电光调制实验实验报告
- 格式:doc
- 大小:679.50 KB
- 文档页数:5
电光调制实验实验报告【实验目的】1、掌握晶体电光调制的原理和实验方法2、学会利用实验装置测量晶体的半波电压,计算晶体的电光系数3、观察晶体电光效应引起的晶体会聚偏振光的干涉现象【实验仪器】铌酸锂晶体,电光调制电源,半导体激光器,偏振器,四分之一波片,接收放大器,双踪示波器【实验内容及步骤】一、调整光路系统1、调节三角导轨底角螺丝,使其稳定于调节台上。
在导轨上放置好半导体光源部分滑块,将小孔光栏置于导轨上,在整个导轨上拉动滑块,近场远场都保证整个光路基本处于一条直线,即使光束通过小孔。
放上起偏振器,使其表面与激光束垂直,且使光束在元件中心穿过。
再放上检偏器,使其表面也与激光束垂直,转动检偏器,使其与起偏器正交,即,使检偏器的主截面与起偏器的主截面垂直,这时光点消失,即所谓的消光状态。
2、将铌酸锂晶体置于导轨上,调节晶体使其x轴在铅直方向,使其通光表面垂直于激光束(这时晶体的光轴与入射方向平行,呈正入射),这时观察晶体前后表面查看光束是否在晶体中心,若没有,则精细调节晶体的二维调整架,保证使光束都通过晶体,且从晶体出来的反射像与半导体的出射光束重合。
3、拿掉四分之一波片,在晶体盒前端插入毛玻璃片,检偏器后放上像屏。
光强调到最大,此时晶体偏压为零。
这时可观察到晶体的单轴锥光干涉图,即一个清楚的暗字线,它将整个光场分成均匀的四瓣,如果不均匀可调节晶体上的调整架。
如图四所示4、旋转起偏器和检偏器,使其两个相互平行,此时所出现的单轴锥光图与偏振片垂直时是互补的。
如图五所示图四图五6、晶体加上偏压时呈现双轴锥光干涉图,说明单轴晶体在电场作用下变成双轴晶体,即电致双折射。
如图六所示7、改变晶体所加偏压极性,锥光图旋转90度。
如图七所示图六图七8 只改变偏压大小时,干涉图形不旋转,只是双曲线分开的距离发生变化。
这一现象说明,外加电场只改变感应主轴方向的主折射率的大小、折射率椭球旋转的角度和电场大小无关。
二、依据晶体的透过率曲线(即T-V曲线),选择工作点。
信号调制--电光调制实验一、实验原理1、电光调制原理某些晶体在外加电场的作用下,其折射率随外加电场的改变而发生变化的现象称为电光效应,利用这一效应可以对透过介质的光束进行幅度,相位或频率的调制,构成电光调制器。
电光效应分为两种类型:(1)一级电光(泡克尔斯—Pockels )效应,介质折射率变化正比于电场强度。
(2)二级电光(克尔—Kerr )效应,介质折射率变化与电场强度的平方成正比。
实验仪中使用铌酸锂(LiNbO 3)晶体作电光介质,组成横向调制(外加电场与光传播方向垂直)的一级电光效应。
图1 横向电光效应示意图如图1所示,入射光方向平行于晶体光轴(Z 轴方向),在平行于X 轴的外加电场(E )作用下,晶体的主轴X 轴和Y 轴绕Z 轴旋转45°,形成新的主轴X ’轴—Y ’轴(Z 轴不变),它们的感生折射率差为Δn ,并正比于所施加的电场强度E :rE n n 30=∆式中r 为与晶体结构及温度有关的参量,称为电光系数。
o n 为晶体对寻常光的折射率。
当一束线偏振光从长度为L 、厚度为d 的晶体中出射时,由于晶体折射率的差异而使光波经晶体后出射光的两振动分量会产生附加的相位差δ,它是外加电场E 的函数:3300222L nl n rE n r U d πππδλλλ⎛⎫=∆== ⎪⎝⎭(1) 式中λ为入射光波的波长;同时为测量方便起见,电场强度用晶体两极面间的电压来表示,即U Ed =。
当相差πδ=时,所加电压l d r n U U 302λπ== (2) πU 称为半波电压,它是一个可用以表征电光调制时电压对相差影响大小的重要物理量。
由(2)式可见,半波电压U π决定于入射光的波长λ以及晶体材料和它的几何尺寸。
由(1)、(2)式可得:0()()U U U πδπδ=+ (3) 式中0δ为0U =时的相差值,它与晶体材料和切割的方式有关,对加工良好的纯净晶体而言00δ=。
图2 电光调制器工作原理由激光器发出的激光经起偏器P 后只透射光波中平行其透振方向的振动分量,当该偏振光I P 垂直于电光晶体的通光表面入射时,如将光束分解成两个线偏振光,则经过晶体后其X 分量与Y 分量会产生)(U δ的相差,然后光束再经检偏器A ,产生光强为I A 的出射光。
一、实验目的1.了解电光调制的工作原理及相关特性;2.掌握电光晶体性能参数的测量方法;二、实验原理某些光学介质受到外电场作用时,它的折射率将随着外电场变化,介电系数和折射率都与方向有关,在光学性质上变为各向异性,这就是电光效应。
电光效应有两种,一种是折射率的变化量与外电场强度的一次方成比例,称为泡克耳斯(Pockels)效应;另一种是折射率的变化量与外电场强度的二次方成比例,称为克尔(Kerr)效应。
利用克尔效应制成的调制器,称为克尔盒,其中的光学介质为具有电光效应的液体有机化合物。
利用泡克耳斯效应制成的调制器,称为泡克耳斯盒,其中的光学介质为非中心对称的压电晶体。
泡克耳斯盒又有纵向调制器和横向调制器两种,图2-1是几种电光调制器的基本结构形式。
图2-1:几种电光调制器的基本结构形式a) 克尔盒 b) 纵调的泡克耳斯盒 c) 横调的泡克耳斯盒当不给克尔盒加电压时,盒中的介质是透明的,各向同性的非偏振光经过P后变为振动方向平行P光轴的平面偏振光。
通过克尔盒时不改变振动方向。
到达Q时,因光的振动方向垂直于Q光轴而被阻挡(P、Q分别为起偏器和检偏器,安装时,它们的光轴彼此垂直。
),所以Q没有光输出;给克尔盒加以电压时,盒中的介质则因有外电场的作用而具有单轴晶体的光学性质,光轴的方向平行于电场。
这时,通过它的平面偏振光则改变其振动方向。
所以,经过起偏器P产生的平面偏振光,通过克尔盒后,振动方向就不再与Q光轴垂直,而是在Q光轴方向上有光振动的分量,所以,此时Q就有光输出了。
Q的光输出强弱,与盒中的介质性质、几何尺寸、外加电压大小等因素有关。
对于结构已确定的克尔盒来说,如果外加电压是周期性变化的,则Q的光输出必然也是周期性变化的。
由此即实现了对光的调制。
泡克耳斯盒里所装的是具有泡克耳斯效应的电光晶体,它的自然状态就有单轴晶体的光学性质,安装时,使晶体的光轴平行于入射光线。
因此,纵向调制的泡克耳斯盒,电场平行于光轴,横向调制的泡克耳斯盒,电场垂直于光轴。
电光调制实验报告电光调制实验报告引言电光调制是一种利用电场对光进行调制的技术,广泛应用于通信、光学传感和光学信息处理等领域。
本实验旨在通过搭建电光调制实验装置,探究电场对光的调制效果,并分析其应用前景。
实验装置本次实验所使用的电光调制实验装置包括:光源、偏振器、电光调制器、光电探测器和示波器。
其中,光源发出的光经过偏振器后,进入电光调制器,在电场的作用下发生相位差变化,最后通过光电探测器转化为电信号,再经示波器显示出来。
实验步骤1. 将光源、偏振器、电光调制器、光电探测器和示波器依次连接起来,确保电路连接正确。
2. 调整偏振器的角度,使得光通过电光调制器时,其电场与电光调制器的极化方向垂直。
3. 打开光源和示波器,调节示波器的参数,观察示波器上的波形变化。
4. 改变电光调制器的电压,观察示波器上的波形变化,并记录下来。
5. 重复步骤4,但同时改变偏振器的角度,观察示波器上的波形变化,并记录下来。
实验结果与讨论通过实验观察和记录,我们可以得到以下结论和讨论:1. 电场对光的调制效果:随着电光调制器电压的增加,示波器上的波形振幅逐渐增大,说明电场对光的幅度进行了调制。
这说明电光调制器能够通过改变电场的强度来调制光的强度。
2. 电场对光的相位调制效果:通过改变电光调制器的电压和偏振器的角度,我们可以观察到示波器上的波形发生相位差的变化。
这说明电光调制器能够通过改变电场的强度和方向来调制光的相位。
3. 电光调制器的应用前景:电光调制技术在通信领域有着广泛的应用前景。
通过调制光的幅度和相位,可以实现光信号的调制和解调,从而实现高速、大容量的光通信。
此外,电光调制器还可以用于光学传感和光学信息处理等领域,提高系统的灵敏度和可靠性。
结论通过电光调制实验,我们深入了解了电场对光的调制效果,并探讨了其应用前景。
电光调制技术在通信、光学传感和光学信息处理等领域具有重要的应用价值,为实现高速、大容量的光通信提供了有力支持。
第1篇一、实验目的1. 理解光调制的原理和过程。
2. 学习使用光调制器进行信号调制。
3. 分析调制信号的频率、幅度和相位变化。
4. 掌握光调制在通信系统中的应用。
二、实验原理光调制是利用光波来携带信息的一种技术,它通过改变光波的某一参数(如幅度、频率、相位等)来实现信息的传输。
本实验中,我们主要研究幅度调制(AM)和频率调制(FM)两种调制方式。
1. 幅度调制(AM):在AM调制中,信息信号(如声音、图像等)与载波信号相乘,产生一个调制信号。
调制信号的幅度随信息信号的变化而变化,而频率和相位保持不变。
2. 频率调制(FM):在FM调制中,信息信号与载波信号的频率相乘,产生一个调制信号。
调制信号的频率随信息信号的变化而变化,而幅度和相位保持不变。
三、实验仪器与设备1. 光源:激光器或LED光源2. 调制器:光调制器(如光强度调制器、相位调制器等)3. 信号发生器:用于产生信息信号4. 光探测器:用于检测调制后的光信号5. 数据采集与分析系统:用于分析调制信号的频率、幅度和相位变化四、实验步骤1. 搭建实验系统:将光源、调制器、信号发生器、光探测器和数据采集与分析系统连接成一个完整的实验系统。
2. 进行幅度调制实验:a. 设置信号发生器产生一个低频正弦波信号作为信息信号。
b. 将信息信号输入到光调制器,调节调制器参数,使信息信号与载波信号进行AM调制。
c. 将调制后的光信号输入到光探测器,采集调制信号的频率、幅度和相位变化。
3. 进行频率调制实验:a. 设置信号发生器产生一个低频正弦波信号作为信息信号。
b. 将信息信号输入到光调制器,调节调制器参数,使信息信号与载波信号进行FM调制。
c. 将调制后的光信号输入到光探测器,采集调制信号的频率、幅度和相位变化。
4. 分析实验数据:使用数据采集与分析系统对实验数据进行处理和分析,得到调制信号的频率、幅度和相位变化曲线。
五、实验结果与分析1. 幅度调制实验结果:实验结果显示,调制信号的幅度随信息信号的变化而变化,而频率和相位保持不变。
晶体的电光效应与光电调制实验目的:1) 研究铌酸锂晶体的横向电光效应,观察锥光干涉图样,测量半波电压; 2) 学习电光调制的原理和试验方法,掌握调试技能; 3) 了解利用电光调制模拟音频通信的一种实验方法。
实验仪器:1) 晶体电光调制电源 2) 调制器 3) 接收放大器实验原理简述:某些晶体在外加电场的作用下,其折射率将随着外加电场的变化而变化,这种现象称为光电效应。
晶体外加电场后,如果折射率变化与外加电场的一次方成正比,则称为一次电光效应,如果折射率变化与外加电场的二次方成正比,则称为二次电光效应。
晶体的一次光电效应分为纵向电光效应和横向电光效应 1、 电光调制原理 1) 横向光电调制如图入射光经过起偏器后变为振动方向平行于x 轴的线偏振光,他在晶体感应轴x ’,y’上的投影的振幅和相位均相等,分别设为wt A e x cos 0'= wt A e y cos 0'=用复振幅表示,将位于晶体表面(z=0)的光波表示为A E x =)0(' A E y =)0(' 所以入射光的强度为 22'2'2)0()0(A E E E E I y x i =+=•∝ 当光通过长为l 的电光晶体后,x’,y’两分量之间产生相位差 A l E x =)(' δi y Ae l E -=)('通过检偏器出射的光,是这两个分量在y 轴上的投影之和()1245cos )()('0-=︒=-δδi i y y eA e l E E其对应的输出光强I t 可写为 ()()[]2sin 2*2200δA E E I y y t =•∝由以上可知光强透过率为2sin 2δ==i t I I T 相位差的表达式 ()dlVr n l n ny x 2230''22λπλπδ=-=当相位差为π时 ⎪⎭⎫ ⎝⎛=l d r n V n 22302λ由以上各式可将透过率改写为 ()wt V V V V VT m sin 2sin 2sin 022+==ππππ可以看出改变V0或Vm ,输出特性将相应变化。
光信息专业实验报告:光调制与光信模拟实验一、实验目的1. 学习电光调制、声光调制、磁光调制的机制及运用。
2. 了解光通信系统的结构。
二、光调制基本原理常用的光调制方式主要有电光调制、声光调制和磁光调制,分别是利用电光效应、声光效应和磁光效应来实现对光的调制的。
1. 电光调制器件工作原理光学介质的电光效应是指,当介质受到外电场作用时,其折射率将随外电场变化,介电系数和折射率都与方向有关,介质的光学特性由原来的各向同性变为各向异性。
目前已发现两种电光效应,一种是泡克耳斯(Pockels)效应,即折射率的变化量与外电场强度的一次方成比例;另一种是克尔(Kerr)效应,即折射率的变化量与外电场强度的二次方成比例。
利用泡克耳斯效应制成的调制器成为泡克耳斯盒,其中的光学介质为非中心对称的压电晶体。
利用克尔效应制成的调制器称为克尔盒,其中的光学介质为具有电光效应的液体有机化合物。
泡克耳斯盒有纵向调制器和横向调制器两种。
我们实验中使用的是电光晶体为DKDP(磷酸二氘钾)的纵向调制泡克耳斯盒。
不给泡克尔斯盒加电压时,盒中的介质是透明的,各向同性的非偏振光经过起偏器P后变为振动方向平行于P光轴的平面偏振光。
通过泡克耳斯盒时,其偏振方向不变,到达检偏器Q时,因光的振动方向垂直于Q光轴而被阻挡,所以Q 没有光输出;给泡克耳斯盒加电压时,由于电光效应,盒中介质将具有单轴晶体的光学特性,光轴与电场方向平行。
此时,通过泡克耳斯盒的平面偏振光的振动方向将被改变,从而产生了与Q光轴方向平行的分量,即Q有光输出。
Q输出光的强弱与盒中介质的性质、几何尺寸、外加电压大小有关。
对于结构已确定的泡耳克斯盒来说,若外加电压是周期性变化的,则Q的光输出也是周期性变化的,由此实现对光的调制。
图1 各个量的方位关系图图1表示的是几个偏振量之间的方位关系,光的传播方向平行于z 轴,M 和N 分别为起偏器P 和检偏器Q 的光轴方向,彼此垂直;α为M 与y 轴的夹角,β为N 与y 轴的夹角,2/πβα=+;外电场使克尔盒中电光介质产生的光轴方向平行于x 轴;o 光垂直于xz 平面,e 光在xz 平面内。
电光调制实验报告误差分析
电光调制实验是一种常见的光学实验,在实验测量过程中难免会出现误差。
常见的误差包括系统误差和随机误差。
系统误差主要来自于实验仪器、测量方法和实验人员等方面的不确定性,例如电光调制器的偏置电压的精度、光路的稳定性、探测器的灵敏度等。
系统误差具有一定的规律性,可以通过对实验仪器的校准和测量方法的改进来减小。
随机误差是由一系列不可预测的因素导致的误差,例如环境条件的变化、仪器的波动、人为误差等。
随机误差是不可避免的,但可以通过多次测量并取平均值来降低其影响。
在进行电光调制实验时,还需注意实验得到的原始数据是否有效、是否存在异常值等。
在数据处理过程中应该排除这些无效数据,并对数据进行平滑处理和误差分析。
此外,还需要注意实验的恒定条件,例如光源的稳定性和干扰物的消除等。
总之,电光调制实验中的误差分析应该综合考虑系统误差和随机误差,正确处理实验数据并减小误差的影响。
电光调制实验报告小结引言电光调制是一种利用电场来调制光的相位和强度的技术,在通信领域有着广泛的应用。
本实验旨在通过搭建电光调制系统并进行实验验证,探究电场对光调制的影响,实验结果对理解和应用电光调制技术具有重要意义。
实验方法1. 实验材料:激光器、调制器、接收器、电源等。
2. 搭建电光调制系统:将激光器的输出光传入调制器中,通过调制器内的电场对光进行调制,调制完的光被接收器接收。
3. 测量和记录实验数据:测量接收器接收到的光强,并记录输入的电场强度。
实验结果分析实验1:电场对光强的影响在电场未加之前,接收器检测到的光强为I0。
在电场加上不同的电压后,记录对应的光强I,并计算光强的变化率ΔI/I0。
实验结果如下:电场强度(V/m) 光强变化率ΔI/I0-0 0100 0.2200 0.4300 0.6400 0.8500 1从实验结果可以看出,电场的增大对光强的调制效果逐渐增强。
当电场为0时,光强不受到电场的影响;当电场增加到500 V/m时,光强变为原来的2倍,光强的调制效果达到最大。
实验2:电场对光相位的影响在电场未加之前,激光器的输出相位作为参考相位。
在电场加上不同的电压后,测量和记录光的相位,并计算相位的偏移Δφ。
实验结果如下:电场强度(V/m) 相位偏移Δφ-0 0100 0.2π200 0.4π300 0.6π400 0.8π500 π从实验结果可以看出,电场的增大对光相位的调制效果逐渐增强。
当电场为0时,光相位不受到电场的影响;当电场增加到500 V/m时,光相位经历了一个完整的π的偏移。
实验3:光强和相位的联合调制效果通过同时加上电场和光的相位调制器,记录不同电场强度下的光强和相位变化情况。
实验结果如下:电场强度(V/m) 相位偏移Δφ光强变化率ΔI/I0-0 0 0100 0.2π0.2200 0.4π0.4300 0.6π0.6400 0.8π0.8500 π 1从实验结果可以看出,电场和光的相位调制器的联合调制效果是光强和相位调制的叠加效果。