概率论与数理统计第14节全概及逆概公式
- 格式:ppt
- 大小:987.56 KB
- 文档页数:23
高考数学知识点解析全概率公式与逆概率公式高考数学知识点解析:全概率公式与逆概率公式在高考数学中,概率是一个重要的考点,而全概率公式与逆概率公式更是其中的难点和重点。
理解并熟练运用这两个公式,对于解决复杂的概率问题具有关键作用。
首先,我们来认识一下什么是全概率公式。
假设事件B 可以在多种不同的情况下发生,而这些情况分别为A1,A2,A3,……,An ,且这些情况两两互斥,并且它们的并集构成了整个样本空间。
同时,已知在每种情况 Ai 下事件 B 发生的概率为P(B|Ai) ,以及每种情况 Ai 本身发生的概率 P(Ai) 。
那么事件 B 发生的概率 P(B) 就可以通过全概率公式来计算:P(B) = P(A1)×P(B|A1) + P(A2)×P(B|A2) +… + P(An)×P(B|An)为了更好地理解全概率公式,我们来看一个具体的例子。
假设某学校有三个年级,高一年级有 500 名学生,高二年级有 600名学生,高三年级有 400 名学生。
在某次考试中,高一年级学生的优秀率为 30%,高二年级学生的优秀率为 40%,高三年级学生的优秀率为 50%。
现在随机抽取一名学生,求这名学生考试优秀的概率。
在这里,事件 B 就是抽取的学生考试优秀,情况 A1、A2、A3 分别是抽取到高一年级、高二年级、高三年级的学生。
P(A1) = 500 /(500 + 600 + 400) = 5 / 15,P(B|A1) = 30% = 03 ;P(A2) = 600/ 1500 = 6 / 15 ,P(B|A2) = 04 ;P(A3) = 400 / 1500 = 4 / 15 ,P(B|A3) = 05 。
根据全概率公式,P(B) =(5 / 15)×03 +(6 / 15)×04 +(4 /15)×05 = 04 。
接下来,我们再看看逆概率公式,也称为贝叶斯公式。
新乡医学院教案首页单位:计算机教研室基 本 内 容 备 注 1.4 全概率公式和逆概率公式一、全概率公式例1 现有10个阄,其中两阄为“有”,其余均为“无”。
试判断第一个抓阄者是否比第二个更合算。
解:设B={第一个抓得“有”},A={第二个抓得“有”},则P(B)=0.2,P(A|B)=1/9,(|)2/9.P A B =而,A AB AB =+ 于是()()()()P A P AB AB P AB P AB =+=+()(|)()(|)P B P A B P B P A B =+120.20.80.299=⨯+⨯=故先后抓阄者获得“有”的机会是相等的。
定理1 如果事件A 能且只能与互不相容事件B 1,B 2,…,B n 之一同时发生,则1()()(|)niii P A P B P A B ==∑证 令12,n C B B B =+++则12n B B B C U ++++=1212()n n A AU A B B B C AB AB AB AC ==++++=++++因为A 能且只能与B 1,B 2,…,B n 之一同时发生,故,AC V =即1,nii A AB ==∑且AB 1,AB 2,…,AB n 互不相容.于是由加法公式和乘法公式可得111()()()()(|).nnni i i i i i i P A P AB P AB P B P A B ======∑∑∑1()()(|).ni i i P A P B P A B ==∑在实际问题中,当计算P(A)比较困难,而计算P(B i )和P(A|B i )比较容易时,可用全概率公式求P(A).全概率公式,)n B)j。
E (X )=∑∑x i p i jijxxn+∞ n n−λλkP (X = k ) = e , (k = 0,1,...)k !(a ≤ x ≤ b )1b − af (x ) =概率论与数理统计公式总结F (x ) = P (X ≤ x ) = ∑P (X = k )k ≤x分布函数 对离散型随机变量F ' (x ) = f (x )第一章P(A+B)=P(A)+P(B)- P(AB)特别地,当 A 、B 互斥时, P(A+B)=P(A)+P(B)对连续型随机变量F (x ) = P (X ≤ x ) =∫−∞f (t )dt条件概率公式分布函数与密度函数的重要关系:P (A | B ) =P (AB )P (B )F (x ) = P (X ≤ x ) =∫−∞f (t )dt概率的乘法公式P (AB ) = P (B )P (A | B )= P (A )P (B | A )二元随机变量及其边缘分布分布规律的描述方法全概率公式:从原因计算结果P (A ) = ∑ P (B k )P (A | B k )k =1联合密度函数联合分布函数f (x , y ) ≥ 0f (x , y ) F (x , y )+∞ +∞Bayes 公式:从结果找原因∫−∞ ∫−∞f (x , y )dx dy = 1 0 ≤ F (x , y ) ≤ 1P (B k| A ) = P (B i )P (A | B i ) ∑P (B )P (A | B )F (x , y ) = P {X ≤ x ,Y ≤ y }f (x ) = ∫ f (x , y )d y 联合密度与边缘密度第二章kkk =1Xf Y (y ) = −∞+∞−∞f (x , y )dx二项分布(Bernoulli 分布)——X~B(n,p)P (X =k )=C k p k (1−p)n −k,(k =0,1,...n , ) 泊松分布——X~P(λ)概率密度函数离散型随机变量的独立性P {X = i ,Y = j } = P {X = i }P {Y = j }连续型随机变量的独立性f (x , y ) = f X (x ) f Y (y ) 第三章数学期望离散型随机变量,数学期望定义怎样计算概率P (a ≤ X ≤ b )b连续型随机变量,数学期望定义� E(a)=a ,其中 a 为常数P (a ≤ X ≤ b ) = ∫af (x )d x均匀分布 X~U(a,b)指数分布 X~Exp (θ)• E(a+bX)=a+bE(X),其中 a 、b 为常数 � E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量随机变量 g(X)的数学期望常用公式+∞∫−∞ f (x )dx = 1+∞E (X ) = ∑x k ⋅P kk =−∞+∞E (X ) = ∫−∞x ⋅ f (x )dxE (g (X )) = ∑ g (x k ) p kk∫Y / nD (X +Y ) = D (X ) + D (Y ) + 2E {(X − E (X ))(Y − E (Y ))} X ~ N (µ,σ2 )i σ 12 σ E (X Y ) = ∑∑x i y j p i jij2σ22−(x −µ) e 12πσf (x ) =不相关不一定独立第四章 正态分布E (X ) = µ,D (X ) = σ2方 差 定义式常用计算式常用公式当 X 、Y 相互独立时:标准正态分布的概率计算 标准正态分布的概率计算公式P (Z ≤ a ) = P (Z < a ) = Φ(a )P (Z ≥ a ) = P (Z > a ) = 1− Φ(a )P (a ≤ Z ≤ b ) = Φ(b ) − Φ(a )P (−a ≤ Z ≤ a ) = Φ(a ) − Φ(−a ) = 2Φ(a ) −1一般正态分布的概率计算一般正态分布的概率计算公式 P (X ≤ a ) = P (X < a ) = Φ(a − µσ ) a − µ方差的性质P (X ≥ a ) = P (X > a ) = 1− Φ( σ)D(a)=0,其中 a 为常数P (a ≤ X ≤ b ) = Φ(b − µ− Φ(a − µD(a+bX)=b2D(X),其中 a 、b 为常数当 X 、Y 相互独立时,D(X+Y)=D(X)+D(Y) 协方差与相关系数E {[X − E (X )][Y − E (Y )]}= E (XY ) − E (X )E (Y )第 五 章卡方分布σ ) σ)n若X ~ N (0,1),则∑ X 2 ~ χ2(n )i =121n2 2协方差的性质若Y ~ N (µ,σ ),t 分布则 2 ∑(Y i− µ) i =1 ~ χ (n )若X ~ N (0,1), Y ~ χ2(n ),则X ~ t (n )独立与相关独立必定不相关 Cov (aX ,bY ) = abCov (X ,Y )若U ~ χ2 (n ), F 分布正态总体条件下 样本均值的分布:V ~ χ2(n ),则U / n 1 V / n 2~ F (n 1,n 2 )相关必定不独立2X ~ N (µ,)nX − µ~ N (0,1)σ/ n 2− E (X )) ⋅ f (x )dx x +∞−∞∫ D (X ) =( E (XY ) = ∫ ∫ xyf (x , y )dxdy σX ~ N (µ,σ2 ) ⇔ Z = X − µ~ N (0,1)D (X )D (Y )XY ρ =C ov (X ,Y )Cov (X +Y , Z ) = Cov (X , Z ) + Cov (Y , Z )C ov (X , X ) = E (X 2 ) − (E (X ))2 =D (X )Cov (X ,Y ) = E (XY ) − E (X )E (Y )D (X +Y ) = D (X ) + D (Y )D (X ) =E (X 2 ) − [E (X )]2当X 与Y 独立时,E (XY ) = E (X )E (Y )Φ(a ) = 1− Φ(−a ) E (X +Y ) = E (X ) + E (Y )E (X ) = ∫ ∫ xf (x , y )dxdyn ⎠ n ⎠ n ⎠σ2 1 + 2 n 1 n 2 σ2 σ / n(x 1 − x 2 )± z α/ 2 2 2 ⎜ χ χ ⎛ ⎜ ⎟12x ± z样本方差的分布:正态总体方差的区间估计 两个正态总体均值差的置信区间(n −1)S 2 ~ χ2 (n −1) X − µ~ t (n −1) 大样本或正态小样本且方差已知σ2两个正态总体的方差之比⎛⎜ ⎜ ⎝S 2 / S 2两个正态总体方差比的置信区间1 2~ F (n 1 −1,σ2 /σ2n 2 −1)2 / S 2 , 2 / S 2⎞ ⎝ F α/ 2 (n 1 −1,n 2 −1) F α/ 2 (n 1 −1,n 2 −1) ⎠第六章点估计:参数的估计值为一个常数矩估计 最大似然估计n似然函数第七章假设检验的步骤1 根据具体问题提出原假设 H0 和备择假设 H12 根据假设选择检验统计量,并计算检验统计值3 看检验统计值是否落在拒绝域,若落在拒绝域则L = Π i =1f (x i ;θ)L = Π i =1p (x i ;θ)拒绝原假设,否则就不拒绝原假设。