(word完整版)初一数学有关角的旋转运动专题
- 格式:doc
- 大小:54.01 KB
- 文档页数:2
旋转旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角.旋转特征:图形旋转时,图形中的每一点旋转的角都相等,都等于图形的旋转角。
(一)正三角形类型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转600,使得AB与AC重合。
经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP中,此时ΔP'AP也为正三角形。
例1. 如图:(1-1):设P是等边ΔABC内的一点,PA=3,PB=4,PC=5,∠APB的度数是________.(二)正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转900,使得BA与BC重合。
经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。
例2. 如图(2-1):P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。
求此正方形ABCD面积。
(三)等腰直角三角形类型在等腰直角三角形ΔABC中,∠C=90°, P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转900,使得AC与BC重合。
经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。
例3.如图,在ΔABC中,∠ACB =900,BC=AC,P为ΔABC内一点,且PA=3,PB=1,PC=2。
求∠BPC的度数。
旋转实际上是一种全等变换,由于具有可操作性,因而是考查同学们动手能力、观察能力的好素材,也就成了近几年中考试题中频繁出现的内容。
题型多以填空题、计算题呈现。
在解答此类问题时,我们通常将其转换成全等求解。
根据变换的特征,找到对应的全等形,通过线段、角的转换达到求解的目的。
初一数学旋转典型例题嘿,大家好呀!今天咱们来聊聊初一数学里的一个有趣的话题——旋转!听起来是不是有点高深?别担心,咱们轻松聊聊,让它变得有趣又简单。
想象一下,你在玩一个风筝,风筝飞得高高的,突然一阵风吹来,风筝旋转了个圈。
这就是旋转的感觉,哈哈!数学里的旋转就像是风筝在天空中转圈圈,充满了动感。
旋转其实是个很酷的概念,它让我们看到物体在平面上怎么转动,真是妙不可言。
我们先来看看一个简单的例子。
假设你有一个三角形,想把它旋转90度。
哎,先别急,你知道90度是什么吗?想象一下,你正站在钟表旁边,时针指向3,转到6就是90度。
就这样,把你的三角形也转过来!是不是感觉它像个小舞者,在舞台上旋转呢?然后,咱们再来玩一个更有趣的游戏。
设想一下,一个正方形,你把它放在桌子上,中心点正好在桌子的中心。
现在你把它旋转180度。
嘿,猜猜看,正方形变成什么样了?它还是正方形,只不过它的方向变了!是不是觉得有点神奇?就像你翻转了一本书,它的内容依然在,只是你看到了不同的面。
旋转还可以用来解决一些有趣的数学问题呢。
比如,有个问题是这样说的:你有一个圆形的披萨,想把它切成八片。
假如你从中间开始切,每次旋转45度,你能不能切好呢?答案当然是可以!每次切的时候你只需想象着你在转动的披萨,慢慢地切下去,就能得到八片美味的披萨。
想想都让人流口水,哈哈!旋转的数学还有一些很实用的地方哦,比如在游戏设计、动画制作等等。
想象一下,你在玩一个赛车游戏,车子在赛道上转来转去。
那车子的每一个旋转,背后都离不开数学的支持。
这让人忍不住感慨,数学真的是生活中的小帮手,处处都有它的身影。
再来聊聊几何里的旋转。
你知道吗?在几何图形中,旋转可以帮助我们找到对称性。
比如,你画了一个蝴蝶,左右两边对称。
这就是因为蝴蝶的身体像个旋转轴,当你把一边旋转到另一边,哎呀,完美对称,简直太美了!说到对称,不得不提到有些图形的旋转中心。
就像你家里的风扇,转动的时候都有一个中心点。
初一数学旋转解题方法
旋转是几何中的一种重要变换,在初一数学中,旋转问题可以通过以下方法解决:
- 理解旋转的定义和性质:在平面内,将一个图形绕着一个定点旋转一定的角度,得到另一个图形的变换称为旋转。
旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。
- 找出旋转前后的对应点:通过观察题目中的已知条件,确定旋转前后的对应点,然后根据旋转的性质,计算出线段或角的大小。
- 利用旋转的性质构造全等三角形:在一些题目中,可以通过旋转的性质构造出全等三角形,然后利用全等三角形的性质求解。
旋转问题是初一数学中的一个重要知识点,需要熟练掌握旋转的定义和性质,并灵活运用到各种题型中。
七年级数学平移和旋转的变换复习知识点
总结
本文档旨在回顾七年级数学中与平移和旋转变换相关的知识点,并提供简明扼要的总结。
以下是重要的知识点回顾:
平移变换
- 平移变换是指将一个图形在平面上按照一定的距离和方向移
动的变换。
- 平移变换的性质:
- 平移变换不改变图形的大小、形状和方向。
- 平移变换保持图形的各点之间的相对位置关系不变。
- 平移变换的示例:
- 将图形沿着横轴向右平移2个单位。
- 将图形沿着纵轴向上平移3个单位。
旋转变换
- 旋转变换是指将一个图形按照一定的角度绕着某个点旋转的变换。
- 旋转变换的性质:
- 旋转变换不改变图形的大小和形状。
- 旋转变换保持图形的各点之间的相对位置关系不变。
- 旋转变换的示例:
- 将图形绕着原点逆时针旋转90度。
- 将图形绕着任意点顺时针旋转180度。
这些是七年级数学中平移和旋转变换的基本知识点回顾。
通过掌握这些知识,你将能够更好地理解和应用平移和旋转变换。
请注意:本文档的内容仅为简要总结,不涉及详细的计算方法和具体题目。
如需更深入的研究,请参考相关教材和课堂讲义。
初中七年级(上)旋转动角问题专题(适用于七年级上学期)〖解题策略〗角是一种基本的几何图形,凡是由直线组成的图形都出现角. 角既可以看成有公共端点的两条射线组成的图形,也可以看成是一条射线绕着端点从一个位置旋转到另一个位置所成的图形.解与角有关的问题常用到以下知识与方法:1.角平分线的应用,如双角平分线模型;2. 多个角间的数量关系及其等量代换;3. 引入字母表示比例角度、动角,用方程的观点来进行角的计算;4.角的边位置不定时,需要分类讨论.〖典型例题〗已知∠AOB=150°,OC为∠AOB内部的一条射线,∠BOC=60°.(1)如图1,若OE平分∠AOB,OD为∠BOC内部的一条射线,∠COD=∠BOD,求∠DOE的度数;(2)如图2,若射线OE绕着O点从OA开始以15度/秒的速度顺时针旋转至OB结束、OF绕着O点从OB开始以5度秒的速度逆时针旋转至OA结束,运动时间为t秒,当∠EOC=∠FOC时,求t的值:(3)若射线OM绕着O点从OA开始以15度秒的速度逆时针旋转至OB结束,在旋转过程中,ON平分∠AOM,试问2∠BON一∠BOM在某时间段内是否为定值,若不是,请说明理由;若是请补全图形,求出这个定值并写出t所在的时间段.(本题中的角均为大于0°且小于180°的角)版权所有解:(1)∵∠AOB=150°,OE平分∠AOB,∴∠EOB=∠AOB=75°,∵∠BOC=60°,∠COD=∠BOD,∴∠BOD=40°,∠COD=20°,∴∠EOD=∠EOB﹣∠DOB=75°﹣40°=35°.(2)当OE在∠AOC内部时,∵∠EOC=∠FOC,∴90﹣15t=60﹣5t,∴t=3.当OE与OF重合时,15t+5t=150°,t=7.5.综上所述,当∠EOC=∠FOC时,t=3s或7.5s.(3)2∠BON﹣∠BOM的值为定值(4<t<12).理由:∵∠AOM=15t.∠AON=∠MON=7.5t,∠BON=210°﹣7.5t,∠BOM=210°﹣15t,∴2∠BON一∠BOM=2(210°﹣7.5t)﹣(210°﹣15t)=210°(4<t<12).〖同步练习〗一. 填空题.1.计算:53°40′30″+75°57′28″=2.同学们,闹钟都见过吧!它的时针和分针如同兄弟俩在赛跑,可你是否知道时针每分钟走多少度?分针每分针走多少度?当你弄清楚这个问题后,你能解决很多关于闹钟有趣的问题:(1)三点整时时针与分针所夹的角是度.(2)7点25分时针与分针所夹的角是度.(3)一昼夜(0点到24点)时针与分针互相垂直的次数有多少次?3.如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.如图2,若∠MPN=75°,且射线PQ绕点P从PN位置开始,以每秒15°的速度逆时针旋转,射线PM同时绕点P以每秒5°的速度逆时针旋转,当PQ与PN成180°时,PQ与PM同时停止旋转,设旋转的时间为t秒.当射线PQ是∠MPN的“巧分线”时,t的值为.4.如图1所示∠AOB的纸片,OC平分∠AOB,如图2把∠AOB沿OC对折成∠COB(OA与OB重合),从O点引一条射线OE,使∠BOE=∠EOC,再沿OE把角剪开,若剪开后得到的3个角中最大的一个角为76°,则∠AOB=°.二. 解答题5.如图,∠AOB=20°,∠AOE=110°,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以点O为观察中心,OA为正东方向,求射线OD的方位角;(3)若∠AOE的两边OA,OE分别以每秒5°和每秒3°的速度,同时绕点O按逆时针方向旋转,当OA回到原处时,OA,OE停止运动,则经过多少秒时,∠AOE=30°?6.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=100°,则∠DOE=;若∠AOC=120°,则∠DOE=;(2)若∠AOC=α,则∠DOE=(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣2∠BOE=4∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.7.一副三角板ABC、DEF,如图(1)放置,(∠D=30°、∠BAC=45°)(1)求∠DBA的度数.(2)若三角板DBE绕B点逆时针旋转,(如图2)在旋转过程中BM、BN分别平分∠DBA、∠EBC,则∠MBN如何变化?(3)若三角板BDE绕B点逆时针旋转到如图(3)时,其它条件不变,则(2)的结论是否变化?8.如图,直线EF与MN相交于点O,∠MOE=30°,将一直角三角尺的直角顶点与O重合,直角边OA与MN重合,OB在∠NOE内部.操作:将三角尺绕点O以每秒3°的速度沿顺指针方向旋转一周,设运动时间为t(s).(1)当t为何值时,直角边OB恰好平分∠NOE?此时OA是否平分∠MOE?请说明理由;(2)若在三角尺转动的同时,直线EF也绕点O以每秒9°的速度顺时针方向旋转一周,当一方先完成旋转一周时,另一方同时停止转动.①当t为何值时,EF平分∠AOB?②EF能否平分∠NOB?若能请直接写出t的值;若不能,请说明理由.9.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=;在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).10.如图1,在数轴上A,B两点对应的数分别是6,﹣6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕点顶点C逆时针旋转30t度,作CF 平分∠ACE,此时记∠DCF=α.①当t=1时,α=;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕点顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α与β满足|α﹣β|=20°,请直接写出t的值为.〖参考答案〗一. 填空题.1.计算:53°40′30″+75°57′28″=129°37′58″,解:53°40′30″+75°57′28″=128°97′58″=129°37′58″2.同学们,闹钟都见过吧!它的时针和分针如同兄弟俩在赛跑,可你是否知道时针每分钟走多少度?分针每分针走多少度?当你弄清楚这个问题后,你能解决很多关于闹钟有趣的问题:(1)三点整时时针与分针所夹的角是90度.(2)7点25分时针与分针所夹的角是72.5度.(3)一昼夜(0点到24点)时针与分针互相垂直的次数有多少次?解:(1)3×30=90°;(2)2×30°=72.5°;(3)从重合到第一次垂直所需要的时间为,设一次垂直到下一次垂直经过x分钟,则6x﹣0.5x=2×905.5x=180x=,(24×60﹣)÷=24×60×=43.5(次)取整为43次.故总次数为43+1=44(次)答:一昼夜时针与分针互相垂直的次数为44次.3.如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.如图2,若∠MPN=75°,且射线PQ绕点P从PN位置开始,以每秒15°的速度逆时针旋转,射线PM同时绕点P以每秒5°的速度逆时针旋转,当PQ与PN成180°时,PQ与PM同时停止旋转,设旋转的时间为t秒.当射线PQ是∠MPN的“巧分线”时,t的值为3或或.解:当∠NPQ=∠MPN时,15t=(75°+5t),解得t=3;当∠NPQ=∠MPN时,15t=(75°+5t),解得t=.当∠NPQ=∠MPN时,15t=(75°+5t),解得t=.故t的值为3或或.4.如图1所示∠AOB的纸片,OC平分∠AOB,如图2把∠AOB沿OC对折成∠COB(OA与OB重合),从O点引一条射线OE,使∠BOE=∠EOC,再沿OE把角剪开,若剪开后得到的3个角中最大的一个角为76°,则∠AOB=114°.解:∵OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC又∵剪开后得到的3个角中最大的一个角为76°,∴2∠COE=76°∴∠COE=38°又∵∠BOE=∠EOC,∴∠BOE=×38°=19°∴∠BOC=∠BOE+∠EOC=19°+38°=57°则∠AOB=2∠BOC=2×57°=114°.二. 解答题5.如图,∠AOB=20°,∠AOE=110°,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以点O为观察中心,OA为正东方向,求射线OD的方位角;(3)若∠AOE的两边OA,OE分别以每秒5°和每秒3°的速度,同时绕点O按逆时针方向旋转,当OA回到原处时,OA,OE停止运动,则经过多少秒时,∠AOE=30°?解:(1)因为OB平分∠AOC,∠AOB=20°,所以∠AOC=40°,因为OD平分∠AOE,∠AOE=110°,所以∠AOD=55°,因为∠COD=∠AOD﹣∠AOC,所以∠COD=55°﹣40°=15°;(2)因为90°﹣55°=35°,所以射线OD的方位角是北偏东35°;(3)设经过x秒时,∠AOE=30°,①如图1所示,当OA未追上OE时,依题意,得5x﹣110=3x﹣30,解得,x=40;②如图2所示,当OA超过OE时,依题意,得5x﹣110=3x﹣305x﹣110=3x+30,解得,x=70.6.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=100°,则∠DOE=50°;若∠AOC=120°,则∠DOE=60°;(2)若∠AOC=α,则∠DOE=α(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣2∠BOE=4∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.解:(1)∵∠AOC=100°,∴∠BOC=180°﹣100°=80°,∵OE平分∠BOC,∴∠COE=∠BOC=×80°=40°,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣40°=50°;∵∠AOC=120°,∴∠BOC=180°﹣120°=60°,∵OE平分∠BOC,∴∠COE=∠BOC=×60°=30°,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣30°=60°;(2)∠DOE=α;∵∠AOC=α,∴∠BOC=180°﹣α,∵OE平分∠BOC,∴∠COE=∠BOC=90°﹣α,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣(90°﹣α)=α;(3)∠DOE﹣∠AOF=45°.理由:∵∠AOC﹣2∠BOE=4∠AOF,∴∠AOC﹣3∠AOF=2∠BOE+∠AOF,设∠DOE=x,∠AOF=y,左边=∠AOC﹣3∠AOF=2∠DOE﹣3∠AOF=2x﹣3y,右边=2∠BOE+∠AOF=2(90°﹣x)+y=180°﹣2 x+y,∴2x﹣3y=180﹣2 x+y 即4x﹣4y=180°,∴x﹣y=45°∴∠DOE﹣∠AOF=45°.7.一副三角板ABC、DEF,如图(1)放置,(∠D=30°、∠BAC=45°)(1)求∠DBA的度数.(2)若三角板DBE绕B点逆时针旋转,(如图2)在旋转过程中BM、BN分别平分∠DBA、∠EBC,则∠MBN 如何变化?(3)若三角板BDE绕B点逆时针旋转到如图(3)时,其它条件不变,则(2)的结论是否变化?解:(1)∠DBA=∠DBC﹣∠ABC=60°﹣45°=15°;(2)∠MBN的度数不变化,理由如下:设∠ABE=x°,则∠ABD=60﹣x°、∠CBE=45°﹣x°,∵BM、BN分别平分∠ABD、∠CBE∴∠ABM=∠ABD=(60°﹣x°),∠EBN=∠EBC=(45°﹣x°),∴∠MBN=∠ABM+∠ABE+∠EBN=(60°﹣x°)+x°+(45°﹣x°)=52.5°;(3)(2)中的结论不变,理由如下:设∠ABE=x°,则∠ABD=60+x°、∠CBE=45°+x°,∵BM、BN分别平分∠ABD、∠CBE,∴∠ABM=∠ABD=(60°+x°),∠EBN=∠EBC=(45°+x°),∴∠MBN=∠ABM﹣∠ABE+∠EBN=(60°+x°)﹣x°+(45°+x°)=52.5°.8.如图,直线EF与MN相交于点O,∠MOE=30°,将一直角三角尺的直角顶点与O重合,直角边OA与MN重合,OB在∠NOE内部.操作:将三角尺绕点O以每秒3°的速度沿顺指针方向旋转一周,设运动时间为t(s).(1)当t为何值时,直角边OB恰好平分∠NOE?此时OA是否平分∠MOE?请说明理由;(2)若在三角尺转动的同时,直线EF也绕点O以每秒9°的速度顺时针方向旋转一周,当一方先完成旋转一周时,另一方同时停止转动.①当t为何值时,EF平分∠AOB?②EF能否平分∠NOB?若能请直接写出t的值;若不能,请说明理由.解:(1)∵当直角边OB恰好平分∠NOE时,∠NOB=∠NOE=(180°﹣30°)=75°,∴90°﹣3t°=75°,解得:t=5.此时∠MOA=3°×5=15°=∠MOE,∴此时OA平分∠MOE.(2)①OE平分∠AOB,依题意有30°+9t﹣3t=90°÷2,解得t=2.5;OF平分∠AOB,依题意有30°+9t﹣3t=180°+90°÷2,解得t=32.5.故当t为2.5s或32.5s时,EF平分∠AOB②OB在MN上面,依题意有180°﹣30°﹣9t=(90°﹣3t)÷2,解得t=14;OB在MN下面,依题意有9t﹣(360°﹣30°)=(3t﹣90°)÷2,解得t=38(舍去).故EF能平分∠NOB,t的值为14s.9.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=90°;在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 4.5秒或40.5秒(直接写出结果).解:(1)如图2,∠BOM=90°,OM平分∠CON.理由如下:∵∠BOC=135°,∴∠MOC=135°﹣90°=45°,而∠MON=45°,∴∠MOC=∠MON;(2)∠AOM=∠CON.理由如下:如图3,∵∠MON=45°,∴∠AOM=45°﹣∠AON,∵∠AOC=45°,∴∠NOC=45°﹣∠AON,∴∠AOM=∠CON;(3)T=×45°÷5°=4.5(秒)或t=(180°+22.5°)÷5°=40.5(秒).10.如图1,在数轴上A,B两点对应的数分别是6,﹣6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=45°;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕点顶点C逆时针旋转30t度,作CF 平分∠ACE,此时记∠DCF=α.①当t=1时,α=30°;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕点顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α与β满足|α,请直接写出t的值为.﹣β|=20°解:(1)如图1中,∵∠EOD=90°,OF平分∠EOD,∴∠FOD=∠EOD=45°,(2)①如图2中,当t=1时,∵∠DCA=30°,∠ECD=90°,∴∠ECA=120°,∵CF平分∠ACE,∴∠FCA=∠ECA=60°∴α=∠FCD=60°﹣30°=30°②如图2中,猜想:∠BCE=2α.理由:∵∠DCE=90°,∠DCF=α,∴∠ECF=90°﹣α,∵CF平分∠ACE,∴∠ACF=∠ECF=90°﹣α,∵点A,O,B共线∴AOB=180°∴∠BCE=∠AOB﹣∠ECD﹣∠ACD=180°﹣90°﹣(90°﹣2α)=2α.(3)如图3中,由题意:α=∠FCA﹣∠DCA=(90°+30t)﹣30t=45°﹣15t,β=∠AC1D1+∠AC1F1=30t+(90°﹣30t)=45°+15t,∵|β﹣α|=20°,,∴|30t|=20°解得t=.。
旋转动角问题专题(适用于七年级上学期)〖解题策略〗角是一种基本的几何图形,凡是由直线组成的图形都出现角. 角既可以看成有公共端点的两条射线组成的图形,也可以看成是一条射线绕着端点从一个位置旋转到另一个位置所成的图形.解与角有关的问题常用到以下知识与方法:1.角平分线的应用,如双角平分线模型;2. 多个角间的数量关系及其等量代换;3. 引入字母表示比例角度、动角,用方程的观点来进行角的计算;4.角的边位置不定时,需要分类讨论.〖典型例题〗已知∠AOB=150°,OC为∠AOB内部的一条射线,∠BOC=60°.(1)如图1,若OE平分∠AOB,OD为∠BOC内部的一条射线,∠COD=∠BOD,求∠DOE的度数;(2)如图2,若射线OE绕着O点从OA开始以15度/秒的速度顺时针旋转至OB结束、OF绕着O点从OB开始以5度秒的速度逆时针旋转至OA结束,运动时间为t秒,当∠EOC=∠FOC时,求t的值:(3)若射线OM绕着O点从OA开始以15度秒的速度逆时针旋转至OB结束,在旋转过程中,ON平分∠AOM,试问2∠BON一∠BOM在某时间段内是否为定值,若不是,请说明理由;若是请补全图形,求出这个定值并写出t所在的时间段.(本题中的角均为大于0°且小于180°的角)解:(1)∵∠AOB=150°,OE平分∠AOB,∴∠EOB=∠AOB=75°,∵∠BOC=60°,∠COD=∠BOD,∴∠BOD=40°,∠COD=20°,∴∠EOD=∠EOB﹣∠DOB=75°﹣40°=35°.(2)当OE在∠AOC内部时,∵∠EOC=∠FOC,∴90﹣15t=60﹣5t,∴t=3.当OE与OF重合时,15t+5t=150°,t=7.5.综上所述,当∠EOC=∠FOC时,t=3s或7.5s.(3)2∠BON﹣∠BOM的值为定值(4<t<12).理由:∵∠AOM=15t.∠AON=∠MON=7.5t,∠BON=210°﹣7.5t,∠BOM=210°﹣15t,∴2∠BON一∠BOM=2(210°﹣7.5t)﹣(210°﹣15t)=210°(4<t<12).〖同步练习〗一. 填空题1.计算:53°40′30″+75°57′28″=.2.同学们,闹钟都见过吧!它的时针和分针如同兄弟俩在赛跑,可你是否知道时针每分钟走多少度?分针每分针走多少度?当你弄清楚这个问题后,你能解决很多关于闹钟有趣的问题:(1)三点整时时针与分针所夹的角是度.(2)7点25分时针与分针所夹的角是度.(3)一昼夜(0点到24点)时针与分针互相垂直的次数有多少次?3.如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.如图2,若∠MPN=75°,且射线PQ绕点P从PN位置开始,以每秒15°的速度逆时针旋转,射线PM同时绕点P以每秒5°的速度逆时针旋转,当PQ与PN成180°时,PQ与PM同时停止旋转,设旋转的时间为t秒.当射线PQ是∠MPN的“巧分线”时,t的值为.4.如图1所示∠AOB的纸片,OC平分∠AOB,如图2把∠AOB沿OC对折成∠COB(OA与OB重合),从O点引一条射线OE,使∠BOE=∠EOC,再沿OE把角剪开,若剪开后得到的3个角中最大的一个角为76°,则∠AOB=°.二. 解答题5.如图,∠AOB=20°,∠AOE=110°,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以点O为观察中心,OA为正东方向,求射线OD的方位角;(3)若∠AOE的两边OA,OE分别以每秒5°和每秒3°的速度,同时绕点O按逆时针方向旋转,当OA回到原处时,OA,OE停止运动,则经过多少秒时,∠AOE=30°?6.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=100°,则∠DOE=;若∠AOC=120°,则∠DOE=;(2)若∠AOC=α,则∠DOE=(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣2∠BOE=4∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.7.一副三角板ABC、DEF,如图(1)放置,(∠D=30°、∠BAC=45°)(1)求∠DBA的度数.(2)若三角板DBE绕B点逆时针旋转,(如图2)在旋转过程中BM、BN分别平分∠DBA、∠EBC,则∠MBN如何变化?(3)若三角板BDE绕B点逆时针旋转到如图(3)时,其它条件不变,则(2)的结论是否变化?8.如图,直线EF与MN相交于点O,∠MOE=30°,将一直角三角尺的直角顶点与O重合,直角边OA与MN重合,OB在∠NOE内部.操作:将三角尺绕点O以每秒3°的速度沿顺指针方向旋转一周,设运动时间为t(s).(1)当t为何值时,直角边OB恰好平分∠NOE?此时OA是否平分∠MOE?请说明理由;(2)若在三角尺转动的同时,直线EF也绕点O以每秒9°的速度顺时针方向旋转一周,当一方先完成旋转一周时,另一方同时停止转动.①当t为何值时,EF平分∠AOB?②EF能否平分∠NOB?若能请直接写出t的值;若不能,请说明理由.9.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=;在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).10.如图1,在数轴上A,B两点对应的数分别是6,﹣6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕点顶点C逆时针旋转30t度,作CF 平分∠ACE,此时记∠DCF=α.①当t=1时,α=;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕点顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α与β满足|α﹣β|=20°,请直接写出t的值为.〖参考答案〗一. 填空题1.计算:53°40′30″+75°57′28″=129°37′58″.解:53°40′30″+75°57′28″=128°97′58″=129°37′58″,2.同学们,闹钟都见过吧!它的时针和分针如同兄弟俩在赛跑,可你是否知道时针每分钟走多少度?分针每分针走多少度?当你弄清楚这个问题后,你能解决很多关于闹钟有趣的问题:(1)三点整时时针与分针所夹的角是90度.(2)7点25分时针与分针所夹的角是72.5度.(3)一昼夜(0点到24点)时针与分针互相垂直的次数有多少次?解:(1)3×30=90°;(2)2×30°=72.5°;(3)从重合到第一次垂直所需要的时间为,设一次垂直到下一次垂直经过x分钟,则6x﹣0.5x=2×905.5x=180x=,(24×60﹣)÷=24×60×=43.5(次)取整为43次.故总次数为43+1=44(次)答:一昼夜时针与分针互相垂直的次数为44次.3.如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.如图2,若∠MPN=75°,且射线PQ绕点P从PN位置开始,以每秒15°的速度逆时针旋转,射线PM同时绕点P以每秒5°的速度逆时针旋转,当PQ与PN成180°时,PQ与PM同时停止旋转,设旋转的时间为t秒.当射线PQ是∠MPN的“巧分线”时,t的值为3或或.解:当∠NPQ=∠MPN时,15t=(75°+5t),解得t=3;当∠NPQ=∠MPN时,15t=(75°+5t),解得t=.当∠NPQ=∠MPN时,15t=(75°+5t),解得t=.故t的值为3或或.4.如图1所示∠AOB的纸片,OC平分∠AOB,如图2把∠AOB沿OC对折成∠COB(OA与OB重合),从O点引一条射线OE,使∠BOE=∠EOC,再沿OE把角剪开,若剪开后得到的3个角中最大的一个角为76°,则∠AOB=114°.解:∵OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC又∵剪开后得到的3个角中最大的一个角为76°,∴2∠COE=76°∴∠COE=38°又∵∠BOE=∠EOC,∴∠BOE=×38°=19°∴∠BOC=∠BOE+∠EOC=19°+38°=57°则∠AOB=2∠BOC=2×57°=114°.二. 解答题5.如图,∠AOB=20°,∠AOE=110°,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以点O为观察中心,OA为正东方向,求射线OD的方位角;(3)若∠AOE的两边OA,OE分别以每秒5°和每秒3°的速度,同时绕点O按逆时针方向旋转,当OA回到原处时,OA,OE停止运动,则经过多少秒时,∠AOE=30°?解:(1)因为OB平分∠AOC,∠AOB=20°,所以∠AOC=40°,因为OD平分∠AOE,∠AOE=110°,所以∠AOD=55°,因为∠COD=∠AOD﹣∠AOC,所以∠COD=55°﹣40°=15°;(2)因为90°﹣55°=35°,所以射线OD的方位角是北偏东35°;(3)设经过x秒时,∠AOE=30°,①如图1所示,当OA未追上OE时,依题意,得5x﹣110=3x﹣30,解得,x=40;②如图2所示,当OA超过OE时,依题意,得5x﹣110=3x﹣305x﹣110=3x+30,解得,x=70.6.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=100°,则∠DOE=50°;若∠AOC=120°,则∠DOE=60°;(2)若∠AOC=α,则∠DOE=α(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣2∠BOE=4∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.解:(1)∵∠AOC=100°,∴∠BOC=180°﹣100°=80°,∵OE平分∠BOC,∴∠COE=∠BOC=×80°=40°,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣40°=50°;∵∠AOC=120°,∴∠BOC=180°﹣120°=60°,∵OE平分∠BOC,∴∠COE=∠BOC=×60°=30°,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣30°=60°;(2)∠DOE=α;∵∠AOC=α,∴∠BOC=180°﹣α,∵OE平分∠BOC,∴∠COE=∠BOC=90°﹣α,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣(90°﹣α)=α;(3)∠DOE﹣∠AOF=45°.理由:∵∠AOC﹣2∠BOE=4∠AOF,∴∠AOC﹣3∠AOF=2∠BOE+∠AOF,设∠DOE=x,∠AOF=y,左边=∠AOC﹣3∠AOF=2∠DOE﹣3∠AOF=2x﹣3y,右边=2∠BOE+∠AOF=2(90°﹣x)+y=180°﹣2 x+y,∴2x﹣3y=180﹣2 x+y 即4x﹣4y=180°,∴x﹣y=45°∴∠DOE﹣∠AOF=45°.7.一副三角板ABC、DEF,如图(1)放置,(∠D=30°、∠BAC=45°)(1)求∠DBA的度数.(2)若三角板DBE绕B点逆时针旋转,(如图2)在旋转过程中BM、BN分别平分∠DBA、∠EBC,则∠MBN 如何变化?(3)若三角板BDE绕B点逆时针旋转到如图(3)时,其它条件不变,则(2)的结论是否变化?解:(1)∠DBA=∠DBC﹣∠ABC=60°﹣45°=15°;(2)∠MBN的度数不变化,理由如下:设∠ABE=x°,则∠ABD=60﹣x°、∠CBE=45°﹣x°,∵BM、BN分别平分∠ABD、∠CBE∴∠ABM=∠ABD=(60°﹣x°),∠EBN=∠EBC=(45°﹣x°),∴∠MBN=∠ABM+∠ABE+∠EBN=(60°﹣x°)+x°+(45°﹣x°)=52.5°;(3)(2)中的结论不变,理由如下:设∠ABE=x°,则∠ABD=60+x°、∠CBE=45°+x°,∵BM、BN分别平分∠ABD、∠CBE,∴∠ABM=∠ABD=(60°+x°),∠EBN=∠EBC=(45°+x°),∴∠MBN=∠ABM﹣∠ABE+∠EBN=(60°+x°)﹣x°+(45°+x°)=52.5°.8.如图,直线EF与MN相交于点O,∠MOE=30°,将一直角三角尺的直角顶点与O重合,直角边OA与MN重合,OB在∠NOE内部.操作:将三角尺绕点O以每秒3°的速度沿顺指针方向旋转一周,设运动时间为t(s).(1)当t为何值时,直角边OB恰好平分∠NOE?此时OA是否平分∠MOE?请说明理由;(2)若在三角尺转动的同时,直线EF也绕点O以每秒9°的速度顺时针方向旋转一周,当一方先完成旋转一周时,另一方同时停止转动.①当t为何值时,EF平分∠AOB?②EF能否平分∠NOB?若能请直接写出t的值;若不能,请说明理由.解:(1)∵当直角边OB恰好平分∠NOE时,∠NOB=∠NOE=(180°﹣30°)=75°,∴90°﹣3t°=75°,解得:t=5.此时∠MOA=3°×5=15°=∠MOE,∴此时OA平分∠MOE.(2)①OE平分∠AOB,依题意有30°+9t﹣3t=90°÷2,解得t=2.5;OF平分∠AOB,依题意有30°+9t﹣3t=180°+90°÷2,解得t=32.5.故当t为2.5s或32.5s时,EF平分∠AOB②OB在MN上面,依题意有180°﹣30°﹣9t=(90°﹣3t)÷2,解得t=14;OB在MN下面,依题意有9t﹣(360°﹣30°)=(3t﹣90°)÷2,解得t=38(舍去).故EF能平分∠NOB,t的值为14s.9.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=90°;在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 4.5秒或40.5秒(直接写出结果).解:(1)如图2,∠BOM=90°,OM平分∠CON.理由如下:∵∠BOC=135°,∴∠MOC=135°﹣90°=45°,而∠MON=45°,∴∠MOC=∠MON;(2)∠AOM=∠CON.理由如下:如图3,∵∠MON=45°,∴∠AOM=45°﹣∠AON,∵∠AOC=45°,∴∠NOC=45°﹣∠AON,∴∠AOM=∠CON;(3)T=×45°÷5°=4.5(秒)或t=(180°+22.5°)÷5°=40.5(秒).10.如图1,在数轴上A,B两点对应的数分别是6,﹣6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=45°;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕点顶点C逆时针旋转30t度,作CF 平分∠ACE,此时记∠DCF=α.①当t=1时,α=30°;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕点顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α与β满足|α﹣β|=20°,请直接写出t的值为.解:(1)如图1中,∵∠EOD=90°,OF平分∠EOD,∴∠FOD=∠EOD=45°,(2)①如图2中,当t=1时,∵∠DCA=30°,∠ECD=90°,∴∠ECA=120°,∵CF平分∠ACE,∴∠FCA=∠ECA=60°∴α=∠FCD=60°﹣30°=30°②如图2中,猜想:∠BCE=2α.理由:∵∠DCE=90°,∠DCF=α,∴∠ECF=90°﹣α,∵CF平分∠ACE,∴∠ACF=∠ECF=90°﹣α,∵点A,O,B共线∴AOB=180°∴∠BCE=∠AOB﹣∠ECD﹣∠ACD=180°﹣90°﹣(90°﹣2α)=2α.(3)如图3中,由题意:α=∠FCA﹣∠DCA=(90°+30t)﹣30t=45°﹣15t,β=∠AC1D1+∠AC1F1=30t+(90°﹣30t)=45°+15t,∵|β﹣α|=20°,∴|30t|=20°,解得t=.。
七年级上数学图形旋转知识点数学是一种抽象的科学,其中涉及许多图形和几何学概念。
在数学中,旋转是一个非常基本和重要的概念。
在这篇文章中,我们将深入探讨七年级上数学中的图形旋转知识点。
1. 图形旋转的基本概念旋转是指将一个物体绕一个中心点进行旋转。
在数学中,我们用角度来描述旋转。
以正方形为例,如果我们将它绕着中心点旋转90度,那么它的每一个角都会旋转90度,并且正方形的形状不会改变。
旋转也可以是逆时针或顺时针的,这取决于我们选择的旋转方向。
2. 旋转的符号表示在数学中,我们用符号来表示旋转。
逆时针旋转通常用正号“+”表示,而顺时针旋转用负号“-”表示。
例如,以正方形为例,如果我们按逆时针方向旋转90度,我们可以写成“+90度”。
如果我们按顺时针方向旋转90度,我们可以写成“-90度”。
在旋转图形时,我们需要选择一个中心点,这个点是旋转的轴心。
当我们将图形沿着旋转轴旋转时,它的形状会发生改变,并且每个点的坐标也会相应地改变。
以正方形为例,如果我们选择它的中心点作为旋转轴心,那么每个角度和边的坐标都会随着旋转改变。
4. 图形旋转的公式图形旋转的公式是用来计算旋转后的点坐标的。
对于一个点(x,y)绕着原点旋转θ度,它的旋转后的坐标可以用下面的公式计算:x'=x*cosθ-y*sinθy'=x*sinθ+y*cosθ其中,x'和y'分别表示旋转后的点的坐标。
在日常生活中,图形旋转具有广泛的应用。
例如,旋转木马、时钟的指针、电风扇的叶片等都是应用了图形旋转的原理。
此外,在工程和科学中,图形旋转也被广泛运用,例如在机械加工、航空航天等领域。
总之,在数学中,旋转是数学的基本概念之一,它具有广泛的应用和重要的理论价值。
七年级上数学的图形旋转知识点虽然比较基础,但却是未来数学学习的重要基础,希望大家能够认真学习和理解。
F E D (C)B A N M O D B A NM O DC B A N M OD (C)B A N M OD C B A 角度旋转题已知∠AOB =100°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD (本题中的角均为大于0°且小于180°的角)(1)如图1,当OB ,OC 重合时,求∠EOF 的度数;(2)当∠COD 从图1所示的位置绕点O 顺时针旋转n °(0<n<90)时,AOE BOF ∠-∠的值是否为定值?若是定值,求出AOE BOF ∠-∠的值,若不是说明理由;(3)当∠COD 从图1所示位置绕点O 顺时针旋转n °(0<n<180)时,满足6AOD BOF COD ∠+∠=∠,求n 的值。
已知∠AOD =160°,OB 、OC 、OM 、ON 是∠AOD 内的射线;(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD ,当OB 绕点O 在∠AOD 内旋转时,则∠MON =_________。
(2)如图2,若∠BOC =20°,OM 平分∠AOC ,ON 平∠BOD ,当∠BOC 绕点O 在∠AOD 内旋转时,求∠MON 的大小。
(3)在(2)的条件下,若∠AOB =10°,当∠BOC 在∠AOD 内绕点O 以2°/秒的速度逆时针旋转t 秒时,∠AOM :∠DON =2:3,求t 的值。
已知∠AOD =α,射线OB ,OC 在∠AOD 的内部,OM 平分∠AOC ,ON 平分∠BOD ,(1)如图1,当射线OB ,OC 重合时,求∠MON 的度数;(2)在(1)的条件下,OC 绕点O 逆时针旋转一定角度,如图2,求∠MON 的度数;(3)在(2)的条件下,射线OC 绕点O 继续逆时针,旋转到与射线OA 的反向延长线重合为止,在这一旋转过程中,∠ MON =_________。
初中七年级(上)旋转动角问题专题(适用于七年级上学期)〖解题策略〗角是一种基本的几何图形,凡是由直线组成的图形都出现角. 角既可以看成有公共端点的两条射线组成的图形,也可以看成是一条射线绕着端点从一个位置旋转到另一个位置所成的图形.解与角有关的问题常用到以下知识与方法:1.角平分线的应用,如双角平分线模型;2. 多个角间的数量关系及其等量代换;3. 引入字母表示比例角度、动角,用方程的观点来进行角的计算;4.角的边位置不定时,需要分类讨论.〖典型例题〗已知∠AOB=150°,OC为∠AOB内部的一条射线,∠BOC=60°.(1)如图1,若OE平分∠AOB,OD为∠BOC内部的一条射线,∠COD=∠BOD,求∠DOE的度数;(2)如图2,若射线OE绕着O点从OA开始以15度/秒的速度顺时针旋转至OB结束、OF绕着O点从OB开始以5度秒的速度逆时针旋转至OA结束,运动时间为t秒,当∠EOC=∠FOC时,求t的值:(3)若射线OM绕着O点从OA开始以15度秒的速度逆时针旋转至OB结束,在旋转过程中,ON平分∠AOM,试问2∠BON一∠BOM在某时间段内是否为定值,若不是,请说明理由;若是请补全图形,求出这个定值并写出t所在的时间段.(本题中的角均为大于0°且小于180°的角)版权所有解:(1)∵∠AOB=150°,OE平分∠AOB,∴∠EOB=∠AOB=75°,∵∠BOC=60°,∠COD=∠BOD,∴∠BOD=40°,∠COD=20°,∴∠EOD=∠EOB﹣∠DOB=75°﹣40°=35°.(2)当OE在∠AOC内部时,∵∠EOC=∠FOC,∴90﹣15t=60﹣5t,∴t=3.当OE与OF重合时,15t+5t=150°,t=7.5.综上所述,当∠EOC=∠FOC时,t=3s或7.5s.(3)2∠BON﹣∠BOM的值为定值(4<t<12).理由:∵∠AOM=15t.∠AON=∠MON=7.5t,∠BON=210°﹣7.5t,∠BOM=210°﹣15t,∴2∠BON一∠BOM=2(210°﹣7.5t)﹣(210°﹣15t)=210°(4<t<12).〖同步练习〗一. 填空题.1.计算:53°40′30″+75°57′28″=2.同学们,闹钟都见过吧!它的时针和分针如同兄弟俩在赛跑,可你是否知道时针每分钟走多少度?分针每分针走多少度?当你弄清楚这个问题后,你能解决很多关于闹钟有趣的问题:(1)三点整时时针与分针所夹的角是度.(2)7点25分时针与分针所夹的角是度.(3)一昼夜(0点到24点)时针与分针互相垂直的次数有多少次?3.如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.如图2,若∠MPN=75°,且射线PQ绕点P从PN位置开始,以每秒15°的速度逆时针旋转,射线PM同时绕点P以每秒5°的速度逆时针旋转,当PQ与PN成180°时,PQ与PM同时停止旋转,设旋转的时间为t秒.当射线PQ是∠MPN的“巧分线”时,t的值为.4.如图1所示∠AOB的纸片,OC平分∠AOB,如图2把∠AOB沿OC对折成∠COB(OA与OB重合),从O点引一条射线OE,使∠BOE=∠EOC,再沿OE把角剪开,若剪开后得到的3个角中最大的一个角为76°,则∠AOB=°.二. 解答题5.如图,∠AOB=20°,∠AOE=110°,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以点O为观察中心,OA为正东方向,求射线OD的方位角;(3)若∠AOE的两边OA,OE分别以每秒5°和每秒3°的速度,同时绕点O按逆时针方向旋转,当OA回到原处时,OA,OE停止运动,则经过多少秒时,∠AOE=30°?6.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=100°,则∠DOE=;若∠AOC=120°,则∠DOE=;(2)若∠AOC=α,则∠DOE=(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣2∠BOE=4∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.7.一副三角板ABC、DEF,如图(1)放置,(∠D=30°、∠BAC=45°)(1)求∠DBA的度数.(2)若三角板DBE绕B点逆时针旋转,(如图2)在旋转过程中BM、BN分别平分∠DBA、∠EBC,则∠MBN如何变化?(3)若三角板BDE绕B点逆时针旋转到如图(3)时,其它条件不变,则(2)的结论是否变化?8.如图,直线EF与MN相交于点O,∠MOE=30°,将一直角三角尺的直角顶点与O重合,直角边OA与MN重合,OB在∠NOE内部.操作:将三角尺绕点O以每秒3°的速度沿顺指针方向旋转一周,设运动时间为t(s).(1)当t为何值时,直角边OB恰好平分∠NOE?此时OA是否平分∠MOE?请说明理由;(2)若在三角尺转动的同时,直线EF也绕点O以每秒9°的速度顺时针方向旋转一周,当一方先完成旋转一周时,另一方同时停止转动.①当t为何值时,EF平分∠AOB?②EF能否平分∠NOB?若能请直接写出t的值;若不能,请说明理由.9.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=;在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).10.如图1,在数轴上A,B两点对应的数分别是6,﹣6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕点顶点C逆时针旋转30t度,作CF 平分∠ACE,此时记∠DCF=α.①当t=1时,α=;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕点顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α与β满足|α﹣β|=20°,请直接写出t的值为.〖参考答案〗一. 填空题.1.计算:53°40′30″+75°57′28″=129°37′58″,解:53°40′30″+75°57′28″=128°97′58″=129°37′58″2.同学们,闹钟都见过吧!它的时针和分针如同兄弟俩在赛跑,可你是否知道时针每分钟走多少度?分针每分针走多少度?当你弄清楚这个问题后,你能解决很多关于闹钟有趣的问题:(1)三点整时时针与分针所夹的角是90度.(2)7点25分时针与分针所夹的角是72.5度.(3)一昼夜(0点到24点)时针与分针互相垂直的次数有多少次?解:(1)3×30=90°;(2)2×30°=72.5°;(3)从重合到第一次垂直所需要的时间为,设一次垂直到下一次垂直经过x分钟,则6x﹣0.5x=2×905.5x=180x=,(24×60﹣)÷=24×60×=43.5(次)取整为43次.故总次数为43+1=44(次)答:一昼夜时针与分针互相垂直的次数为44次.3.如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.如图2,若∠MPN=75°,且射线PQ绕点P从PN位置开始,以每秒15°的速度逆时针旋转,射线PM同时绕点P以每秒5°的速度逆时针旋转,当PQ与PN成180°时,PQ与PM同时停止旋转,设旋转的时间为t秒.当射线PQ是∠MPN的“巧分线”时,t的值为3或或.解:当∠NPQ=∠MPN时,15t=(75°+5t),解得t=3;当∠NPQ=∠MPN时,15t=(75°+5t),解得t=.当∠NPQ=∠MPN时,15t=(75°+5t),解得t=.故t的值为3或或.4.如图1所示∠AOB的纸片,OC平分∠AOB,如图2把∠AOB沿OC对折成∠COB(OA与OB重合),从O点引一条射线OE,使∠BOE=∠EOC,再沿OE把角剪开,若剪开后得到的3个角中最大的一个角为76°,则∠AOB=114°.解:∵OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC又∵剪开后得到的3个角中最大的一个角为76°,∴2∠COE=76°∴∠COE=38°又∵∠BOE=∠EOC,∴∠BOE=×38°=19°∴∠BOC=∠BOE+∠EOC=19°+38°=57°则∠AOB=2∠BOC=2×57°=114°.二. 解答题5.如图,∠AOB=20°,∠AOE=110°,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以点O为观察中心,OA为正东方向,求射线OD的方位角;(3)若∠AOE的两边OA,OE分别以每秒5°和每秒3°的速度,同时绕点O按逆时针方向旋转,当OA回到原处时,OA,OE停止运动,则经过多少秒时,∠AOE=30°?解:(1)因为OB平分∠AOC,∠AOB=20°,所以∠AOC=40°,因为OD平分∠AOE,∠AOE=110°,所以∠AOD=55°,因为∠COD=∠AOD﹣∠AOC,所以∠COD=55°﹣40°=15°;(2)因为90°﹣55°=35°,所以射线OD的方位角是北偏东35°;(3)设经过x秒时,∠AOE=30°,①如图1所示,当OA未追上OE时,依题意,得5x﹣110=3x﹣30,解得,x=40;②如图2所示,当OA超过OE时,依题意,得5x﹣110=3x﹣305x﹣110=3x+30,解得,x=70.6.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=100°,则∠DOE=50°;若∠AOC=120°,则∠DOE=60°;(2)若∠AOC=α,则∠DOE=α(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣2∠BOE=4∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.解:(1)∵∠AOC=100°,∴∠BOC=180°﹣100°=80°,∵OE平分∠BOC,∴∠COE=∠BOC=×80°=40°,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣40°=50°;∵∠AOC=120°,∴∠BOC=180°﹣120°=60°,∵OE平分∠BOC,∴∠COE=∠BOC=×60°=30°,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣30°=60°;(2)∠DOE=α;∵∠AOC=α,∴∠BOC=180°﹣α,∵OE平分∠BOC,∴∠COE=∠BOC=90°﹣α,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣(90°﹣α)=α;(3)∠DOE﹣∠AOF=45°.理由:∵∠AOC﹣2∠BOE=4∠AOF,∴∠AOC﹣3∠AOF=2∠BOE+∠AOF,设∠DOE=x,∠AOF=y,左边=∠AOC﹣3∠AOF=2∠DOE﹣3∠AOF=2x﹣3y,右边=2∠BOE+∠AOF=2(90°﹣x)+y=180°﹣2 x+y,∴2x﹣3y=180﹣2 x+y 即4x﹣4y=180°,∴x﹣y=45°∴∠DOE﹣∠AOF=45°.7.一副三角板ABC、DEF,如图(1)放置,(∠D=30°、∠BAC=45°)(1)求∠DBA的度数.(2)若三角板DBE绕B点逆时针旋转,(如图2)在旋转过程中BM、BN分别平分∠DBA、∠EBC,则∠MBN 如何变化?(3)若三角板BDE绕B点逆时针旋转到如图(3)时,其它条件不变,则(2)的结论是否变化?解:(1)∠DBA=∠DBC﹣∠ABC=60°﹣45°=15°;(2)∠MBN的度数不变化,理由如下:设∠ABE=x°,则∠ABD=60﹣x°、∠CBE=45°﹣x°,∵BM、BN分别平分∠ABD、∠CBE∴∠ABM=∠ABD=(60°﹣x°),∠EBN=∠EBC=(45°﹣x°),∴∠MBN=∠ABM+∠ABE+∠EBN=(60°﹣x°)+x°+(45°﹣x°)=52.5°;(3)(2)中的结论不变,理由如下:设∠ABE=x°,则∠ABD=60+x°、∠CBE=45°+x°,∵BM、BN分别平分∠ABD、∠CBE,∴∠ABM=∠ABD=(60°+x°),∠EBN=∠EBC=(45°+x°),∴∠MBN=∠ABM﹣∠ABE+∠EBN=(60°+x°)﹣x°+(45°+x°)=52.5°.8.如图,直线EF与MN相交于点O,∠MOE=30°,将一直角三角尺的直角顶点与O重合,直角边OA与MN重合,OB在∠NOE内部.操作:将三角尺绕点O以每秒3°的速度沿顺指针方向旋转一周,设运动时间为t(s).(1)当t为何值时,直角边OB恰好平分∠NOE?此时OA是否平分∠MOE?请说明理由;(2)若在三角尺转动的同时,直线EF也绕点O以每秒9°的速度顺时针方向旋转一周,当一方先完成旋转一周时,另一方同时停止转动.①当t为何值时,EF平分∠AOB?②EF能否平分∠NOB?若能请直接写出t的值;若不能,请说明理由.解:(1)∵当直角边OB恰好平分∠NOE时,∠NOB=∠NOE=(180°﹣30°)=75°,∴90°﹣3t°=75°,解得:t=5.此时∠MOA=3°×5=15°=∠MOE,∴此时OA平分∠MOE.(2)①OE平分∠AOB,依题意有30°+9t﹣3t=90°÷2,解得t=2.5;OF平分∠AOB,依题意有30°+9t﹣3t=180°+90°÷2,解得t=32.5.故当t为2.5s或32.5s时,EF平分∠AOB②OB在MN上面,依题意有180°﹣30°﹣9t=(90°﹣3t)÷2,解得t=14;OB在MN下面,依题意有9t﹣(360°﹣30°)=(3t﹣90°)÷2,解得t=38(舍去).故EF能平分∠NOB,t的值为14s.9.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=90°;在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 4.5秒或40.5秒(直接写出结果).解:(1)如图2,∠BOM=90°,OM平分∠CON.理由如下:∵∠BOC=135°,∴∠MOC=135°﹣90°=45°,而∠MON=45°,∴∠MOC=∠MON;(2)∠AOM=∠CON.理由如下:如图3,∵∠MON=45°,∴∠AOM=45°﹣∠AON,∵∠AOC=45°,∴∠NOC=45°﹣∠AON,∴∠AOM=∠CON;(3)T=×45°÷5°=4.5(秒)或t=(180°+22.5°)÷5°=40.5(秒).10.如图1,在数轴上A,B两点对应的数分别是6,﹣6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=45°;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕点顶点C逆时针旋转30t度,作CF 平分∠ACE,此时记∠DCF=α.①当t=1时,α=30°;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕点顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α与β满足|α,请直接写出t的值为.﹣β|=20°解:(1)如图1中,∵∠EOD=90°,OF平分∠EOD,∴∠FOD=∠EOD=45°,(2)①如图2中,当t=1时,∵∠DCA=30°,∠ECD=90°,∴∠ECA=120°,∵CF平分∠ACE,∴∠FCA=∠ECA=60°∴α=∠FCD=60°﹣30°=30°②如图2中,猜想:∠BCE=2α.理由:∵∠DCE=90°,∠DCF=α,∴∠ECF=90°﹣α,∵CF平分∠ACE,∴∠ACF=∠ECF=90°﹣α,∵点A,O,B共线∴AOB=180°∴∠BCE=∠AOB﹣∠ECD﹣∠ACD=180°﹣90°﹣(90°﹣2α)=2α.(3)如图3中,由题意:α=∠FCA﹣∠DCA=(90°+30t)﹣30t=45°﹣15t,β=∠AC1D1+∠AC1F1=30t+(90°﹣30t)=45°+15t,∵|β﹣α|=20°,,∴|30t|=20°解得t=.。
专题二旋转旋转点会有一组对角相等(考题规律,如果已知条件为较小的角度相等,则题目一定需要较大的角相等;如果 条件给出较大的角相等,则一定需要较小的角相等)、基本图形二:将厶AOB 旋转至△ A OB 连接AA 与BB',分别在图①、②中证明△ OAA M^ OBB 相似。
旋转后连接得到的两个三角形相似。
因为旋转的两个三角形全等,连接后出现等腰三角形,顶角相等;则底角亦相等;或根据夹角成比例证明相似。
出题位选择、填空最后一道题和倒数第二道题,压轴题最后两道“旋转”在苏教版中是一个独立章节,在中考和平时的考试张经常出现,结合三角形, 四边形等基本图形考察学生对旋转的应用。
同时,旋转对解决动点问题有极大的帮助。
」、基本图形一:将/ AOB 旋转至/ A'OB',图①、②分别可以得到结论?B②三、解题步骤(1)第一步:找旋转点,角相等;(2)第二步:证全等、相似;(3)第三步:利用全等、相似得到边、角条件。
例1.在锐角△ ABC 中,AB=4, BC=5 / ACB=45,将△ ABC 绕点B 按逆时针方向旋转,得到△ ABG .求线段ER 长度的最大值与最小值.例2.已知△ ABC 是等边三角形(1) 将厶ABC 绕点A 逆时针旋转角(0 °v & V 180°),得到△ ADE BD 和EC 所在直线相交于点 O① 如图a ,当=20。
时,△ ABD 与△ ACE 是否全等? _______________ (填“是”或“否”),Z BOE ______________ 度;② 当△ ABC 旋转到如图b 所在位置时,求Z BOE 的度数;(2) 如图c ,在AB 和AC 上分别截取点B'和C',使AB=AB ,AC=AC 育连接B '。
’,将厶AB C'绕点A 逆时 针旋转角(0° V V 180°),得到△ ADE.BD 和 EC 所在直线相交于点 O,请利用图c 探索Z BOE 的度数,直接写出结果,不必说明理由.AAACJSi例4.【2016 •扬州】已知正方形ABCD 的边长为4, 一个以点A 为顶点的45°角绕点A 旋转,角的两边分别与 边BC DC 的延长线交于点 E 、F ,连接EF 。
1.将一副三角板中的含有60°角的三角板的顶点和另一块的45°角的顶点重合于一点O,绕着点O旋转60°的三角板,拼成下面的情况,请回答问题:
(1)如图1放置,将含有60°角的一边与45°角的一边重合,求出此时∠AOD 的度数是
(2)绕着点O,转动三角板AOB,恰好是OB平分∠COD,此时∠AOD的度数应该是多少?
(3)是否存在这种情况,∠AOC的度数恰好等于∠BOD度数的3倍。
如果存在,请求出∠AOD的度数,如果不存在请说明理由。
(4)若∠AOD=m°,用含有m的式子表示∠AOC为
将直角∠COD的顶点O,放在直线AB上,过点O做射线OE,使得∠AOC=∠COE,
(1)如图,若直角的两条边都在直线AB的上方时,请证明∠EOD与∠DOB的关系。
(2)绕着点O,旋转直角∠COD,问题(1)中的结论是否一直成立?若成立请证明,若不成立,请说明理由。
(3)若∠AOC的度数恰好是∠BOD的4倍时,你能说出这两个角的度数吗?
3.已知一副三角板如图摆放,∠DCE=30°现将∠DCE 绕C 点以15°/s 速度逆时针旋转,
时间为t 秒
(1)t 为多少秒时CE 恰好平分∠BCD.
(2)当6<t <8时CM 平分∠ACE,CN 平分∠BCD, 求∠MCN 的值.
(3)当8<t<12,(2)中的结论是否变化,不变求值
4. 如图,点O 为直线AB 上一点,过点O 做射线OC 使∠BOC=120°,将一直角三角板顶点放在点O 处,一边OM 在射线OB
上,另一边ON 在直线AB 的下方,其中∠OMN=30°
(1)将图1的三角板逆时针旋转至图2处,使一边OM 在∠BOC 的内部,且恰好平分
∠BOC,问此时直线ON 是否平分∠AOC?请说明理由
(2)将图一的三角板绕点O 以每秒6°的速度沿逆时针方向旋转一周,在旋转过程中,第
t 秒时,直线ON 恰好平分锐角∠AOC ,则t 的值为
(3)将图1的三角板绕点O 顺时针旋转至图3,使ON
在∠AOC 的内部,求∠AOM-∠NOC
M A。