七年级数学—动角问题
- 格式:doc
- 大小:175.50 KB
- 文档页数:4
培优专题12 角中的动态问题类型一:运动的三角尺问题1.(2022·江苏盐城·七年级期末)【阅读理解】如图1,一套三角板如图拼在一起,我们将三角板COD绕点O以每秒15°的速度顺时针旋转180°.【解决问题】(1)在旋转过程中,∠AOB、∠AOC、∠BOC之间有怎样的数量关系?(2)当运动时间为9秒时,图中有角平分线吗?找出并说明理由.(3)运动过程中,如图2,形成的三个角:∠AOB、∠AOC、∠BOC,当其中一个角的度数是另一个角的两倍时,则称射线OC是∠AOB的“优线”.①第(2)问中旋转后的射线OC是“优线”吗?为什么?②在整个旋转过程中,若旋转时间记为t秒,当射线OC是“优线”时,请直接写出所有满足条件的t值.【答案】(1)∠AOC+∠BOC=∠AOB或者∠AOC-∠BOC=∠AOB;(2)有,理由见解析;(3)①是,理由见解析;②t=2,3,4,9,12【分析】(1)根据题意画出图形可得结论;(2)分别计算出角的度数可得结论;(3)①根据“优线”的定义可判断;②根据题意全面考虑所有可能并分类讨论可得t的值.【详解】(1)如图,当OC在∠AOB内部时,∠AOC+∠BOC=∠AOB,(2)有,理由如下:射线OD平分∠AOB,射线OB平分∠COD.当运动时间为9秒时,∠AOC=15°×9=135°∴15t =180,解得t =12.综上,t =2,3,4,9,12.【点睛】本题主要考查了三角尺中角度的计算,几何图形中角的计算,根据题意全面考虑所有可能以分类讨论是解题的关键.2.(2022·河南·郑州中学七年级期末)(1)探究:在①15°,②25°,③35°,④45°,⑤65°中,乐乐同学利用一副三角板能画出来的角是______;(填序号)(2)在探究过程中,爱动脑筋的乐乐想起了图形的运动方式有多种.如图1,她先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45°角(∠AOB )的顶点,与60°角(∠COD )的顶点互相重合,且边OA ,OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向每秒旋转5°(如图2),当边OB 第一次落在射线OF 上时停止,是否存在一个时间t (秒)使∠BOC =3∠AOD ?若存在,请求出所有符合题意的t 的值;若不存在,请说明理由.【答案】(1)①④(2)存在当22.5t =或24.75t =时,=3BOC AOD ∠∠,理由见解析【分析】(1)根据三角板的特点求解即可;(2)分两种情况当OA 在∠DOE 内时,当OA 在∠DOE 外部时,利用角之间的关系求解即可.(1)解:∵一副三角板有的度数为30°,45°,60°,90°,∴用一副三角板可以画出的角的度数为15°,30°,45°,75°,90°,105°,135°等等,不能画出25°,35°,65°,故答案为:①④;(2)解:存在当22.5t =或24.75t =时,=3BOC AOD ∠∠,理由如下:由题意得:=5AOE t °∠,=45AOB а,60COD Ð=°,∴=180=1355BOC AOE AOB t °--°-°∠∠∠,=180=120DOE COD °-°∠∠,分两种情况:当OA 在∠DOE 内时,如图2-1所示,∴1205AOD DOE AOE t Ð=Ð-Ð=°-°,∵=3BOC AOD ∠∠,∴()135531205t t °-°=°-°,解得22.5t =,∵22.55120´°<°,∴22.5t =符合题意;当OA 在∠DOE 外部时,如图2-2所示∴5120AOD DOE AOE t Ð=Ð-Ð=°-°,∵=3BOC AOD ∠∠,∴()135535120t t °-°=°-°,解得24.75t =,∵24.755120´°>°,∴24.75t =符合题意;∴当22.5t =或24.75t =时,=3BOC AOD ∠∠.【点睛】本题主要考查了三角板和几何中角度的计算,利用分类讨论的思想求解是解题的关键.3.(2022·福建福州·七年级期末)一副三角尺(分别含∠B =∠AOB =45°,∠A =90°和∠D =30°,∠COD =60°,∠C =90°)按如图所示摆放使得B 、O 、D 三点共线.将三角尺ABO 绕点O 以每秒4°的速度顺时针旋转,当边AO 与OD 重合时停止运动,设三角尺ABO 的运动时间为t 秒.(1)当t=10时,∠AOD=°.(2)求出当t为何值时,边AO平分∠COD.(3)若在三角尺ABO开始旋转的同时,三角尺OCD也绕点O以每秒1°的速度逆时针旋转,当三角尺ABO停止旋转时,三角尺OCD也停止旋转.在旋转过程中,是否存在某一时刻使∠AOD=2∠BOC,若存在,请直接写出t的值;若不存在,请说明理由.(3)存在,理由是:在旋转过程中,当OB在OC右侧时,∠BOC+∠AOD=60°-45°=15°∴∠AOD=23×15°=10°,综上:t的值为21秒或27【点睛】本题是几何变换综合题,主要考查了旋转的变化,角平分线的定义,角的计算,利用三角板的特殊角,分清运动的情形是解题的关键..(福建三明七年级期末)一副三角尺按照如图所示摆放在量角器上,边器0刻度线重合,边AP与量角器180°刻度线重合,将三角尺ABP绕量角器中心点P以每秒4°的速度顺时针旋转,当边PB与0°刻度线重合时停止运动.设三角尺ABP的运动时间为t (秒)(1)当5t=秒时,边PB经过的量角器刻度线对应的度数为_ ;(2)t=秒时,边PB平分CPDÐ;(3)若在三角尺ABP开始旋转的同时,三角尺PCD也绕点P以每秒1o的速度逆时针旋转,当三角尺ABP停止旋转时,三角尺PCD也停止旋转,①当t为何值时,边PB平分CPDÐ;②在旋转过程中,是否存在某一时刻,使得:3:2BPD APC ÐÐ=.若存在,请求出t 的值;若不存在,请说明理由.综上所述:18t =秒或25.2秒时,:3:2BPD APC ÐÐ=.【点睛】本题主要考查一元一次方程与角的和差倍分关系的综合,根据等量关系,列出一元一次方程,是解题的关键.类型二:角的动线问题5.(2020·河南平顶山·七年级期末)如图①,直线PQ 上依次有A 、O 、B 三点,若射线OA 绕点O 沿顺时针方向以每秒2°的速度旋转,同时射线OB 绕点O 沿逆时针方向以每秒4°的速度旋转,如图②,设旋转时间为t 秒(045££t ).(1)POA Ð=__________度,QOB Ð=__________度.(用含t 的代数式表示)(2)在运动过程中,当AOB Ð等于60°时,求t 的值.(3)在旋转过程中是否存在这样的t ,使得射线OB 平分AOQ Ð或AOP Ð (AOQ Ð,AOP Ð均为小于180°的角)?如果存在,直接写出t 的值;如果不存在,请说明理由.【答案】(1)2POA t Ð=度,4QOB t Ð=度;(2)当AOB Ð等于60°时,t=20或40;(3)射线OB 平分AOQ Ð或AOP Ð时,t=18或36.【分析】(1)∠POA 的度数等于OA 旋转速度乘以旋转时间,∠QOB 的度数等于OB 旋转速度乘以旋转时间;(2)分OA 与OB 相遇前,∠AOB=60°,和OA 与OB 相遇后,∠AOB=60°,两种情况,列出关于t 的等式,解出即可;(3)分OB 平分∠AOQ 和OB 平分∠AOP 两种情况,列出关于t 的等式,解出即可.【详解】(1)22POA t t Ð=´=度,44QOB t t Ð=´=度;(2)①OA 与OB 相遇前,∠AOB=60°,2604180t t ++=6120t =20t =;②OA 与OB 相遇后,∠AOB=60°,2460180t t +-=6240t =40t=,综上,当AOBÐ等于60°时,t=20或40;(3)①OB平分∠AOQ时,∠AOQ=2∠BOQ,-=´t t180224-=-t10180t=;18②OB平分∠AOP时,∠AOP=2∠BOP,()=´-t t221804t t=-23608t=10360t=,36综上,射线OB平分AOQÐ时,t=18或36.Ð或AOP【点睛】本题是对角度动态问题的考查,熟练掌握角的计算和角平分线性质的运用,准确根据题意列出方程是解决本题的关键,难度相对较大.6.(2017·福建泉州·七年级阶段练习)如图,点A,B在以点O为圆心的圆上,且∠AOB=30°,如果甲机器人从点A出发沿着圆周按顺时针方向以每秒5°的速度行驶;乙机器人同时从点B出发沿着圆周按逆时针方向行驶,速度是甲机器人的两倍,经过一段时间后,甲、乙分别运动到点C,D,当以机器人到达点B时,甲乙同时停止运动,设运动时间为t,(1)当t=2秒时,则∠COD的度数是________;并请你直接写出用含t的代数式表示∠BOC,则∠BOC=________(2)探究:当时间为多少秒时,点C与点D相遇?(3)在机器人运动的整个过程中,若∠COD是∠AOB的3倍,求甲运动的时间.【答案】(1)60° ;30+5t(2)22秒(3)4秒,16秒,28秒【分析】(1)根据角的和差定义计算即可;(2)根据∠AOC+∠BOD+∠AOB=360°,构建方程即可解决问题;(3)分三种情形讨论,分别构建方程即可解决问题;(1)当t=2秒时,∠AOC=20°,∠BOD=10°,∴∠COD=∠AOC+∠AOB+∠BOD=60°,∠BOC=(30+5t)°,故答案为60°,(30+5t)°;(2)甲机器人的运动速度每秒为5°,乙机器人的运动速度为每秒10°,∴∠AOC=5t,则∠BOD=10t,∵∠AOC+∠BOD+∠AOB=360°∴5t+10t+30=360,解得:t=22.所以,当时间为22秒时,点C与点D相遇.(3)分三种情况讨论:①当OC,OD运动到如图1所示的位置时,设甲的运动时间为t秒,则∠AOC=5t°,∠BOD=10t°,∵∠COD=90°,∠AOB=30°,∴5t+30+10t=90,解得:t=4;②当OC,OD运动到如图2所示的位置时,设甲的运动时间为t秒,则∠AOC=5t°,∠BOD=10t°,∵∠COD=90°,∠AOB=30°,∴5t+30+10t+90=360,解得:t=16;③当OC,OD运动到如图3所示的位置时,设甲的运动时间为t秒,则∠AOC=5t°,∠BOD=10t°,∵∠COD=90°,∠AOB=30°,∴5t+30+10t﹣90=360,解得:t=28;综上,甲运动的时间分别为4秒,16秒,28秒符合题意.【点睛】本题考查一元一次方程的应用、角的和差定义等知识,解题的关键是理解题意,学会正确寻找等量关系,构建方程解决问题,学会用分类讨论的思想思考问题.7.(2022·湖北武汉·七年级期末)【阅读理解】射线OC是∠AOB内部的一条射线,若∠COA=1∠BOC,则我们称射线OC是射线OA的2伴随线.例如,如图1,∠AOB=60°,∠AOC=∠COD=∠BOD=20°,则∠AOC=12∠AOD,称射线OD是射∠BOC,称射线OC是射线OA的伴随线;同时,由于∠BOD=12线OB的伴随线.【知识运用】(1)如图2,∠AOB=120°,射线OM是射线OA的伴随线,则∠AOM= °,若∠AOB的度数是α,射线ON是射线OB的伴随线,射线OC是∠AOB的平分线,则∠NOC 的度数是 .(用含α的代数式表示)(2)如图3,如∠AOB=180°,射线OC与射线OA重合,并绕点O以每秒3°的速度逆时针旋转,射线OD与射线OB重合,并绕点O以每秒5°的速度顺时针旋转,当射线OD与射线OA 重合时,运动停止.①是否存在某个时刻t (秒),使得∠COD 的度数是20°,若存在,求出t 的值,若不存在,请说明理由.②当t 为多少秒时,射线OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.Q 同理,若∠AOB 的度数是11BON AOB a \Ð=Ð=故答案为:40,6a°OC是OA的伴随线时,则OC是OD的伴随线时,OD是OC的伴随线时,OD 是OA 的伴随线时,则的上方.MON 为直角三角板,O 为直角顶点,30M Ð=°,ON 在射线OC 上.将三角板MON 绕点O 以每秒6°的速度沿逆时针方向旋转,与此同时,射线OC 绕点O 以每秒11°的速度沿逆时针方向旋转,当射线OC 与射线OA 重合时,所有运动都停止.设运动的时间为t 秒,(1)旋转开始前,∠MOC =°,∠BOM = °;(2)运动t 秒时,OM 转动了°,t 为 秒时,OC 与OM 重合;(3)t 为何值时,∠MOC =35°?请说明理由.【答案】(1)90°,60°;(2)108°,18;(3)11秒或25秒.【分析】(1)根据30AOC Ð=°,MON 为直角三角板,ON 在射线OC 上,即可得出答案;(2)根据MON 为直角三角板,得90MON Ð=°,构建方程求出t 即可解决问题;(3)分两种情况分别构建方程解决问题即可.【详解】(1)旋转前,MON 为直角三角板,ON 在射线OC 上\90MOC MON Ð=Ð=°Q 30AOC Ð=°\30AON Ð=°,\18060BOM MON AON Ð=°-Ð-Ð=°;故答案为:90°;60°.(2)Q 90MON Ð=°由题意得:90611t t °+=,18t =,故OM 转动:186108´°=°;故答案为:108°;18.(3)35MOC Ð=°Q ,由题意:()1206301135t t °+-°+=°或()3011120635t t °+-°+=°,解得:11t =或25,\11t s =或25s 时,35MOC Ð=°.【点睛】本题考查旋转变换,角的和差定义,一元一次方程等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.。
七年级动点问题和动角问题培优训练一.动点问题1.对于数轴上的点M,线段AB,给出如下定义:P为线段AB上任意一点,如果M,P两点间的距离有最小值,那么称这个最小值为点M,线段AB的“近距”,记作d1(点M,线段AB);如果M,P两点间的距离有最大值,那么称这个最大值为点M,线段AB的“远距”,记作d2(点M,线段AB),特别的,若点M与点P重合,则M,P两点间距离为0,已知点A表示的数为﹣2,点B表示的数为3.例如图,若点C表示的数为5,则d1(点C,线段AB)=2,d2(点C,线段AB)=7.(1)若点D表示的数为﹣3,则d1(点D,线段AB)=,d2(点D,线段AB)=;(2)若点E表示数为x,点F表示数为x+1.d2(点F,线段AB)是d1(点E,线段AB)的3倍.求x的值.2.定义:当点P在线段AB上,AP=mAB时,我们称m为点P在线段AB上的“分值”,记作k P﹣AB=m.理解:如点P是AB的中点时,即,则AP=AB,则k P﹣AB=;反过来,当k P﹣AB=时,则有AP=AB.因此我们可以这样理解:”k P﹣AB=m”与”AP=mAB”具有相同的含义.应用:(1)如图1,点P在线段AB上.若k P﹣AB=,则AP=AB;若AP=4BP,则k P﹣AB=.(2)已知线段AB=27cm,点P,Q分别从点A、B同时出发,相向运动,点P到达点B 时,P,Q都停止运动,设运动时间为ts.①若点P,Q的运动速度均为1cm/s,试用含t的式子表示k P﹣AB和k Q﹣AB,并判断它们的数量关系;②若点P和点Q的运动速度分别为3cm/s和5cm/s,点Q到达点A后立即以原速返回B,t为何值时,k P﹣AB+k Q﹣AB=.拓展:(3)如图2,在三角形ABC中,AB=AC=12,BC=6,点P,Q同时从点A出发,点P沿线段AB匀速运动至点B.点Q沿线段AC,CB匀速运动至点B,且点P,Q同时到达点B,设k P﹣AB=m.当点Q运动到线段CB上时,请用含m的式子图2表示k Q﹣CB.3.【探索新知】如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,求AB的值(用含π的代数式表示);(2)若点D也是图1中线段AB的圆周率点(不同于C点),求AC与DB的数量关系.【深入研究】如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N均为线段OC的圆周率点,求线段MN的长度;(4)在图2中,点P、Q分别从点O、C位置同时出发,分别以每秒2个单位长度、每秒1个单位长度的速度向右匀速运动,运动时间为t秒.点P追上点Q时,停止运动,当P、C、Q三点中某一点为其余两点所构成线段的圆周率点时,请求出t的值.4.数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴时,我们发现有许多重要的规律:例如,若数轴上点A,B表示的数分别为a,b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点M表示的数为.如图,在数轴上,点A,B,C表示的数分别为﹣8,2,20.(1)如果点A和点C都向点B运动,且都用了4秒钟,那么这两点的运动速度分别是点A每秒个单位长度、点C每秒个单位长度;(2)如果点A以每秒1个单位长度沿数轴的正方向运动,点C以每秒3个单位长度沿数轴的负方向运动,设运动时间为t秒,请问当这两点与点B距离相等的时候,t为何值?(3)如果点A以每秒1个单位长度沿数轴的正方向运动,点B以每秒3个单位长度沿数轴的正方向运动,且当它们分别到达C点时就停止不动,设运动时间为t秒,线段AB的中点为点P;1.t为何值时PC=12;2.t为何值时PC=4.5.已知数轴上有A、B两点,点A表示的数为﹣8,且AB=20.(1)点B表示的数为;(2)如图1,若点B在点A的右侧,点P以每秒4个单位的速度从点A出发向右匀速运动.①若点Q同时以每秒2个单位的速度从点B出发向左匀速运动,经过多少秒后,点P与点Q相距1个单位?②若点Q同时以每秒2个单位的速度从点B出发向右匀速运动,经过多少秒后,在点P、B、Q三点中,其中有一点是另外两个点连接所成线段的中点?6.如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B的距离相等;(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC 的值.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s 的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.8.已知a、b满足(a﹣2)2+|ab+6|=0,c=2a+3b,且有理数a、b、c在数轴上对应的点分别为A、B、C.(1)则a=,b=,c=.(2)点D是数轴上A点右侧一动点,点E、点F分别为CD、AD中点,当点D运动时,线段EF的长度是否发生变化,若变化,请说明理由,若不变,请求出其值;(3)若点A、B、C在数轴上运动,其中点C以每秒1个单位的速度向左运动,同时点A和点B分别以每秒3个单位和每秒2个单位的速度向右运动.请问:是否存在一个常数m使得m•AB﹣2BC不随运动时间t的改变而改变.若存在,请求出m和这个不变化的值;若不存在,请说明理由.9.已知数轴上三点M,O,N对应的数分别为﹣2,0,4,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M点N的距离相等,则x=.(2)数轴上是否存在点P,使点P到点M、点N的距离之和是10?若存在,求出x的值;若不存在,请说明理由.(3)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.10.如图1,已知数轴上A,B两点表示的数分别为﹣9和7.(1)AB=.(2)点P、点Q分别从点A、点B出发同时向右运动,点P的速度为每秒4个单位,点Q的速度为每秒2个单位,经过多少秒,点P与点Q相遇?(3)如图2,线段AC的长度为3个单位线段BD的长度为6个单位,线段AC以每秒4个单位的速度向右运动,同时线段BD以每秒2个单位的速度向左运动,设运动时间为t 秒.①t为何值时,点B恰好在线段AC的中点M处.②t为何值时,AC的中点M与BD的中点N距离2个单位.11.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.12.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,A、B两点之间的距离是90米,甲、乙两机器人分别从A、B两点同时同向出发到终点C,乙机器人始终以50米分的速度行走,乙行走9分钟到达C点.设两机器人出发时间为t(分钟),当t=3分钟时,甲追上乙.请解答下面问题:(1)B、C两点之间的距离是米.(2)求甲机器人前3分钟的速度为多少米/分?(3)若前4分钟甲机器人的速度保持不变,在4≤t≤6分钟时,甲的速度变为与乙相同,求两机器人前6分钟内出发多长时间相距28米?(4)在(3)的条件下,若6分钟后甲机器人的速度又恢复为原来出发时的速度,直接写出当t>6时,甲、乙两机器人之间的距离S.(用含t的代数式表示).二.动角问题13.如图1,直线DE上有一点O,过点O在直线DE上方作射线OC,将一直角三角板AOB (其中∠OAB=30°)的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕着点O按每秒10°的速度逆时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,此时,∠BOC与∠BOE 之间数量关系为;(2)若射线OC的位置保持不变,且∠COE=130°.①在旋转的过程中,是否存在某个时刻,使得射线OA,OC,OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意t的值,若不存在,请说明理由;②如图3,在旋转的过程中,边AB与射线OE相交,请直接写出∠AOC﹣∠BOE的值.14.将一副三角板中的含有60°角的三角板的顶点和另一块的45°角的顶点重合于一点O,绕着点O旋转60°的三角板,拼成如图的情况(OB在∠COD内部),请回答问题:(1)如图1放置,将含有60°角的一边与45°角的一边重合,求出此时∠AOD的度数.(2)绕着点O,转动三角板AOB,恰好是OB平分∠COD,此时∠AOD的度数应该是多少?(3)是否存在这种情况,∠AOC的度数恰好等于∠BOD度数的3倍.如果存在,请求出∠AOD的度数,如果不存在请说明理由.15.已知,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1,若∠AOC=40°,求∠DOE的度数;(2)在图1中,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示);(3)将图1中的∠DOC绕顶点O顺时针旋转至图2的位置.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OM,满足:4∠BOE﹣∠AOC=﹣3∠AOM,试确定∠AOM与∠DOE的度数之间的关系,说明理由.16.已知∠AOB=90°,∠COD=60°,按如图1所示摆放,将OA、OC边重合在直线MN 上,OB、OD边在直线MN的两侧:(1)保持∠AOB不动,将∠COD绕点O旋转至如图2所示的位置,则①∠AOC+∠BOD=;②∠BOC﹣∠AOD=.(2)若∠COD按每分钟5°的速度绕点O逆时针方向旋转,∠AOB按每分钟2°的速度也绕点O逆时针方向旋转,OC旋转到射线ON上时都停止运动,设旋转t分钟,计算∠MOC﹣∠AOD(用t的代数式表示).(3)保持∠AOB不动,将∠COD绕点O逆时针方向旋转n°(n≤360),若射线OE平分∠AOC,射线OF平分∠BOD,求∠EOF的大小.17.如图1,∠MON=90°,点A,B分别在射线OM、ON上.将射线OA绕点O沿顺时针方向以每秒9°的速度旋转,同时射线OB绕点O沿顺时针方向以每秒3°的速度旋转(如图2).设旋转时间为t(0≤t≤40,单位秒).(1)当t=8时,∠AOB=°;(2)在旋转过程中,当∠AOB=36°时,求t的值.(3)在旋转过程中,当ON、OA、OB三条射线中的一条恰好平分另外两条射线组成的角(指大于0°而不超过180°的角)时,请求出t的值.18.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求∠BOE的度数;(3)试判断OF是否平分∠AOC,并说明理由.19.【阅读新知】如图①,射线OC在∠AOB内,图中共有三个角∠AOB、∠AOC和∠BOC,若其中有一个角的度数是另一个角的度数的2倍,则称射线OC是∠AOB的“巧线”.【理解运用】(1)∠AOB的角平分线这个角的“巧线”;(填“是”或“不是”)(2)若∠AOB=90°,射线OC是∠AOB的“巧线”,则∠AOC的度数是.【拓展提升】如图②,一副三角板如图所示摆放在量角器上,边PD与量角器0°刻度线重合,边AP 与量角器180°刻度线重合,将三角板ABP绕量角器中心点P以每秒5°的速度顺时针方向旋转,当边PB与0°刻度线重合时停止运动,设三角板ABP的运动时间为t秒.(3)求t何值时,射线PB是∠CPD的“巧线”?(4)若三角板ABP按照原来方向旋转的同时,三角板PCD也绕点P以每秒2°的速度逆时针方向旋转,此时三角板ABP绕点P旋转的速度比原来每秒快了3°.当三角板ABP 停止旋转时,三角板PCD也停止旋转,问:在旋转过程中,是否存在某一时刻t,使三条射线PB、PC、PD中,其中一条恰好是以另两条组成的角的“巧线”?若存在,请直接写出t的值.若不存在,请说明理由.20.已知,OM平分∠AOC,ON平分∠BOC.(1)如图1,若OA⊥OB,∠BOC=60°,求∠MON的度数;(2)如图2,若∠AOB=80°,∠MON:∠AOC=2:7,求∠AON的度数.21.如图∠AOB=120°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每分钟20°,射线OD从OB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OC与OD 同时旋转,设旋转时间为t分钟(t不超过15).(1)当t=时,射线OD与OC重合;(2)试探索:在射线OC与OD同时旋转过程中,是否存在某个时刻,使得射线OC平分∠BOD?若存在,请求出所有满足题意的t的值,若不存在,请说明理由;(3)t为何值时,射线OC与OD垂直.22.如图,点O在直线AB上,OC⊥AB.在Rt△ODE中,∠ODE=90°,∠DOE=30°,先将△ODE一边OE与OC重合(如图1),然后将△ODE绕点O按顺时针方向旋转(如图2),当OE与OB重合时停止旋转.(1)当∠AOD=80°时,则旋转角∠COE的大小为;(2)当OD在OC与OB之间时,求∠AOD﹣∠COE的值;(3)在△ODE的旋转过程中,若∠AOE=4∠COD时,求旋转角∠COE的大小.23.如图①,已知线段AB=20cm,CD=2cm,线段CD在线段AB上运动,E、F分别是AC、BD的中点.(1)若AC=4cm,则EF=cm.(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变请求出EF的长度,如果变化,请说明理由.(3)我们发现角的很多规律和线段一样,如图②已知∠COD在∠AOB内部转动,OE、OF分别平分∠AOC和∠BOD,则∠EOF、∠AOB和∠COD有何关系,请直接写出.24.如图,OC是∠AOB内一条射线,OD、OE别是∠AOC和∠BOC的平分线.(1)如图①,当∠AOB=80°时,则∠DOE的度数为°;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠BOE、∠EOD、∠DOA三角之间有怎样的数量关系?并说明理由;(3)当射线OC在∠AOB外如图③所示位置时,(2)中三个角:∠BOE、∠EOD、∠DOA之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC在∠AOB外如图④所示位置时,∠BOE、∠EOD、∠DOA之间数量关系是.。
七年级数学上册动点问题1、如图,有一数轴原点为O,点A 所对应的数是-1 12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K 到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。
2、动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B 点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.3、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?4、数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?5、在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A点处时,问电子青蛙n 处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D 点所表示的数6、已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
2023-2024学年人教版七年级上册数学期末动角问题压轴题专题训练(1)若,则__________.(2)当线段在线段上运动时,试判断线段请求出线段的长度;如果变化,请说明理由.(3)我们发现角的很多规律和线段一样,如图2,已知(1)若,则 ;10cm AC =EF =cm CD AB EF EF 10cm AC =EF =cm(2)当线段在线段上运动时,试判断线段的长度是否会发生变化,如果不变,请求出线段的长度;如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图2,已知在内部转动,分别平分和.类比以上发现的线段的规律,若,,求的度数.3.如图甲,已知线段,线段在线段上运动(不与端点、重合),E 、F 分别是、的中点.(1)观察发现:若,则______cm .(2)拓展探究:当线段在线段上运动时,试判断的长度是否发生变化?如果不变,求出的长度,如果变化,请说明理由.(3)迁移应用:对于角,也有和线段类似的规律:如图乙,在同一平面内,已知在内部转动,,分别平分和①若,,求;②请你猜想,和会有怎样的数量关系,直接写出你的结论.CD AB EF EF COD ∠AOB ∠OE OF 、AOC ∠BOD ∠80EOF ∠=︒35COD ∠=︒AOB ∠20cm AB =4cm CD =CD AB A B AC BD 6cm AC =EF =CD AB EF EF COD ∠AOB ∠OE OF AOC ∠BOD∠130AOB ∠=︒20COD ∠=︒EOF ∠EOF ∠AOB ∠COD ∠(1)当时,则线段 ,线段 .(2)用含的代数式表示运动过程中的长.(3)在运动过程中,若的中点为,问的长是否变化?与点的位置是否无关?(4)知识迁移:如图2,已知,过角的内部任一点画射线,若2t =AB =cm CD =cm t AB AB E EC B 120AOD ∠=︒B OB(1)如图1,为直线上的一点,,,直接写出图中一对垂角;(2)如果一个锐角的垂角等于这个角的余角的3倍,求这个角的度数;(3)如图2,为直线上的一点,若,,且射线绕以每秒的速度顺时针旋转,射线绕点以每秒的速度顺时针旋转,两条射线、同时运动,运动时间为秒,试求当为何值时,和互为垂角?6.如图①,已知线段在线段上运动,线段,,点、分别是、的中点.解答下列问题:(1)若,求的长;(2)当线段在线段上运动时,试判断的长度是否发生变化?如果不变请求出的长度,如果变化,请说明理由;(3)通过类比,我们发现角的很多规律和线段一样,如图②已知在内部转O AB =90AOC ︒∠90EOD ∠=︒O AB =90AOC ︒∠30BOD ∠=︒OC O 9︒OD O 6︒OC OD t ()030t <<t AOC ∠BOD ∠CD AB 10cm AB =2cm CD =E F AC BD 3cm AC =EF CD AB EF EF COD ∠AOB ∠动,和分别平分和,则与、有何数量关系,请直接写出答案.7.如图①,已知线段,线段在线段上运动(点A 不超过点M ,点B 不超过点N ),点C 和点D 分别是,的中点.(1)若,,求的长度;(2)若,线段运动时,试判断线段的长度是否发生变化?如果不变,请求出的长度,如果变化,请说明理由;(3)知识迁移:我们发现角的很多规律和线段一样,如图②,已知在内部转动,射线和射线分别平分和.当转动时,是否发生变化?,和三个角有怎样的数量关系,请说明理由.8.已知,为内部的一条射线,.OE OF AOC ∠BOD ∠EOF ∠AOB ∠COD ∠24cm MN =AB MN AM BN 8cm AM =2cm AB =CD 2cm AB a =AB CD CD AOB ∠MON ∠OC OD AOM ∠BON ∠AOB ∠COD ∠AOB ∠COD ∠MON ∠150AOB ∠=︒OC AOB ∠60BOC ∠=︒(1)运动开始前,如图1,∠AOM = °,∠DON = °;(2)旋转过程中,当t 为何值时,射线OB 平分∠AON ?(3)旋转过程中,是否存在某一时刻使得∠MON =35°?若存在,请求出t 的值;若不存AOC BOD∠∠参考答案:。
专题09 几何中动角问题的两种考法类型一、判断角的数量之间的关系例.如图所示,O 是直线AB 上的一点,COD Ð是直角,OE 平分BOC Ð.(1)如图①,若28AOC Ð=°,求DOE Ð的度数;(2)在图①,若AOC a Ð=,直接写出DOE Ð的度数_________(用含a 的代数式表示);(3)将图①中的COD Ð绕顶点O 顺时针旋转至图②的位置.①探究AOC Ð和DOE Ð的度数之间的关系,写出你的结论,并说明理由;②在AOC Ð的内部有一条射线OF ,满足42AOC AOF BOE AOF Ð-Ð=Ð+Ð,试确定AOF Ð与DOE Ð的度数之间的关系,说明理由.【答案】(1)14°;(2)2a ;(3)①∠AOC =2∠DOE ;(2)2∠DOE −52∠AOF =90°【详解】解:(1)∵∠COD 是直角,OE 平分∠BOC ,∠AOC =28°,∴∠BOC =180°−∠AOC =152°,∠COE =12∠BOC ,∠COD =90°.∴∠COE =76°,∠DOE =∠COD −∠COE =90°−76°=14°.即∠DOE =14°;(2)∵∠COD 是直角,OE 平分∠BOC ,∠AOC =a ,∴∠DOE =90°−1802a °-=2a .故答案是:2a ;(3)①∠AOC =2∠DOE .理由:∵OE 平分∠BOC ,∴∠BOC =2∠COE .∵∠COD 是直角,∠AOC +∠BOC =180°,∴∠DOE +∠COE =90°,∠AOC +2∠COE =180°.∴∠AOC +2(90°−∠DOE )=180°.化简,得∠AOC =2∠DOE ;②2∠DOE −52∠AOF =90°.理由:∵42AOC AOF BOE AOF Ð-Ð=Ð+Ð,∴2∠AOF +∠BOE =12(∠AOC −∠AOF ),∴2∠AOF +∠BOE =12∠AOC−12∠AOF .又∵∠AOC =2∠DOE ,∴52∠AOF =∠DOE −∠BOE ,∴52∠AOF =∠DOB .∵∠DOB +∠BOC =90°,∠AOC +∠BOC =180°,∠AOC =2∠DOE .∴52∠AOF +180°−∠AOC =90°.∴52∠AOF +180°−2∠DOE =90°.化简,得2∠DOE −52∠AOF =90°.【变式训练1】已知∠AOB =∠COD =90°,OE 平分∠BOC .(1)如图,若∠AOC =30°,则∠DOE 的度数是______;(直接写出答案)(2)将(1)中的条件“∠AOC =30°”改为“∠AOC 是锐角”,猜想∠DOE 与∠AOC 的关系,并说明理由;(3)若∠AOC 是钝角,请先画出图形,再探索∠DOE 与∠AOC 之间的数量关系.(不用写探索过程,将结论直接写在你画的图的下面)【答案】(1)60°;(2)1=452DOE AOC °+∠,理由见解析(3)∠AOC +2∠DOE =270°或2∠DOE -∠AOC =90°或∠AOC +2∠DOE =450°或∠AOC -2∠DOE =90°【解析】(1)解:∵∠AOB =90°,∠AOC =30°,∴∠BOC =∠AOB -∠AOC =60°,∵OE 平分∠BOC ,∴∠COE =∠BOE =30°,∵∠COD =90°,∴∠DOE =∠COD -∠COE =60°,故答案为:60°(2)解:1=452DOE AOC °+∠ ,理由如下:∵∠AOB =90°,∴∠BOC =∠AOB -∠AOC =90°-∠AOC∵OE 平分∠BOC ,∴()1190=4522COE BOE AOC AOC Ð=Ð=°-°-∠∠ ∵∠COD =90°,∴119045=4522DOE COD COE AOC AOC Ð=Ð-Ð=°-°+°+∠∠(3):如图3-1所示,当OD 在∠AOB 内部时,∵OE 平分∠BOC ,∴∠BOC =2∠BOE =2∠COE ,∵∠AOB =∠COD =90°,∴∠AOC =∠AOB +∠BOC =90°+2∠COE ,∠DOE =∠COD -∠COE =90°-∠COE ,∴∠AOC +2∠DOE =90°+2∠COE +180°-2∠COE =270°;如图3-2所示,当OD 在∠AOB 外部时,同理可以求出∠AOC =∠AOB +∠BOC =90°+2∠COE ,∠DOE =∠COD +∠COE =90°+∠COE ,∴2∠DOE -∠AOC = 180°+2∠COE -90°-2∠COE =90°;如图3-3所示,当OD 在∠AOB 外部时,同理可以求出∠AOC =360°-∠AOB -∠BOC =270°-2∠COE ,∠DOE =90°+∠COE ,∴∠AOC +2∠DOE =270°-2∠COE +180°+2∠COE =450°;如图3-4所示,当OD 在△AOB 外部时,同理可以求出∠AOC =270°-2∠COE ,∠DOE =90°-∠COE ,∴∠AOC -2∠DOE =90°;综上所述,∠AOC +2∠DOE =270°或2∠DOE -∠AOC =90°或∠AOC +2∠DOE =450°或∠AOC -2∠DOE =90°.【变式训练2】如图,以直线AB 上一点O 为端点作射线OC ,使70BOC Ð=°,将一个直角三角形的直角顶点放在点O 处.(注:90DOE Ð=°)(1)如图①,若直角三角板DOE 的一边OD 放在射线OB 上,则COE Ð=________°;(2)如图②,将直角三角板DOE 转到如图位置,当OC 恰好平分DOE Ð时,求BOD Ð的度数;(3)如图③,将直角三角板DOE 绕点O 转动,如果OD 始终在BOC Ð的内部,直接写出BOD Ð和COE Ð的数量关系_________.【答案】(1)20;(2)25°;(3)∠COE-∠BOD=20°【详解】解:(1)如图①,∠COE=∠DOE-∠BOC=90°-70°=20°,故答案为:20;(2)如图②,∵OC 平分∠EOD ,∠DOE=90°,∴∠COD=12∠DOE=45°,∵∠BOC=70°,∴∠BOD=∠BOC-∠COD=25°;(3)∠COE-∠BOD=20°,理由是:如图③,∵∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°,∴(∠COE+∠COD )-(∠BOD+∠COD )=∠COE+∠COD-∠BOD-∠COD=∠COE-∠BOD=90°-70°=20°,即∠COE-∠BOD=20°.【变式训练3】已知100AOB Ð=°,40COD Ð=°,OE ,OF 分别平分AOD Ð,BOD Ð.(1)如图1,当OA ,OC 重合时,EOF Ð= 度;(2)若将COD Ð的从图1的位置绕点O 顺时针旋转,旋转角AOC a Ð=,满足090a °<<°且40¹°a .①如图2,用等式表示BOF Ð与COE Ð之间的数量关系,并说明理由;②在COD Ð旋转过程中,请用等式表示ÐBOE 与COF Ð之间的数量关系,并直接写出答案.【答案】(1)50;(2)①90COE BOF ÐÐ+=°;②40a <°时,150COF BOE a ÐÐ=+°+;4090a °<<°时,30COF BOE a Ð=-Ð-°【解析】(1)OA Q ,OC 重合,40AOD COD \Ð=Ð=°,10040140BOD AOB COD Ð=Ð+Ð=°+°=°,OE Q 平分AOD Ð,OF 平分BOD Ð,11402022EOD AOD \Ð=Ð=´°=°,111407022DOF BOD Ð=Ð=´°=°,702050EOF DOF EOD \Ð=Ð-Ð=°-°=°;(2)①90COE BOF ÐÐ+=°;理由如下:OE Q 平分AOD Ð,OF 平分BOD Ð,111(40)20222EOD AOE AOD a a \Ð=Ð=Ð=°+=°+,1111()(10040)702222BOF BOD AOB COD a a a Ð=Ð=Ð+Ð+=°+°+=°+,11202022COE AOE AOC a a a \Ð=Ð-Ð=°+-=°-,1170209022BOF COE a a \Ð+Ð=°++°-=°;②由①得:1202EOD AOE a Ð=Ð=°+,1702DOF BOF a Ð=Ð=°+,当40AOC Ð<°时,如图2所示:1170403022COF DOF COD a a Ð=Ð-Ð=°+-°=°+,1110040(20)12022BOE BOD EOD AOB COD EOD a a a a Ð=Ð-Ð=Ð+Ð+-Ð=°+°+-°+=°+,111203015022BOE COF AOC a a a \Ð+Ð-Ð=°++°+-=°,∴150COF BOE a ÐÐ=+°+当4090AOC °<Ð<°时,如图3所示:11(360140)4015022COF DOF DOC a a Ð=Ð+Ð=°-°-+°=°-,11140(20)12022BOE BOD DOE a a a Ð=Ð-Ð=°+-°+=°+,11150(120)3022COF AOC BOE a a a \Ð+Ð-Ð=°-+-°+=°;∴30COF BOE a Ð=-Ð-°综上所述,40a <°时,150COF BOE a ÐÐ=+°+;4090a °<<°时,30COF BOE a Ð=-Ð-°【变式训练4】如图,已知150AOB Ð=o ,将一个直角三角形纸片(90D Ð=o )的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD Ð.(1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB Ð的内部),若30COD Ð=o ,则MON Ð=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB Ð的内部),若射线OD 恰好平分MON Ð,若8MON COD Ð=Ð,求COD Ð的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD Ð和MON Ð的数量关系?并说明理由.【答案】(1)90°;(2)COD=10а;(3)1752MON COD Ð=Ð+°,证明见解析【详解】解:(1)∵OM 平分斜边OC 与OA 的夹角,ON 平分BOD Ð.∴OM 平分∠AOC, ON 平分∠BOD∴设11,22AOM MOC AOC x BON DON BOD y Ð=Ð=Ð=Ð=Ð=Ð=∴2,2AOC x BOD y Ð=Ð=,30MON MOC COD DON x yÐ=Ð+Ð+Ð=+°+∵2302150AOB AOC BOD COD x y Ð=Ð+Ð+Ð=+°+=°∴60x y +=°,∴3090MON x y Ð=+°+=°,故答案为: 90°(2)∵8MON COD Ð=Ð,∴设=,8COD a MON aÐÐ=∵射线OD 恰好平方MON Ð,∴14,2DOM DON MON a Ð=Ð=Ð=∴43,COM DOM COD a a a Ð=Ð-Ð=-=∵OM 平分斜边OC 与OA 的夹角,ON 平分BOD Ð.∴OM 平分∠AOC, ON 平分∠BOD ∴113,422AOM MOC AOC a BON DON BOD a Ð=Ð=Ð=Ð=Ð=Ð= ,∴6,8AOC a BOD a Ð=Ð=∵68150AOB AOC BOD COD a a a Ð=Ð+Ð+Ð=++=°,∴=10a °,∴COD=10а(3) 1752MON AOC Ð=Ð+°,证明如下:当OC 与OA 重合时,设∠COD=x,则150150BOD AOB COD COD x Ð=Ð-Ð=°-Ð=°-∵ON 平分∠BOD ∴117522DON BOD x Ð=Ð=°- ∴MON COD DON Ð=Ð+Ð 1752x x =+°- 1752x =°+ ,∴1752MON COD Ð=°+Ð当OC 在OA 的左侧时设∠AOD=a ,∠AOC=b ,则∠BOD=∠AOB-∠AOD=150°-a ,∠COD=∠AOD+∠AOC=a+b∵ON 平分∠BOD ,∴117522DON BOD a Ð=Ð=°- ∵OM 平分∠AOC ,∴1122AOM COM AOC b Ð=Ð=Ð= ∴∠MON=∠MOA+∠AOD+∠DON 117522b a a =++°- 117522b a =++° 1752COD =Ð+°当OD 与OA 重合时,∵ON 平分∠AOB ,∴1752AON AOB Ð=Ð=° ∵OM 平分∠AOC ,∴12MON AOC Ð=Ð ,∴MON MOD AON Ð=Ð+Ð 1752AOC =Ð+° 综上所述 1752MON AOC Ð=Ð+°类型二、定值问题例.已知将一副三角尺(直角三角尺OAB 和OCD )的两个顶点重合于点O ,90AOB Ð=°,30COD Ð=°(1)如图1,将三角尺COD 绕点O 逆时针方向转动,当OB 恰好平分COD Ð时,求AOC Ð的度数;(2)如图2,当三角尺OCD 摆放在AOB Ð内部时,作射线OM 平分AOC Ð,射线ON 平分BOD Ð,如果三角尺OCD 在AOB Ð内绕点O 任意转动,MON Ð的度数是否发生变化?如果不变,求其值;如果变化,说明理由.【答案】(1)75COB Ð=°;(2)不变.60MON Ð=°【详解】解:(1)OB Q 平分COD Ð,11301522COB COD \Ð=Ð=´°=°,901575AOC AOB COB \Ð=Ð-Ð=°-°=°;图1 图2(2)不变.OM Q 平分AOC Ð,ON 平分BOD Ð12NOD BOD \Ð=Ð,12COM AOC Ð=Ð122MON NOD COD COM BOD AOC COD 1\Ð=Ð+Ð+Ð=Ð+Ð+Ð()12BOD AOC COD =Ð+Ð+Ð()12AOB COD COD =Ð-Ð+Ð()1903030602=´°-°+°=°【变式训练1】如图,两条直线AB 、CD 相交于点O ,且∠AOC=90°,射线OM 从OB 开始绕O 点逆时针方向旋转,速度为15°/s ,射线ON 同时从OD 开始绕O 点顺时针方向旋转,速度为12°/s .两条射线OM 、ON 同时运动,运动时间为t 秒.(本题出现的角均小于平角)(1)当t=2时,∠MON 的度数为 ,∠BON 的度数为 ;∠MOC 的度数为(2)当0<t <12时,若∠AOM=3∠AON-60°,试求出t 的值;(3)当0<t <6时,探究72COM BON MON Ð+ÐÐ的值,问:t 满足怎样的条件是定值;满足怎样的条件不是定值?【答案】(1)144°,114°,60°;(2)t的值为107秒或10秒;(3)当0<t<103时,72COM BONMONÐ+ÐÐ的值不是定值;当103<t<6时,72COM BONMONÐ+ÐÐ的值是3.【详解】(1)由题意得:∠MON=∠BOM+∠BOD+∠DON=2×15°+90°+2×12°=144°,∠BON=∠BOD+∠DON=90°+24°=114°,∠MOC=∠BOC-∠BOM=90°-2×15°=60°,故答案为:144°,114°,60°;(2)当ON与OA重合时,t=90÷12=7.5(s),当OM与OA重合时,t=180°÷15=12(s)①如图所示,当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°由∠AOM=3∠AON-60°,可得180-15t=3(90-12t)-60,解得t=107,②如图所示,当7.5<t<12时,∠AON=12t°-90°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180-15t=3(12t-90)-60,解得t=10,综上,t的值为107秒或10秒;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t+90+12t=180,解得t=103,①如图所示,当0<t<103时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,∴()()790152901272810811590129027t t COM BON t MON t t t °-°+°+°Ð+а-°==а+°+°°+°(不是定值),②如图所示,当103<t <6时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=360°-(∠BOM+∠BOD+∠DON )=360°-(15t°+90°+12t°)=270°-27t°,∴()()79015290127227027t t COM BON MON t °-°+°+°Ð+Ð=а-°=3(定值),综上所述,当0<t <103时,72COM BON MON Ð+ÐÐ的值不是定值;当103<t <6时,72COM BON MON Ð+ÐÐ的值是3.【变式训练2】已知将一副三角板(90,30AOB COD Ð=°Ð=°)如图1摆放,点O 、A 、C 在一条直线上.将直角三角板OCD 绕点O 逆时针方向转动,变化摆放如图位置.(1)如图1,当点O 、A 、C 在同一条直线上时,BOD Ð=_______度;如图2,若要OB 恰好平分COD Ð,则AOC Ð=_______度;(2)如图3,当三角板OCD 摆放在AOB Ð内部时,作射线OM 平分AOC Ð,射线ON 平分BOD Ð,如果三角板OCD 在AOB Ð内绕点O 任意转动,MON Ð的度数是否发生变化?如果不变,求其值;如果变化,说明理由.(3)当三角板OCD 从图1的位置开始,绕点O 逆时针方向旋转一周,保持射线OM 平分AOC Ð、射线ON 平分BOD Ð(180,180AOC BOD У°Ð£°),在旋转过程中,(2)中的结论是否保持不变?如果保持不变,请说明理由;如果变化,请说明变化的情况和结果(即旋转角度a 在什么范围内时MON Ð的度数是多少).【答案】(1)60,75;(2)60MON Ð=°,理由见详解;(3)①当0180a °<<°时,60MON Ð=°;②当180a =°时,60MON Ð=°或120°,③当180240a °<<°时,120MON Ð=°;④当240a =°时,120MON Ð=°或60°;⑤当240360a °<<°时,60MON Ð=°【详解】解:(1)由题意得:30,90COD AOB Ð=°Ð=°,∴60BOD AOB COD Ð=Ð-Ð=°,∵OB 恰好平分COD Ð,∴1152BOC COD Ð=Ð=°,∴75AOC AOB BOC Ð=Ð-Ð=°;故答案为60,75;(2)MON Ð的度数不发生变化,理由如下:∵射线OM 平分AOC Ð,射线ON 平分BOD Ð,∴11,22MOC AOC NOD BOD Ð=ÐÐ=Ð,∵30,90COD AOB Ð=°Ð=°,∴9060AOC BOD COD Ð+Ð=°-Ð=°,∴30MOC NOD Ð+Ð=°,∴60MON MOC NOD COD Ð=Ð+Ð+Ð=°;(3)设旋转角度为a ,根据题意可得:30,90COD AOB Ð=°Ð=°,∵射线OM 平分AOC Ð,射线ON 平分BOD Ð,∴11,22MOC AOC NOD BOD Ð=ÐÐ=Ð,①当0180a °<<°时,如图所示:∴()()1190306022MON MOC NOD BOC BOC BOC BOC Ð=Ð+Ð-Ð=°+Ð+°+Ð-Ð=°,②当180a =°时,即AOC Ð为平角,可分为:当点M 在OB 上,如图所示:∴120MOD BOC COD Ð=Ð+Ð=°,∴1602MON MOD Ð=Ð=°;当点M 在BO 的延长线时,如图所示:∴180120MON BON Ð=°-Ð=°;③当180240a °<<°时,如图所示:∴360AOC CON BON AOB Ð+Ð+Ð+Ð=°,∴()2303090360MOD CON CON Ð+°+Ð+Ð+°+°=°,解得:90MOD CON Ð+Ð=°,∴9030120MON MOD CON DOC Ð=Ð+Ð+Ð=°+°=°;④当240a =°时,则180BOD Ð=°,如图所示:∴当ON 平分在∠BOD 的左边时,则60MON Ð=°,当ON 平分在∠BOD 的右边时,则120MON Ð=°;⑤当240360a °<<°时,如图所示:∴30,90MOD COM AON BON Ð=Ð-°Ð=Ð-°,∴()()()1130906022MON AOD AON MOD AOD AOD AOD Ð=Ð-Ð+Ð=°-Ð+°-Ð+Ð=°.类型三、求值问题例.如图1,O 为直线AB 上一点,过点O 作射线OC ,30AOC Ð=°,将一直角三角板(30M Ð=°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(注:本题旋转角度最多180°.)(1)将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转.如图2,经过t 秒后,AON Ð=______度(用含t 的式子表示),若OM 恰好平分BOC Ð,则t =______秒(直接写结果).(2)在(1)问的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转,如图3,经过t 秒后,AOC Ð=______度(用含t 的式子表示)若OC 平分MON Ð,求t 为多少秒?(3)若(2)问的条件不变,那么经过秒OC 平分BOM Ð?(直接写结果)【答案】(1)3t ,5;(2)306t +,5;(3)经过703秒OC 平分BOM Ð【解析】(1)3AON t Ð=,∵30AOC Ð=°,∴150BOC Ð=°∵OM 平分BOC Ð,90MON Ð=°,∴75COM Ð=°,∴15CON Ð=°∴301515AON AOC CON Ð=Ð-Ð=-=°°°,解得:1535t =¸=°°秒(2)()306AOC t Ð=+度,∵90MON Ð=°,OC 平分MON Ð,∴45CON COM Ð=Ð=°∴45AOC AON CON Ð-Ð=Ð=°,∴306345t t +-=解得:5t =秒(3)如图:∵90AON BOM Ð+Ð=°,BOC COMÐ=Ð由题可设AON Ð为3t ,AOC Ð为()306t +°,∴()19032COM BOC t Ð=Ð=-°∵180BOC AOC Ð+Ð=°,()()130********t t ++-=,解得:703t =秒答:经过703秒OC 平分BOM Ð.【变式训练1】如图,将一副直角三角尺的直角顶点C 叠放在一起.(1)若∠DCE =35°,∠ACB = ;若∠ACB =140°,则∠DCE = ;(2)猜想∠ACB 与∠DCE 的大小有何特殊关系,并说明理由;(3)若保持三角尺BCE 不动,三角尺ACD 的CD 边与CB 边重合,然后将三角尺ACD 绕点C 按逆时针方向任意转动一个角度∠BCD .设∠BCD =α(0°<α<90°)①∠ACB 能否是∠DCE 的4倍?若能求出α的值;若不能说明理由.②三角尺ACD 转动中,∠BCD 每秒转动3°,当∠DCE =21°时,转动了多少秒?【答案】(1)∠ACB =145°;∠DCE =40°;(2)∠ACB +∠DCE =180°或互补,理由见解析;(3)①能;理由见解析,α=54°;②23秒【详解】解:(1)∵∠ACD =∠ECB =90°,∠DCE =35°,∴∠ACB =180°﹣35°=145°.∵∠ACD =∠ECB =90°,∠ACB =140°,∴∠DCE =180°﹣140°=40°.故答案为:145°,40°;(2)∠ACB +∠DCE =180°或互补,理由:∵∠ACE +∠ECD +∠DCB +∠ECD =180.∵∠ACE +∠ECD +∠DCB =∠ACB ,∴∠ACB +∠DCE =180°,即∠ACB 与∠DCE 互补.(3)①当∠ACB 是∠DCE 的4倍,∴设∠ACB =4x ,∠DCE =x ,∵∠ACB +∠DCE =180°,∴4x +x =180°解得:x =36°,∴α=90°﹣36°=54°;②设当∠DCE =21°时,转动了t 秒,∵∠BCD +∠DCE =90°,∴3t +21=90,t =23°,答:当∠DCE =21°时,转动了23秒.【变式训练2】如图(1),∠BOC 和∠AOB 都是锐角,射线OB 在∠AOC 内部,AOB a Ð=,BOC b Ð=.(本题所涉及的角都是小于180°的角)(1)如图(2),OM 平分∠BOC ,ON 平分∠AOC ,填空:①当40a =°,70b =°时,COM Ð=______,CON Ð=______,MON Ð=______;②MON Ð=______(用含有a 或b 的代数式表示).(2)如图(3),P 为∠AOB 内任意一点,直线PQ 过点O ,点Q 在∠AOB 外部:①当OM 平分∠POB ,ON 平分∠POA ,∠MON 的度数为______;②当OM 平分∠QOB ,ON 平分∠QOA ,∠MON 的度数为______;(∠MON 的度数用含有a 或b 的代数式表示)(3)如图(4),当40a =°,70b =°时,射线OP 从OC 处以5°/分的速度绕点O 开始逆时针旋转一周,同时射线OQ 从OB 处以相同的速度绕点O 逆时针也旋转一周,OM 平分∠POQ ,ON 平分∠POA ,那么多少分钟时,∠MON 的度数是40°?【答案】(1)135,55,20,2°°°a ;(2)12a ,11802a °-;(3)48分钟时,∠MON 的度数是40°【解析】(1)①Q OM 平分∠BOC ,ON 平分∠AOC ,当40a =°,70b =°时,COM Ð=113522BOC Ð=b =°,CON Ð=()111()55222AOC AOB BOC Ð=Ð+Ð=a +b =°,MON Ð=()11120222CON COM a b b a Ð-=+-==°②MON Ð()111222CON COM =Ð-=a +b -b =a ,故答案为:135,55,20,2°°°a (2)①Q OM 平分∠POB ,ON 平分∠POA ,\()12MON POB POA Ð=Ð+Ð 1122AOB =Ð=a ②Q OM 平分∠QOB ,ON 平分∠QOA ,\()12MON BOQ QOA Ð=Ð+Ð()1136018022AOB =°-Ð=°-a 故答案为:12a ,11802a °-(3)根据题意POQ BOC Ð=Ð=bQ OM 平分∠POQ ,113522POM POQ \Ð=Ð=b =°,如图,当OP 在AOB Ð的外部时,Q MON 的度数是40°MON PON POM Ð=Ð+Q 5PON \Ð=°Q ON 平分∠POA ,210POA PON \Ð=Ð=°,120POC \Ð=°,则OP 旋转了360120240°-°=°240548\¸=分,即48分钟时,∠MON 的度数是40°如图,OP 在AOB Ð的内部时,MON POM PON Ð=Ð-ÐQ ,即4035PON °=°-Ð,5PON \Ð=-°此情况不存在,综上所述,48分钟时,∠MON 的度数是40°【变式训练3】如图1,点A 、O 、B 依次在直线MN 上,现将射线OA 绕点O 沿顺时针方向以每秒2°的速度旋转,同时射线OB 绕点O 沿逆时针方向以每秒4°的速度旋转,如图2,设旋转时间为(090)t t <<.(1)用含t 的代数式表示:MOA Ð=_______°,MOB Ð=_______°.(2)在运动过程中,当60AOB Ð=°时,求t 的值.(3)在旋转过程中是否存在这样的t ,使得直线OB 平分由射线OM 、射线OA 、射线ON 中的任意两条射线组成的角(大于0°而小于180°)?【答案】(1)2t ,1804t -;(2)当60AOB Ð=°时,20t =或40或80;(3)存在,当直线OB 平分由射线OM 、射线OA 、射线ON 中的任意两条射线组成的角时,18t =或36或54或72.【解析】(1)由题意得:射线OA 的运动路程为2t °,射线OB 的运动路程为4t °,∴2MOA t Ð=°,当045t <<时,1804MOB t Ð=°-°,当4590t <<时,4180MOB t Ð=°-°,∴1804MOB t Ð=°-°;故答案为2t ,1804t -;(2)由题意可得射线OA 与射线OB 相遇的时间为:24180t t °+°=°,解得:30t =,∴当射线OA 与射线OB 相遇前,60AOB Ð=°时,如图所示:∴2604180t t °+°+°=°,解得:20t =,当射线OA 与射线OB 相遇后,且射线OB 还没有过直线MN 时,60AOB Ð=°,如图所示:2604180t t °-°+°=°,解得:40t =,当射线OB 过了直线MN 时,60AOB Ð=°,如图所示:2418060360t t °+°-°+°=°,解得:80t =,综上所述:当60AOB Ð=°时,20t =或40或80;(3)存在,理由如下:由2MOA t Ð=°,1804MOB t Ð=°-°,4NOB t Ð=°,则可分:①若直线OB 平分AON Ð时,如图所示:∴12BON AON Ð=Ð,1802AON t Ð=°-°,∴490t t °=°-°,解得:18t =;若直线OB 平分AOM ∠时,如图所示:∴12BOM AOM Ð=Ð,∴1804t t °-°=°,解得:36t =;②若直线OB 平分AON Ð时,如图所示:∴12BOM CON AON Ð=Ð=Ð,∴418090t t °-°=°-°,解得:54t =;若直线OB 平分AOM ∠时,如图所示:∴12BON COM AOM Ð=Ð=Ð,3604BON t Ð=°-°,∴3604t t °-°=°,解得:72t =;综上所述:当直线OB 平分由射线OM 、射线OA 、射线ON 中的任意两条射线组成的角时,18t =或36或54或72.课后训练1.如图1,点O 为直线AB 上一点,过点O 作射线OC ,使120BOC Ð=°.将一直角三角板的直角顶点放在点O 处,一直角边OM 在射线OB 上,另一直角边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 逆时针旋转至图2,使边OM 在BOC Ð的内部,且恰好平分BOC Ð.问:此时直线ON 是否平分AOC Ð?请说明理由.(2)将图1中的三角板绕点O 以每秒6°的速度沿逆时针方向旋转一周,在旋转过程中,第n 秒时,直线ON 恰好平分AOC Ð,则n 的值为______(点接写结果)(3)若图1中的三角板绕点O 旋转至图3,使ON 在AOC Ð的内部时,AOM NOC Ð-Ð的度数是多少?【答案】(1)平分,理由见解析;(2)10或40;(3)30°【解析】(1)解:(1)直线ON 平分∠AOC .理由:设ON 的反向延长线为OD ,∵OM 平分∠BOC ,∴∠MOC =∠MOB ,又∵OM ⊥ON ,∴∠MOD =∠MON =90°,∴∠COD =∠BON ,又∵∠AOD =∠BON (对顶角相等),∴∠COD =∠AOD ,∴OD 平分∠AOC ,即直线ON 平分∠AOC ;(2)解:由(1)得,∠BOM =60°时,直线ON 恰好平分AOC Ð,即旋转60°时,ON平分∠AOC,再旋转180°即旋转240°时,ON平分∠AOC,由题意得,6n=60°或6n=240°,∴n=10或40;故答案为:10或40;(3)解:∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON,∠NOC=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.2.如图所示,OA,OB,OC是以直线EF上一点O为端点的三条射线,且∠FOA=20°,∠AOB=60°,∠BOC =10°,以O为端点作射线OP,OQ分别与射线OF,OC重合.射线OP从OF处开始绕点O逆时针匀速旋转,转速为1度/秒,射线OQ从OC处开始绕点O顺时针匀速旋转,(射线OQ旋转至与射线OF重合时停止,射线OP旋转至与射线OE重合时停止),两条射线同时开始旋转(旋转速度=旋转角度÷旋转时间).(1)直接写出射线OP停止运动时的时间.(2)当射线OP平分∠AOC时,直接写山它的旋转时间.(3)若射线OQ的转速为3度/秒,当∠POQ=70°时,直接写出射线OP的旋转时间.(4)若∠POA=2∠POB时,射线OQ旋转到的位置恰好将∠AOB分成度数比为1:2的两个角,直接写出射线OQ的旋转速度.【答案】(1)180s;(2)55s;(3)3s或70s;(4)5(/6s°或0.5/s°或5(/14s°或3()/14s°.【解析】(1)Q∠EOF=180°,射线OP的速度为1°/s,则时间为180÷1=180s;(2)Q∠AOC=∠AOB+∠BOC=60°+10°=70°,当射线OP平分时∠AOC,∠AOP=∠POC=12∠AOC=35°,此时OP旋转的度数为:∠AOF+∠AOP=20°+35°=55°,∴旋转的时间为:55÷1=55s.(3)Q∠FOC=∠FOA+∠AOB+∠BOC=90°,设射线OP旋转的时间为t秒,由题意可得:t+3t=90+70或t+3t=90-70,解得:t=5或t=40,Q射线OQ旋转至射线OF重合时停止,∴.射线OQ最多旋转30秒,当射线OQ旋转30秒与射线OF重合停止,此时∠POQ=∠FOP=30°,之后射线OP继续旋转7030401/ss°°°-=,则∠POQ=∠FOP=70°,此时t=70s,故答案为:5s或70s.(4)①当射线OP在∠AOB内部时,Q∠POA=2∠POB,∠AOB=60°,∴∠POA=40°,∠FOP=60°,故射线OP旋转的时间为60s,若13AOQ AOBÐ=Ð,则∠BOQ=40°,∠COQ=50°,∴此时射线OQ的旋转速度为:50÷60=56(°/s),若13BOQ AOBÐ=Ð时,则∠BOQ=20°,∠COQ=30°,\此时射线OQ的旋转速度为30÷60=12(°/s);②当射线OP在∠EOB内部时,Q∠PDA=2∠POB,∠AOB=60°,\∠POA=120°,∠FOP=140°,故射线OP旋转时间为140秒,若13AOQ AOBÐ=Ð时,则∠BOQ=40°,∠COQ=50°,∴此时射线OQ的旋转速度为:50÷140=514(°/s),若13BOQ AOBÐ=Ð时,则∠BOQ=20°,∠COQ=30°,\此时旋转速度为:30÷140=314(°/s),综上,符合条件的旋转速度为5(/6s °或0.5/s °或5()/14s °或3(/14s °.3.已知O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC .(1)如图1,若∠AOC =48°,求∠DOE 的度数;(2)如图1,若∠AOC =α,则∠DOE 的度数为 (用含有α的式子表示);(3)将图1中的∠DOC 绕顶点O 顺时针旋转至图2的位置,试探究∠DOE 和∠AOC 度数之间的关系,写出你的结论,并说明理由.(4)将图1中的∠DOC 绕顶点O 逆时针旋转至图3的位置,其它条件不变,若∠AOC =α,则∠DOE 的度数为 (用含有α的式子表示),不必说明理由.【答案】(1)24°;(2)12a ;(3)∠DOE =12∠AOC ,理由见解析;(4)180 °-12a 【解析】(1)∵∠AOC +∠BOC =∠AOB =180°∴∠BOC =180°-∠AOC =180°-48° = 132°∵OE 平分∠BOC∴∠COE =12∠BOC = 66°又∵∠COD 是直角∴∠COD = 90°∴∠DOE =∠COD -∠COE = 90°- 66°= 24°(2)由(1)得,12DOE COD BOC Ð=Ð-Ð190(180),2DOE AOC °°\Ð=--Ð11.22DOE AOC a \Ð=Ð=故答案为:12a (3)答:∠DOE =12∠AOC .理由如下: ∵∠AOC +∠BOC =∠AOB =180°∴∠BOC =180°-∠AOC∵OE 平分∠BOC∴∠COE =12∠BOC =12 (180°-∠AOC )= 90°-12∠AOC又∵∠COD 是直角∴∠COD = 90°∴∠DOE =∠COD -∠COE = 90°-(90°-12∠AOC )=12∠AOC∴∠DOE =12∠AOC(4)Q OE 平分BOC Ð1180180222AOC COE BOC a °°-Ð-\Ð=Ð==COD ÐQ 是直角90,COD °\Ð=180********DOE COD COE a a °°°-\Ð=Ð+Ð=+=-故答案为:11802a °-;4.如图1,O 为直线AB 上一点,过点O 作射线OC ,30AOC Ð=°,将一直角三角板(30M Ð=°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(注:本题旋转角度最多180°.)(1)将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转.如图2,经过t 秒后,AON Ð=______度(用含t 的式子表示),若OM 恰好平分BOC Ð,则t =______秒(直接写结果).(2)在(1)问的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转,如图3,经过t 秒后,AOC Ð=______度(用含t 的式子表示)若OC 平分MON Ð,求t 为多少秒?(3)若(2)问的条件不变,那么经过秒OC 平分BOM Ð?(直接写结果)【答案】(1)3t ,5;(2)306t +,5;(3)经过703秒OC 平分BOM Ð【详解】(1)3AON tÐ=∵30AOC Ð=°,∴150BOC Ð=°∵OM 平分BOC Ð,90MON Ð=°∴75COM Ð=°,∴15CON Ð=°,∴301515AON AOC CON Ð=Ð-Ð=-=°°°解得:1535t =¸=°°秒(2)()306AOC t Ð=+度,∵90MON Ð=°,OC 平分MONÐ∴45CON COM Ð=Ð=°,∴45AOC AON CON Ð-Ð=Ð=°,∴306345t t +-=解得:5t =秒(3)如图:∵90AON BOM Ð+Ð=°,BOC COMÐ=Ð由题可设AON Ð为3t ,AOC Ð为()306t +°∴()19032COM BOC t Ð=Ð=-°∵180BOC AOC Ð+Ð=°()()130********t t ++-=,解得:703t =秒答:经过703秒OC 平分BOM Ð.5.已知:AOB Ð和COD Ð是直角.(1)如图,当射线OB 在COD Ð内部时,请探究AOD Ð和BOC Ð之间的关系;(2)如图2,当射线,OA 射线OB 都在COD Ð外部时,过点О作射线OE ,射线OF ,满足13BOE BOC Ð=Ð,23DOF AOD Ð=Ð,求EOF Ð的度数.(3)如图3,在(2)的条件下,在平面内是否存在射线OG ,使得:2:3GOF GOE ÐÐ=,若不存在,请说明理由,若存在,求出GOF Ð的度数.【答案】(1)180AOD BOC Ð+Ð=°,详见解析;(2)150o ;(3)GOF Ð的度数是60°或84o【详解】解:(1)180AOD BOC Ð+Ð=° ,证明:AOB ÐQ 和COD Ð是直角,BOD BOC COD Ð+Ð=ÐQ ,90BOD BOC \Ð=°-Ð,同理:90AOC BOC Ð=°-Ð,9090180AOD AOB BOD BOC BOC \Ð=Ð+Ð=°+°-Ð=-Ðo ,180AOD BOC \Ð+Ð=°;(2)解:设BOE a Ð=,则3BOC a Ð=,BOE EOC BOC Ð+Ð=ÐQ ,2EOC BOC BOE a \Ð=Ð-Ð=,360AOD COD BOC AOB Ð+Ð+Ð+Ð=°Q ,360AOD COD BOC AOB \Ð=°-Ð-Ð-Ð360903901803a a =°-°--°=°-,23DOF AOD Ð=ÐQ ,21803103(22DOF a a \Ð=°-=°-),(1118036033AOF AOD a a \Ð=Ð=-=°-o ),9060150EOF BOE AOB AOF a a \Ð=Ð+Ð+Ð=+°+°-=°,答:EOF Ð的度数是150o ;(3)①如图,当射线OG 在EOF Ð内部时,:2:3GOF GOE ÐÐ=Q ,222150602355GOF EOF EOF \Ð=Ð=Ð=´°=°+,②如图,当射线OG 在EOF Ð外部时,()()222352360360150210845GOF EOF °\Ð=Ð=+-°-°=´°=°,综上所述,GOF Ð的度数是60°或84°.6.已知O 为直线AB 上的一点,∠COE =90°,射线OF 平分∠AOE .(1)在图1中,当∠COF =36°时,则∠BOE = ,当∠COF =m °时,则∠BOE = ;以此判断∠COF 和∠BOE 之间的数量关系是 ;(2)若将∠COE 绕点O 旋转至图2的位置,试问(1)中∠COF 和∠BOE 之间的数量关系是否发生变化?若不发生变化,请你加以证明;若发生变化,请你说明理由;(3)若将∠COE 绕点O 旋转至图3的位置,继续探究∠COF 和∠BOE 之间的数量关系,并说明理由.【答案】(1)72°;2m°;∠BOE =2∠COF ;(2)不发生变化,理由见解析;(3)∠BOE +2∠COF =360°,理由见解析【解析】(1)∵∠COE =90°,∠COF =36°,∴∠EOF =90°-36°=54°,∵OF 平分∠AOE ,∴∠AOE =2∠EOF =108°,∴∠BOE =180°-108°=72°;同理可求∠BOE =2m °;由第一和第二空可知:∠BOE =2∠COF .故答案为:72°;2m °;∠BOE =2∠COF ;(2)∠BOE=2∠COF不会变化,其证明过程是:设∠AOC=x°,则∠AOE=(90-x)°,∵OF平分∠AOE,∴∠EOF=∠AOF=12∠AOE=(45-12x)°,∴∠COF=∠COE-∠EOF=90°-(45-12x)°=(45+12x)°,∠BOE=180°-∠AOE=180°-(90-x)°=(90+x)°,∴∠BOE=2∠COF.(3)∠BOE+2∠COF=360°,其理由是:设∠AOC=x°,则∠AOE=∠AOC-∠COE=(x-90)°.∵OF平分∠AOE,∴∠AOF=∠EOF=12∠AOE=(12x-45)°,∴∠COF=∠AOC-∠AOF=x°-(12x-45)°=(12x+45)°,∠BOE=180°-∠AOE=180°-(x-90)°=(270-x)°,∴∠BOE+2∠COF=(270°-x)°+2(12x+45)°=360°.故答案为:(1)72°;2m°;∠BOE=2∠COF;(2)不发生变化,理由见解析;(3)∠BOE+2∠COF=360°。
七上数学动角问题解题技巧和方法
动角问题是七年级数学中常见的问题类型,这类问题通常涉及到角度的变化和运动。
解决动角问题的关键在于理解角度的变化规律,掌握角度的基本性质和定理,并能够灵活运用。
解题技巧:
1. 确定参照物:在动角问题中,通常需要选择一个固定的角度作为参照物,以便更好地比较和计算其他角度的变化。
2. 观察角度变化:通过观察角度的变化,可以发现它们之间的相互关系。
例如,如果一个角度增大,另一个角度可能会减小,或者两个角度会同时变化。
3. 利用角的和与差:在动角问题中,经常需要利用角的和与差来解决问题。
例如,如果一个角是另一个角的两倍,那么它们的和就是180度。
4. 画图分析:通过画图可以更好地理解角度的变化和运动。
在画图时,需要注意角度的方向和大小,以便更好地描述问题。
5. 代数运算:在解决动角问题时,需要进行代数运算,如加法、减法、乘法和除法等。
在运算时需要注意单位的统一,以免出现错误。
解题方法:
1. 定义法:根据角度的定义和性质,直接计算出角度的大小。
这种方法适用于一些简单的问题,如计算直角三角形中的锐角等。
2. 代数法:通过代数运算来解决问题。
这种方法适用于一些复杂的问题,如求解方程组等。
3. 几何法:利用几何图形的性质和定理来解决问题。
这种方法适用于一些几何图形的问题,如求平行四边形的角度等。
4. 三角函数法:利用三角函数的性质和定理来解决问题。
这种方法适用于一些与三角函数相关的问题,如求三角形的角度等。
七年级动角问题知识点动角问题是初中数学中的重要知识点,也是常见的考点。
本文将对七年级学生所需要掌握的动角问题知识点进行详细讲解,帮助学生加深对该知识点的理解。
一、概念1. 动角问题是指一个角在不断地转动,被分为几个相等的部分,每个部分对应一个数值,这些数值组成的序列叫做动角数列。
2. 动角数列的通项公式为:$a_n = a_1 + (n-1)d$,其中$a_n$表示数列中第$n$个数,$a_1$表示第一个数,$d$表示公差,等于相邻两个数的差值。
3. 动角问题中常涉及的几何概念包括:圆、弧、扇形、圆心角和弧度制。
二、性质1. 动角数列的前$n$项和为:$S_n = \frac{n}{2} (a_1 + a_n)$,其中$a_1$为第一个数,$a_n$为第$n$个数。
2. 在同一个圆中,圆心角相等的弧长也相等。
3. 弧长等于半径乘以圆心角的弧度数。
即:弧长$L = r\theta$,其中$L$为弧长,$r$为半径,$\theta$为圆心角的弧度数。
4. 圆上任意两点间连线所对应的圆周角相等。
5. 扇形面积等于对应的圆心角所占的圆的面积的$\frac{1}{360}$。
三、应用1. 动角问题常用于计算圆上各点的坐标。
2. 利用动角问题可以计算圆的周长、弧长和面积等问题。
3. 在解决几何问题时,常使用动角问题中的性质来简化计算。
4. 动角问题的应用在实际生活中也非常广泛,如:钟表的指针、航空、建筑设计等。
四、例题1. 已知圆的半径为$4\text{cm}$,则圆的周长为多少?解:圆的周长$L=2\pi r=8\pi \text{cm}$。
2. 在圆上,圆心角为$60^\circ$的弧长为多少?解:设圆的半径为$r$,根据圆心角和弧度的关系,可得$\theta=60^\circ=\frac{\pi}{3}$,弧长$L=r\theta=r\frac{\pi}{3}$。
3. 小莉用长为$6\text{cm}$,宽为$4\text{cm}$的纸张制作了一个扇形,如果扇形所对圆心角的度数为$90^\circ$,则扇形的面积为多少?解:扇形的面积$S=\frac{1}{2}r^2\theta=\frac{1}{2}r^2\frac{\pi}{2}=\frac{\pir^2}{4}=\frac{1}{2}\cdot3\cdot4=6\text{cm}^2$。
七年级数学期末动点动线动角专题复习题1.如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的3倍,则它们第2022次相遇在边上.2.阅读下面材料:数学课上,老师给出了如下问题:如图1,∠AOB=80°,OC平分∠AOB,若∠BOD=20°,请你补全图形,并求∠COD 的度数.以下是小明的解答过程:解:如图2,因为OC平分∠AOB,∠AOB=80°,所以∠BOC=∠AOB=°.因为∠BOD=20°,所以∠COD==°.小静说:“我觉得这个题有两种情况,小明考虑的是OD在∠AOB外部的情况,事实上,OD还可能在∠AOB的内部”.完成以下问题:(1)请你将小明的解答过程补充完整;(2)根据小静的想法,请你在图3中画出另一种情况对应的图形,并求出此时∠COD 的度数.3.已知:如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒2°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒4°的速度旋转,如图2,设旋转时间为t(0秒≤t≤90秒).(1)用含t的代数式表示∠MOA的度数.(2)在运动过程中,当∠AOB第二次达到60°时,求t的值.(3)在旋转过程中是否存在这样的t,使得射线OB是由射线OM、射线OA、射线ON 中的其中两条组成的角(指大于0°而不超过180°的角)的平分线?如果存在,请直接写出t的值;如果不存在,请说明理由.4.点O为直线l上一点,射线OA、OB均与直线l重合,如图1所示,过点O作射线OC和射线OD,使得∠BOC=100°,∠COD=90°,作∠AOC的平分线OM.(1)求∠AOC与∠MOD的度数;(2)作射线OP,使得∠BOP+∠AOM=90°,请在图2中画出图形,并求出∠COP的度数;(3)如图3,将射线OB从图1位置开始,绕点O以每秒5°的速度逆时针旋转一周,作∠COD的平分线ON,当∠MON=20°时,求旋转的时间.5.如图1,∠AOB=α,∠COD=β,OM,ON分别是∠AOC,∠BOD的角平分线.(1)若∠AOB=50°,∠COD=30°,当∠COD绕着点O逆时针旋转至射线OB与OC 重合时(如图2),则∠MON的大小为;(2)在(1)的条件下,继续绕着点O逆时针旋转∠COD,当∠BOC=10°时(如图3),求∠MON的大小并说明理由;(3)在∠COD绕点O逆时针旋转过程中,∠MON=.(用含α,β的式子表示).6.已知:如图1,点O是直线AB上的一点.(1)如图1,当∠AOD是直角时,3∠AOC=∠BOD,求∠COD的度数;(2)若∠COD保持在(1)中的大小不变,它绕着点O顺时针旋转(OD与OB重合即停止),如图2,OE、OF分别平分∠AOC、∠BOD,则在旋转过程中∠EOF的大小是否变化?若不变,求出∠EOF的大小;若改变,说明理由;(3)若∠COD从(1)中的位置开始,边OC、边OD分别绕着点O以每秒20°、每秒10°的速度顺时针旋转(当其中一边与OB重合时都停止旋转),OM、ON分别平分∠BOC、∠BOD.求:①运动多少秒后,∠COD=10°;②运动多少秒后,∠COM=∠BON.1.已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.(1)如图1,若∠COF=34°,则∠BOE=;(2)如图1,若∠BOE=m°,则∠COF的度数是;(用含m的代数式表示);(3)当∠COE绕点O逆时针旋转到如图2的位置时,∠BOE与∠COF的数量关系是什么?请说明理由.2.如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE=°;(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.3.乐乐对几何中角平分线部分的学习兴趣浓厚,请你和乐乐一起探究下面问题吧.已知∠AOB=100°,射线OE、OF分别是∠AOC和∠COB的平分线.(1)如图1,若射线OC在∠AOB的内部,且∠AOC=30°,求∠EOF的度数;(2)如图2,若射线OC在∠AOB的内部绕点O旋转,则∠EOF的度数;(3)若射线OC在∠AOB的外部绕点O旋转(旋转中∠AOC,∠BOC,均指小于180°的角),其余条件不变,请借助图3探究∠EOF的大小,请直接写出∠EOF的度数.(不写探究过程)4.如图,一副三角板中各有一个顶点在直线MN的点O处重合,三角板AOB的边OA落在直线MN上,三角板COD绕着顶点O任意旋转.两块三角板都在直线MN的上方,作∠BOD的平分线OP,且∠AOB=45°,∠COD=60°.(1)当点C在射线ON上时(如图1),∠BOP的度数是.(2)现将三角板COD绕着顶点O旋转一个角度x°(即∠CON=x°),请就下列两种情形,分别求出∠BOP的度数(用含x的式子表示)①当∠CON为锐角时(如图2);②当∠CON为钝角时(如图3).5.已知直线AB过点O,∠COD=90°,OE是∠BOC的平分线.(1)操作发现:①如图1,若∠AOC=40°,则∠DOE=°.②如图1,若∠AOC=50°,则∠DOE=°.③如图1,若∠AOC=α,则∠DOE=.(用含α的代数式表示)(2)操作探究:将图1中的∠COD绕顶点O顺时针旋转到图2的位置,其他条件不变,③中的结论是否成立?试说明理由.(3)拓展应用:将图2中的∠COD绕顶点O逆时针旋转到图3的位置,其他条件不变,若∠AOC=α,则∠DOE=.(用含α的代数式表示)6.如图,OC是∠AOB内一条射线,OD、OE别是∠AOC和∠BOC的平分线.(1)如图①,当∠AOB=80°时,则∠DOE的度数为°;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠BOE、∠EOD、∠DOA三角之间有怎样的数量关系?并说明理由;(3)当射线OC在∠AOB外如图③所示位置时,(2)中三个角:∠BOE、∠EOD、∠DOA 之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC在∠AOB外如图④所示位置时,∠BOE、∠EOD、∠DOA之间数量关系是.7.已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.(1)如图1,若∠COF=34°,则∠BOE=;(2)如图1,若∠BOE=80°,则∠COF=;(3)若∠COF=m°,则∠BOE=度;∠BOE与∠COF的数量关系为.(4)当∠COE绕点O逆时针旋转到如图2的位置时,(3)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由.。
七上动角问题(难题)训练一、解答题1.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=度。
(直接写出结果)(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON的度数是多少?为什么?2.已知线段AB=12cm,点C为AB上的一个动点,点D,E分别是AC和BC的中点,(1)若点C恰好是AB中点,求DE的长.(2)若AC=4cm,求DE的长.(3)试说明不论AC取何值(不超过12cm),DE的长不变.(4)知识迁移:如图2,已知∠AOB=120∘,过角的内部任一点C画射线OC,若OD,OE分别平分∠AOC和∠BOC,试说明∠DOE=60∘与射线OC的位置无关.3.如图1,已知PQ//MN,点A,B分别在MN,PQ上,且∠BAN=45°,射线AM绕点A顺时针旋转至AN便立即逆时针回转(速度是a/秒),射线BP绕点B顺时针旋转至BQ便立即逆时针回转(速度是秒).且a、b满足|a−3b|+(a+b−4)2=(1)直接写出a、b的值;(2)如图2,两条射线同时旋转,设旋转时间为t秒(t<60),两条旋转射线交于点C,过C作CD⊥AC交PQ于点D,求出∠BAC与∠BCD的数量关系;(3)若射线BP先旋转20秒,射线AM才开始旋转,设射线AM旋转时间为t秒(t≺160),若旋转中AM//BP,求t的值.4.如图1,已知∠AOC=120°,射线OM以每秒8°的速度,从射线OC开始逆时针向射线OA旋转,到达射线OA之后又以同样的速度顺时针返回,直到到达射线OC 停止,射线ON从射线OA开始,以每秒4°的速度顺时针向射线OC旋转,直到到达各自的目的地才停止.设旋转时间为t秒.(1)当t=5秒时,求出∠MON的度数.(2)在运动过程中,当∠MON达到48°时,求t的值.(3)在旋转过程中是否存在这样的t,使得射线OM、射线OA、射线ON其中一条射线是另外两条射线组成的角的角平分线?如果存在,请求出t的值;如果不存在,请说明理由.5.如图1,已知∠AOB=126°,∠COD=54°,OM在∠AOC内,ON在∠BOD内,∠AOM=1 3∠AOC,∠BON=13∠BOD.(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,求∠MON 的度数;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<126且n≠54),求∠MON的度数;6.【探究】将两个三角板的两个直角顶点O重合在一起,放置成如图甲所示的位置,请回答下面的问题.(1)如果重叠在一起∠BOC=30°,则∠AOD=___________.(2)若将∠COD绕点O旋转,使重叠在一起的∠BOC=50°,∠AOD=______ .(3)图甲中∠AOC与∠BOD满足的数量关系是___________,根据是__________.【拓展】在图甲所示的位置上,继续将∠COD绕点O旋转,得到如图乙所示的位置,请回答下面的问题.(4)如果∠BOC=x°,则∠AOD=_________________(用含x的式子表示)(5)此时图乙中∠AOC与∠BOD始终满足的数量关系是________________.【结论】由上述的探究过程可知,三角板COD绕重合点O旋转.不论旋转到任何位置时,∠AOD与∠BOC始终满足的数量关系是________________________.7.已知将一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=900,∠ABO=450,∠CDO=900,∠COD=600)(1)如图1摆放,点O、A、C在一直线上,则∠BOD的度数是多少?(2)如图2,将直角三角板OCD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是多少?(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.8.如图,已知直线AB上一点O,∠AOC=∠DOE=90°,∠DOC=∠EOB.(1)求证:∠AOD=∠COE证明(法1):∵∠AOC=∠DOE=90°(已知)∴∠AOD+∠COD=90°∠COE+∠COD=90°∴∠AOD=∠COE(____________)(法2)∵∠AOC=90°(已知)∴∠COB=90°∴∠AOD+∠DOC=90°∠COE+∠EOB=90°∵∠DOC=∠EOB(已知)∴∠AOD=∠COE(____________)∠BOD,求∠AOE、∠COD的度数.(2)若∠COE=159.已知如图(1):∠AOB=α,∠COD=β(3a>β,且α,β为锐角),OM平分∠AOD,ON平分∠COB,在线段AC上,AB=x,CD=y,M为AD中点,N为CB中点.(1)图(1)中,在∠AOC内,当射线OB和射线OD重合时,求∠MON的度数,此时在线段AC上,当点B和点D重合时,求线段MN的长度;(2)图(2)中,在∠AOC内,当射线OB和射线OD不重合时,求∠MON的度数,此时在线段AC上,当点B和点D不重合时,求线段MN的长度;(3)当∠COD从图(1)所示的位置绕点O逆时针旋转n∘(0<n<90)时,满足∠AOC+∠MON=6∠COD,求旋转度数n(结果用α,β表示)10.已知:如图,∠AOC=∠AOB+∠BOC,且∠AOC<180°,OD平分∠AOC,OE平分∠BOC.(1)如果∠AOB=80°,∠BOC=50°,求∠DOE的度数;(2)请你任意指定∠AOB和∠BOC的度数,其他条件不变,通过画图,计算∠DOE的度数;不必写出上述画图计算过程,直接写出你指定的∠AOB的度数为________°,∠BOC的度数为________°,算出的∠DOE的度数为________°;(3)在已知条件下,从(1)、(2)的结果中,你发现了什么规律,请写出来.11.将一副三角板中的两块直角三角尺的直角顶点C叠放在一起,其中∠A=60°,∠D=30°;∠E=∠B=45°.(1)①如图,若∠ACB=130°,求∠DCE的度数;②猜想∠ACB与∠DCE的数量关系,并说明理由;(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值;若不存在,请说明理由.12.如图,点O在直线AB上,过O作射线OC,∠BOC=100°,一直角三角板的直角顶点与点O重合,边OM与OB重合,边ON在直线AB下方.(1)三角板绕点O逆时针旋转一定的角度,当边OM在∠BOC的内部,ON在AB的下方时,①若∠BON=10°,求∠COM的度数;②探究∠COM与∠BON之间的数量关系,并简单说明理由;(2)若三角板绕点O按每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).13.O为直线AD上一点,以O为顶点作∠COE=90°,射线OF平分∠AOE.(1)如图①,∠AOC与∠DOE的数量关系为______ ,∠COF和∠DOE的数量关系为______;(2)若将∠COE绕点O旋转至图②的位置,OF依然平分∠AOE,请写出∠COF和∠DOE之间的数量关系,并说明理由;(3)若将∠COE绕点O旋转至图③的位置,射线OF依然平分∠AOE,请直接写出∠COF和∠DOE之间的数量关系.14.已知将一副三角板(∠AOB=90∘,∠ABO=45∘,∠CDO=90∘,∠COD=30∘):(1)如图1摆放,点O、A、C在一条直线上,求∠BOD的度数;(2)如图2,将直角三角板OCD绕点O逆时针方向转动,当OA恰好平分∠COD时,求∠BOC的度数;(3)如图3,继续旋转,当三角板OCD完全转入三角板AOB内部时,作射线OM平分∠AOD,射线ON平分∠BOC,①若∠AOD=20∘时,求∠MON的度数;②当∠AOD的度数改变时,∠MON的度数是否会改变,请说明理由.若不变,求出∠MON的值.15.如图1,点O为直线AB上一点,过点O作射线OC,将一直角三角形的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;(2)若∠BOC=120°.①将图1中的三角板绕点O按每秒12°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为__________(直接写出结果);②将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.16.如图,已知点O为直线MN上一点,点A在射线OM上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,OC为∠MOA的角平分线,点B为射线ON上的一点,射线OB绕点O沿逆时针方向以每秒6°的速度旋转,OD为∠BON的角平分线,OA、OB同时旋转,设旋转时间为t秒(0≤t≤60):⑴用含t的代数式表示∠AOC的度数.⑴在运动过程中,当∠COD第二次达到40°时,求t的值.⑴在旋转过程中是否存在这样的t,使得射线OB是由射线OM、射线OA、射线ON中的其中两条组成的角(指大于0°而不超过180°的角)的平分线?如果存在,请直接写出t的值;如果不存在,请说明理由.17.点O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)①如图1,若∠DOE=25°,求∠AOC的度数;②如图2,若∠DOE=α,直接写出∠AOC的度数(用含α的式子表示);(2)将图1中的∠COD按顺时针方向旋转至图2所示的位置.探究∠DOE与∠AOC的度数之间的关系,写出你的结论,并说明理由.。
O D
C
B
A
七年级数学上册复习——动角问题
1.如图1,将两块直角三角尺的直角顶点C 叠放在一起,
(1)若∠DCE=35°,∠ACB=______;若∠ACB=140°,则∠DCE=______; (2)猜想∠ACB 与∠DCE 的大小有何特殊关系,并说明理由;
(3)如图(2),若是两个同样的直角三角尺60°锐角的顶点A 重合在一起,则∠DAB 与∠CAE 的大小又有何关系,请说明理由.
2.将一副三角板如图1摆放.∠AOB=60°,∠COD=45°,OM 平分AOD ,ON 平分∠COB . (1)∠MON=______;
(2)将图1中的三角板OCD 绕点D 旋转到图2的位置,求∠MON ; (3)将图1中的三角板OCD 绕点D 旋转到图3的位置,求∠MON .
3.已知:如图,OB 、OC 分别为定角∠AOD 内的两条动射线
⑴当OB 、OC 运动到如图的位置时,∠AOC +∠BOD =110°,∠AOB +∠COD =50°,求∠AOD 的度数; ⑵在⑴的条件下,射线OM 、ON 分别为∠AOB 、∠COD 的平分线,当∠COB 绕着点O 旋转时,下列结论:①∠AOM -∠DON 的值不变;②∠MON 的度数不变.可以证明,只有一个是正确的,请你作出正确的选择并求值.
图③
4.(2013-2014东湖开发区期末七上数学第24题)已知O 为直线AB 上的一点,∠COE 是直角,OF 平分∠AOE (1)如图1,若∠COF =34°,则∠BOE =________;若∠COF =m°,则∠BOE =________;∠BOE 与∠COF 的数量关系为________________________.
(2)在图2中,若∠COF =75°,在∠BOE 的内部是否存在一条射线OD ,使得2∠BOD 与∠AOF 的和等于∠BOE 与∠BOD 的差的三分之一若存在,请求出∠BOD 的度数;若不存在,请说明理由
5.已知,O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC . (1)如图1,若∠AOC=30°,求∠DOE 的度数;
(2)在图1中,若∠AOC=a ,直接写出∠DOE 的度数(用含a 的代数式表示); (3)将图1中的∠DOC 绕顶点O 顺时针旋转至图2的位置.
①探究∠AOC 和∠DOE 的度数之间的关系,写出你的结论,并说明理由; ②在∠AOC 的内部有一条射线OF ,满足:∠AOC-4∠AOF=2∠BOE+∠AOF , 试确定∠AOF 与∠DOE 的度数之间的关系,说明理由.
6.(本题满分10分) 如图24-1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方. (1)将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.如图24-2,经过t 秒后,OM 恰好平分∠BOC .①求t 的值;②此时ON 是否平分∠AOC 请说明理由;
(2)在(1)问的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图24-3,那么经过多长时间OC 平分∠MON 请说明理由;
(3)在(2)问的基础上,经过多长时间OC 平分∠MOB 请画图并说明理由;
C M
24-1
M
N
C 24-2
C A
B M
N O 24-3
C
N AB
AC 2
7.已知一副三角板如图摆放,∠DCE=30°,现将∠DCE绕C点以15°/s速度逆时针旋转,时间为t(s)
(1)t为多少时,CD恰好平分∠BCE请在图2中自己画图,并说明理由.
(2)当6<t<8,CM平分∠ACE,CN平分∠BCD,求∠MCN,在图3中完成.
(3)当8<t<12时,(2)中结论是否发生变化请在图4中完成.
(4)当12<T<24时,会出现不一样的结论吗
8.如图1,射线OC、OD在∠AOB的内部,且∠AOB=150°,∠COD=30°,射线OM、ON分别平分∠AOD、∠BOC,
(1)求∠MON的大小,并说明理由;
(2)如图2,若∠AOC=15°,将∠COD绕点O以每秒x°的速度逆时针旋转10秒钟,此时∠AOM︰∠BON=7︰11,如图3所示,求x的值.
(3)如图4,若旋转后OC恰好为∠MOA的角平分线,试探究∠NOD与∠MOC的数量关系.
图4
9.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O
处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为度;
(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM 与∠NOC之间满足什么等量关系,并说明理由;
(3)在上述直角三角板从图1旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.。