-13(x +2),即x +3y +8=0.[课时达标检测]一、选择题1.已知直线的方程是y +2=-x -1,则( ) A .直线经过点(-1,2),斜率为-1 B .直线经过点(2,-1),斜率为-1 C .直线经过点(-1,-2),斜率为-1 D .直线经过点(-2,-1),斜率为1解析:选C 直线的方程可化为y -(-2)=-[x -(-1)],故直线经过点(-1,-2),斜率为-1.2.直线y =ax -1a的图象可能是( )解析:选B 由y =ax -1a可知,斜率和截距必须异号,故B 正确.3.与直线y =2x +1垂直,且在y 轴上的截距为4的直线的斜截式方程是( ) A .y =12x +4B .y =2x +4C .y =-2x +4D .y =-12x +4。
必修2第三章 单元复习教学目标:1.能根据已知条件,熟练地选择恰当的方程形式写出直线的方程;2.熟练地进行直线方程的不同形式之间的转化.教学重点、难点:分析题意,确定适当的解题方法课 型:复习课.教学过程一、知识回顾1.直线的倾斜角、斜率及直线的方向向量(1)直线的倾斜角在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角.当直线和x 轴平行或重合时,我们规定直线的倾斜角为0°.可见,直线倾斜角的取值范围是0°≤α<180°.(2)直线的斜率 倾斜角α不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示,即k =tan α(α≠90°).倾斜角是90°的直线没有斜率;倾斜角不是90°的直线都有斜率,其取值范围是(-∞,+∞).(3)直线的方向向量设F 1(x 1,y 1)、F 2(x 2,y 2)是直线上不同的两点,则向量21F F =(x 2-x 1,y 2-y 1)称为直线的方向向量.向量121x x -21F F =(1,1212x x y y --)=(1,k )也是该直线的方向向量,k是直线的斜率.(4)求直线斜率的方法 ①定义法:已知直线的倾斜角为α,且α≠90°,则斜率k =tan α.②公式法:已知直线过两点P 1(x 1,y 1)、P 2(x 2,y 2),且x 1≠x 2,则斜率k =1212x x y y --.③方向向量法:若a =(m ,n )为直线的方向向量,则直线的斜率k =mn .平面直角坐标系内,每一条直线都有倾斜角,但不是每一条直线都有斜率.斜率的图象如下图.对于直线上任意两点P 1(x 1,y 1)、P 2(x 2,y 2),当x 1=x 2时,直线斜率k 不存在,倾斜角α=90°;当x 1≠x 2时,直线斜率存在,是一实数,并且k ≥0时,α=arctan k ,k <0时,α=π+arctan k .2.直线方程的五种形式(1)斜截式:y =kx +b .(2)点斜式:y -y 0=k (x -x 0).(3)两点式:121y y y y --=121x x x x --.(4)截距式:ax +by =1.(5)一般式:Ax +By +C =0.二、例题讲解例1.直线l 过点(6,3)P -,且它在x 轴上的截距是它在y 轴上的截距的3倍,求直线l 的方程。
分析:由题意可知,本题宜用截距式来解,但当截距等于零时,也符合题意,此时不能用截距式,应用点斜式来解.解:(1)当截距不为零时,由题意,设直线l 的方程为13=+b y bx ,∵ 直线l 过点(6,3)P -,∴1336=+-bb,∴1b =,∴直线l 的方程为13=+y x ,即330x y +-=.(2)当截距为零时,则直线l 过原点,设其方程为y kx =,将6,3x y =-=代入上式,得36k =-,所以21-=k ,∴直线l 的方程为12y x =-,即20x y +=,综合(1)(2)得,所求直线l 的方程为330x y +-=或20x y +=.例2.已知直线1l 的方程为2y x =,过点(2,1)A -作直线2l ,交y 轴于点C ,交1l 于点B , 且12B C A B =,求2l 的方程。
解:如图,①当2AB BC --→= 时,3221022=+⨯+=B x ,代入2y x =中,得34=B y ,由两点式,得2l 的方程为:74100x y +-=.②当2AB BC --→=-时,2B x =-,代入2y x =中,得4B y =-,由两点式,得2l 的方程为:34100x y --=,所以,2l 的方程为74100x y +-=或34100x y --=.例3.过点(2,1)M 作直线l ,分别交x 轴、y 轴的正半轴于点,A B ,若A B C ∆的面积S 最小,试求直线l 的方程。
【分析一】设出直线l 的点斜式方程,分别求出它在x 轴、y 轴的正半轴上的截距,将A B C ∆的面积表示为k 的函数,通过求该函数的最小值确定出相应k 的值。
(解法一)设直线l 的方程为1(2)y k x -=-,令0x =,得k y 21-=,故(0,12)B k -, 令0y =,得k k x 12-=,故21(,0)k A k-,由题意知,21120,0k k k -->>,所以0k <,∴A B C ∆的面积12S =kk 12-(12)k -2(21)2k k-=-=12(2)2k k+--,∵0k < ,∴112(2)()222k k kk--=-+-≥,从而4S ≥, 当且仅当122k k-=-,即21-=k (21=k 舍去)时,min 4S =,所以,直线l 的方程为11(2)2y x -=--,即240x y +-=.【分析二】由于A B C ∆的面积可以表示为在x 轴、y 轴上的截距的绝对值的一半,所以可以用直线的截距式设出直线l 的方程。
(解法二)设直线l 的方程为1=+b y a x (0,0)a b >>, ∵点(2,1)M 在直线l 上,∴112=+ba ,即2ab ab +=,∴ 2-=a ab ,∵0,0a b >>,∴2a >,xyO CB 'B A∴A B C ∆的面积12S ab =2122a a =⋅-21(2)4(222a a a -+-+=⋅-14[(2)4]22a a =-++-1(44)42≥+=,当且仅当242-=-a a ,即4,2a b ==(0a =舍去)时,min 4S =,所以,直线l 的方程为124=+y x ,即240x y +-=.例4.求过点)3,2(A 且被两直线1l :0743=-+y x ,2l :0843=++y x 所截得的线段长为23的直线的方程。
解:如图,设所求直线分别交1l 、2l 于点C B ,, ∵ 12//l l ,∴ 1l 、2l 之间的距离BC |=35|87|=--, 由已知|||B C = ∴045=∠BCD ,即所求直线与1l (或2l )的夹角为045,设所求直线的斜率为k , 则有:3()4tan 45||31()4k k --=+⋅-,解之得,1k 7-=或712=k ,所以,所求直线的方程为)2(73--=-x y 或)2(713-=-x y ,即0177=-+y x 或0197=+-y x .例5. 已知直线1:12l y x =-,(1)求点(3,4)P 关于l 对称的点Q ;(2)求l 关于点(2,3)对称的直线方程.分析:由直线l 垂直平分线段,可设,有垂直关系及中点坐标公式可求出点;而关于点对称的直线必平行,因此可求出对称的直线方程.解.(1)设00(,)Q x y ,由于PQ l ⊥,且PQ 中点在l 上,有00004234311222y x y x -⎧=-⎪-⎪⎨++⎪=⋅-⎪⎩,解得0029585x y ⎧=⎪⎪⎨⎪=-⎪⎩ ∴Q 298(,)55- (2)在l 上任取一点,如(0,1)M -,则M 关于点(2,3)对称的点为(4,7)N .∵所求直线过点N 且与l 平行,∴方程为17(4)2y x -=-,即2100x y -+=.说明:点00(,)P x y 关于直线l :0=++C By Ax (B A ,不全为零)对称问题,设对称点为'(,)P x y '',则根据l 是线段'PP 的垂直平分线,即l ⊥'PP 且'PP 的中点在直线l 上,得'x ,'y 应满足的方程组为:0000'()1'''022y y A x x B x x y y A B C -⎧⋅-=-⎪-⎪⎨++⎪⋅+⋅+=⎪⎩,由此解得'P 点的坐标(,)x y ''.xyOACC 'B 'B1l 2lD结论:00022000222()2()A Ax By C x x A BB Ax ByC y y A B++⎧'=-⎪⎪+⎨++⎪'=-⎪⎩+,特别地,若对称轴的方程为01=-+y x ,则任意一点(,)x y 关于它的对称点的坐标为(1,1)y x --,这相当于从对称轴方程01=-+y x 中解出y x ,所得到的.我们还可以把上述结论进一步推广:(1)点(,)x y 关于直线0=++a y x 的对称点的坐标为(,)a y a x ----; (2)点(,)x y 关于直线0=+-a y x 的对称点的坐标为(,)a y a x -++.上述“代换法则”仅对对称轴的斜率为1±时才适用,且只能用于选择题和填空题中,它可以作为检验的手段。
例6.一条光线经过点(2,3)P 射在直线10x y ++=上,反射后,经过点(1,1)A ,求光线的入射线和反射线所在的直线方程.分析:入射光线和反射光线所在直线都经过反射点,反射直线所在直线经过点关于直线10x y ++=的对称点.解:入射线所在的直线和反射线所在的直线关于直线10x y ++=对称,设P 点关于直线10x y ++=对称点的坐标为00(,)Q x y ,因此PQ 的中点在直线10x y ++=上,且PQ 所在直线与直线10x y ++=垂直,所以00003(1)12231022y x x y -⎧⨯-=-⎪-⎪⎨++⎪++=⎪⎩,解得(4,3)Q --.反射光线经过,A Q 两点,∴反射线所在直线的方程为4510x y -+=. 由10,4510,x y x y ++=⎧⎨-+=⎩得反射点21(,)33R --.入射光线经过,P R 两点,∴入射线所在直线的方程为0145=+-y x .例7已知定点()3,1A ,在直线y x =和0y =上分别求点M 和点N ,使A M N ∆的周长最短,并求出最短周长.简解:2112AM M N M A A M M N A M A A ++=++≥,55,33M ⎛⎫ ⎪⎝⎭,5,02N ⎛⎫⎪⎝⎭,周长min 12A A ==三、课堂练习1.求点)1,7(-P 关于直线052:=--y x l 的对称点Q 的坐标。
解:设点Q 的坐标为00(,)x y ,∵l PQ ⊥,∴1-=⋅PQ l k k , ∴127100-=⋅+-x y ,即0025x y +=- ①设线段PQ 的中点为M ,则0071(,)22x y M -+,∵点M 在直线l 上, ∴007125022x y -+⋅--=,即002250x y --= ②联立①、②,解得⎩⎨⎧-==7900y x , ∴点Q 的坐标为(9,7)-.2.已知直线1l :01=-+y x , 2l :032=+-y x ,求直线2l 关于直线1l 对称的直线l 的方程。