教材:线性代数(DOC)
- 格式:doc
- 大小:188.50 KB
- 文档页数:10
《线性代数》课程教学大纲课程编号:课程类别:学分数:学时数:适用专业:应修基础课程:一、本课程的地位和作用《线性代数》在高等学校的教学计划中是一门必修的基础理论课,是计算机专业的重要基础课之一,它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性,特别是在计算机日益普及的今天,使求解大型线性方程组成为可能,因此本课程所介绍的方法,广泛地应用与各个学科。
所以该课程的地位与作用也更为重要。
通过该课程的学习,使学生掌握该课程的理论与方法,可以培养和提高学生的抽象思维能力、创新能力和解决实际问题的能力,并为为后续课程的学习及进一步扩大数学知识面奠定必要的数学基础。
二、本课程的教学目标通过该课程的学习,要求学生把握线性代数的基本内容。
如:行列式、矩阵、线性方程组、线性空间等。
把握线性代数的体系结构。
从知识的扩充层面上,发展自身的创新思维。
并且要求学生掌握线性代数的基本计算方法,较好地理解线性代数这门课的抽象理论,具有严谨逻辑推理能力,空间想象能力,运算能力和综合运用所学的知识分析问题和解决问题的能力。
三、课程内容和基本要求按教学顺序提出课程各部分教学内容,并具体到知识点,用“*”明确难点内容,用“Δ”明确重点。
“*”或“Δ”一律写在课程内容的前面。
“*”与“Δ”可以并用,表明此内容既是重点又是难点。
在各部分课程内容的前面,首先写明该部分内容须要了解、理解、熟练掌握、应用等层次的教学基本要求。
其格式为:第一章预备知识1、教学基本要求(1)了解集合与映射的基本概念及有理系数多项系的有理根的求法(2)理解数域的概念及排列与对换2、教学内容(1)集合与映射(2)数域(3)Δ排列与对换(4)*有理系数多项系的有理根第二章n阶行列式1、教学基本要求(1)了解全排列、行列式、代数余子式概念(2)理解n阶行列式的定义;(3)掌握行列式性质,会应用行列式的性质计算行列式;(4)理解行列式按行(列)展开定理并应用于行列式计算与证明;(5)掌握克莱姆法则。
《线性代数》教学大纲一、课程概述1. 课程研究对象和研究内容《线性代数》是数学中的一个重要分支,是高等工科院校的重要基础理论课。
其不仅在数学、力学、物理学和技术学科中有各种重要应用,而且在计算机图形学、计算机辅助设计、密码学、虚拟现实等技术中无不是理论和算法的基础内容。
本课程教学内容主要有:行列式;矩阵;n维向量空间;线性方程组;特征值与特征向量;二次型。
通过本课程的学习,能够培养学生对研究对象进行有序化、代数化、可解化的处理方法,并且为其他后续课程打好基础。
因此,本课程对学生今后专业的发展具有非常重要的意义。
2. 课程在整个课程体系中的地位《线性代数》是计算机专业的基础课。
《线性代数》的后续课是《离散数学》,《计算方法》等。
二、课程目标1.知道《线性代数》这门学科的理论和方法及其在专业教育体系中的位置;2.理解这门学科的基本概念、基本定理和基本方法;3.熟练掌握行列式、矩阵的运算;会用行列式与矩阵的方法求解齐次线性方程组、非齐次线性方程组的解;学会矩阵的特征值、特征向量及二次型的相关应用;4.突出计算能力的培养,引导学生进行归纳、对比和思考,培养学生的创造性能力;5.学会用线性代数的方法处理离散对象;6.培养运用本学科的基本知识与基本技能分析问题、解决问题的能力;逐步培养学生抽象思维和逻辑推理的能力;7.通过本课程的学习,协助学生逐步树立辩证唯物主义的观点。
三、课程内容和要求这门学科的知识与技能要求分为知道、理解、掌握、学会四个层次。
这四个层次的一般涵义表述如下:知道———是指对这门学科和教学现象的认知。
理解———是指对这门学科涉及到的概念、原理、策略与技术的说明和解释,能提示所涉及到的教学现象演变过程的特征、形成原因以及教学要素之间的相互关系。
掌握———是指运用已理解的教学概念和原理说明、解释、类推同类教学事件和现象。
学会———是指能模仿或在教师指导下独立地完成某些教学知识和技能的操作任务,或能识别操作中的一般差错。
《线性代数》教案一、前言1. 教学目标(1)理解线性代数的基本概念和原理;(2)掌握线性代数的基本运算方法和技巧;(3)能够应用线性代数解决实际问题。
2. 教学内容(1)线性方程组;(2)矩阵及其运算;(3)线性空间和线性变换;(4)特征值和特征向量;(5)二次型。
二、第一章:线性方程组1. 教学目标(1)理解线性方程组的定义和性质;(2)掌握线性方程组的求解方法;(3)能够应用线性方程组解决实际问题。
2. 教学内容(1)线性方程组的定义和性质;(2)线性方程组的求解方法:高斯消元法、克莱姆法则;(3)线性方程组的应用:线性规划、电路方程等。
三、第二章:矩阵及其运算1. 教学目标(1)理解矩阵的定义和性质;(2)掌握矩阵的运算方法;(3)能够应用矩阵解决实际问题。
2. 教学内容(1)矩阵的定义和性质;(2)矩阵的运算:加法、数乘、乘法;(3)矩阵的逆矩阵及其求法;(4)矩阵的应用:线性方程组、线性变换等。
四、第三章:线性空间和线性变换1. 教学目标(1)理解线性空间和线性变换的定义和性质;(2)掌握线性变换的表示方法;(3)能够应用线性变换解决实际问题。
2. 教学内容(1)线性空间的定义和性质;(2)线性变换的定义和性质;(3)线性变换的表示方法:矩阵表示、坐标表示;(4)线性变换的应用:图像处理、信号处理等。
五、第四章:特征值和特征向量1. 教学目标(1)理解特征值和特征向量的定义和性质;(2)掌握特征值和特征向量的求法;(3)能够应用特征值和特征向量解决实际问题。
2. 教学内容(1)特征值和特征向量的定义和性质;(2)特征值和特征向量的求法:幂法、矩阵对角化;(3)特征值和特征向量的应用:线性变换、振动系统等。
六、第五章:二次型1. 教学目标(1)理解二次型的定义和性质;(2)掌握二次型的标准形和规范形;(3)能够应用二次型解决实际问题。
2. 教学内容(1)二次型的定义和性质;(2)二次型的标准形和规范形:配方法、矩阵的对角化;(3)二次型的应用:最小二乘法、优化问题等。
线性代数线性代数是关于向量空间和线性映射的一个数学分支,包括对线、面和子空间的研究,也涉及到所有向量空间的一般性质。
线性代数是纯数学和应用数学的核心,它的含义随着数学的发展而不断扩大,其理论和方法已经渗透到数学的许多分支,也成为理论物理和理论化学不可缺少的代数基础知识。
1定义与历史编辑概念线性代数是代数学的一个分支,主要处理线性关系问题。
线性关系意即数学对象之间的关系是以一次形式来表达的。
例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。
含有n个未知量的一次方程称为线性方程。
关于变量是一次的函数称为线性函数。
线性关系问题简称线性问题。
解线性方程组的问题是最简单的线性问题。
所谓“线性”,指的就是如下的数学关系:。
其中,f叫线性算子或线性映射。
所谓“代数”,指的就是用符号代替元素和运算,也就是说:我们不关心上面的x,y是实数还是函数,也不关心f是多项式还是微分,我们统一把他们都抽象成一个记号,或是一类矩阵。
合在一起,线性代数研究的就是:满足线性关系的线性算子f都有哪几类,以及他们分别都有什么性质。
历史线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。
“鸡兔同笼”问题实际上就是一个简单的线性方程组求解的问题。
最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。
由于费马和笛卡儿的工作,现代意义的线性代数基本上出现于十七世纪。
直到十八世纪末,线性代数的领域还只限于平面与空间。
十九世纪上半叶才完成了到n维线性空间的过渡。
随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18~19世纪期间先后产生,为处理线性问题提供了有力的工具,从而推动了线性代数的发展。
线性代数教案第(1)次课授课时间()1.教学内容: 二、三阶行列式的定义;全排列及其逆序数;阶行列式的定义2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示.基本内容备注第一节 二、三阶行列式的定义一、二阶行列式的定义从二元方程组的解的公式,引出二阶行列式的概念。
设二元线性方程组 ⎩⎨⎧=+=+22222211212111b x a x a b x a x a用消元法,当021122211≠-a a a a 时,解得211222111212112211222112121221,a a a a b a b a x a a a a b a b a x --=--=令2112221122211211a a a a a a a a -=,称为二阶行列式 ,则如果将D 中第一列的元素11a ,21a 换成常数项1b ,2b ,则可得到另一个行列式,用字母1D 表示,于是有2221211a b a b D =按二阶行列式的定义,它等于两项的代数和: ,这就是公式(2)中 的表达式的分子。
同理将 中第二列的元素a 12,a 22 换成常数项b1,b2 ,可得到另一个行列式,用字母 表示,于是有2121112b a b a D =按二阶行列式的定义,它等于两项的代数和: ,这就是公式(2)中 的表达式的分子。
于是二元方程组的解的公式又可写为⎪⎪⎩⎪⎪⎨⎧==D D x D D x 2211 其中0≠D例1. 解线性方程组 .1212232121⎪⎩⎪⎨⎧=+=-x x x x 同样,在解三元一次方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a 时,要用到“三阶行列式”,这里可采用如下的定义.二、三阶行列式的定义设三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a用消元法解得定义 设有9个数排成3行3列的数表333231232221131211a a a a a a a a a 记 333231232221131211a a a a a a a a a D =322113312312332211a a a a a a a a a ++=332112322311312213a a a a a a a a a ---,称为三阶行列式,则三阶行列式所表示的6项的代数和,也用对角线法则来记忆: 从左上角到右下角三个元素相乘取正号,从右上角到左下角三个元素取负号,即例2.计算三阶行列式 .(-14) 例3.求解方程 ( ) 例4.解线性方程组 解 先计算系数行列式573411112--=D 069556371210≠-=----+-= 再计算 321,,D D D515754101121-=--=D ,315534011222=--=D ,55730112123=---=D得 23171==D D x ,69312-==D D y ,6953-==D D z第( 2 )次课授课时间()第( 3 )次课授课时间()1.教学内容: 行列式按行(列)展开;2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;教学手段: 黑板讲解与多媒体演示.基本内容备注第5节 行列式按行(列)展开定义 在 阶行列式中, 把元素 所处的第 行、第 列划去, 剩下的元素按原排列构成的 阶行列式, 称为 的余子式, 记为;而 称为 的代数余子式.引理 如果 阶行列式中的第 行除 外其余元素均为零, 即: .则: .证 先证简单情形:再证一般情形:定理 行列式等于它的任意一行(列)的各元素与对应的代数余子式乘积之和, 即按行: 按列: 证:(此定理称为行列式按行(列)展开定理)nnn n ini i n a a a a a a a a a D212111211000000+++++++++=nnn n in n nnn n i n nn n n i n a a a a a a a a a a a a a a a a a a a a a 21112112121121121111211000000+++=).,2,1(2211n i A a A a A a in in i i i i =+++=例1 : . 解:例2: 21122112----=n D解: 21122112----=n D 211221100121---=+++nr r)()()()()()21331122213311n n n n n n n x x x x x x x x x x x -----, 并提出因子 )()2321111--n n n x x x x x x()1-n 阶范德蒙行列式(1n x x -行列式一行(列)的各元素与另一行(列)对应各元素的代数余子式乘积之和为零第( 4 )次课授课时间()1.教学内容: 克拉默法则;2.时间安排: 2学时;教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示.4.教学手段:黑板讲解与多媒体演示.基本内容备注第(5)次课授课时间()1.教学内容: 矩阵;矩阵的运算;2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示。
《线性代数》教案一、教学目标1. 知识与技能:(1)理解线性代数的基本概念,如向量、矩阵、行列式等;(2)掌握线性方程组的求解方法,如高斯消元法、矩阵的逆等;(3)熟悉线性代数在实际问题中的应用。
2. 过程与方法:(1)通过实例讲解,培养学生的空间想象能力;(2)运用数学软件或工具,提高学生解决实际问题的能力;(3)引导学生运用线性代数的知识,分析、解决身边的数学问题。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)感受数学在生活中的重要性,培养学生的应用意识;(3)引导学生树立正确的数学观念,克服对数学的恐惧心理。
二、教学内容1. 第一章:向量(1)向量的概念及几何表示;(2)向量的线性运算;(3)向量的数量积与向量垂直;(4)向量的坐标表示与运算。
2. 第二章:矩阵(1)矩阵的概念与运算;(2)矩阵的行列式;(3)矩阵的逆;(4)矩阵的应用。
3. 第三章:线性方程组(1)线性方程组的解法;(2)高斯消元法;(3)矩阵的逆与线性方程组的解;(4)线性方程组的应用。
4. 第四章:矩阵的特征值与特征向量(1)特征值与特征向量的概念;(2)矩阵的特征值与特征向量的求解;(3)矩阵的对角化;(4)矩阵的特征值与特征向量的应用。
5. 第五章:二次型(1)二次型的概念;(2)二次型的标准形;(3)二次型的判定;(4)二次型的应用。
三、教学方法1. 采用启发式教学,引导学生主动探索、思考;2. 结合实例讲解,培养学生的空间想象能力;3. 利用数学软件或工具,提高学生解决实际问题的能力;4. 组织课堂讨论,促进学生交流与合作;5. 注重练习与反馈,巩固所学知识。
四、教学评价1. 平时成绩:课堂表现、作业、小测验等;2. 期中考试:检测学生对线性代数知识的掌握程度;3. 期末考试:全面考察学生的线性代数知识、技能及应用能力。
五、教学资源1. 教材:《线性代数》;2. 辅助教材:《线性代数学习指导》;3. 数学软件:如MATLAB、Mathematica等;4. 网络资源:相关在线课程、教学视频、练习题等。
《线性代数》课程教学大纲一、课程基本信息二、课程教学目标《线性代数》是学生所必备的基础理论知识和重要的数学工具。
它的主要目的和任务是通过本课程的教学,使学生了解和掌握行列式、矩阵、线性方程组、二次型等基本概念,基本原理理论和基本计算方法,并具有熟练的矩阵运算能力和用矩阵方法解决实际问题的能力,同时使学生的抽象思维能力和数学建模能力受到一定的训练。
本课程主要教学内容包括行列式、矩阵、向量的线性相关性,线性方程组,矩阵的特征值,二次型等。
另外,有关的习题课、应用线性代数知识解决实际问题的数学建模课也是教学的重要部分。
1.学好基础知识。
理解和掌握课程中的基本概念和基本理论,知道它的数学思想方法、意义和用途,以及它与其它概念、规律之间的联系。
2.掌握基本技能。
能够根据性质法则、公式正确地进行运算。
能够根据不同问题的情景,寻求和设计合理简捷的运算途径。
3.培养思维能力。
能够对研究的对象进行观察、比较、抽象和概括。
能运用课程中的概念、定理及性质进行合乎逻辑的推理。
能对计算结果进行合乎实际的分析、归纳和类比。
4.提高解决实际问题的能力。
能够将本课程与相关课程有机地联系起来,提出并解决相关学科中与本课程有关的问题。
能够自觉地运用所学的知识方法理念去观察生活,建立简单的数学模型,提出和解决生活中有关的数学问题。
三、教学学时分配《线性代数》课程理论教学学时分配表四、教学内容和教学要求第一章行列式(10)(一)教学要求通过本章相关内容的学习,了解行列式的概念;理解克莱姆法则,并且会用克莱姆法则解相应的方程组;掌握行列式的性质和行列式的展开定理,及正确计算行列式。
(二)教学重点与难点教学重点:n阶行列式的性质,行列式按行(列)展开定理教学难点:n阶行列式的计算(三)教学内容第一节排列与逆序数1.n阶排列及奇(偶)排列的定义2.逆序数第二节 n阶行列式1.二阶、三阶行列式的定义2.n阶行列式的定义3. 一些特殊的n阶行列式计算第三节行列式性质1.行列式的性质2.利用行列式性质计算行列式第四节行列式按行(列)展开1. 余子式2. 行列式按行(列)展开法则3. 范德蒙行列式第五节克莱姆法则本章习题要点:1.n阶行列式的计算2.行列式按行(列)展开3.用克莱姆法则解相应方程组第二章矩阵及其运算(8学时)(一)教学要求通过本章内容的学习,使学生了解单位矩阵、对角矩阵、上(下)三角矩阵、对称矩阵与反对称矩阵的概念以及它们的性质,理解矩阵以及逆矩阵的概念。
教案(2013-2014学年第2学期)课程名称:线性代数任课教师:教师职称:所在院系:教学教案设计(首页)教学教案设计(续页)第一 章 行列式 §1.1 n 阶行列式定义教学目的:使学生了解和掌握n 级排列、逆序逆序数奇排列偶排列n 阶行列式定义及行列式的计算教学重点:n 阶行列式定义及计算 教学难点:n 阶行列式定义一、导入 线性方程组和矩阵在工程技术领域里有着广泛的应用,而行列式就是研究线性方程组的求解理论和矩阵理论的重要工具。
二、新授(一) 二阶、三阶行列式对于二元线性方程组⎩⎨⎧=+=+22221211212111b x a x a b x a x a (1.1) 采用加减消元法从方程组里消去一个未知量来求解,为此: 第一个方程乘以a 22与第二个方程乘以a 12相减得(a 11a 22-a 21a 12)x 1= b 1a 22— b 2a 12第二个方程乘以a 11与第一个方程乘以a 21相减得(a 11a 22-a 21a 12)x 2=a 11b 2-a 21b 1若a 11a 22-a 21a 12≠0,方程组的解为122122111122211a a a a a b a b x --=122122*********a a a a b a b a x --= (1.2)容易验证(1.2)式是方程组(1。
1)的解。
称a 11a 22-a 21a 12为二阶行列式,它称为方程组(1。
1)的系数行列式,记为D .我们若记 2221211a b a b D =2211112b a b a D =方程组的解(1。
2)式可写成 D D x 11=DDx 22=对三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a (1。
3) 与二元线性方程组类似,用加减消元法可求得它的解: D D x 11=D Dx 22= DD x 33= 111213212223313233112233122331132132112332122133132231a a a Da a a a a a a a a a a a a a a a a a a a a a a a (1。
线性代数课程教案学院、部系、所授课教师课程名称线性代数课程学时45学时实验学时教材名称年月日线性代数 课程教案授课类型 理论课 授课时间 3 节授课题目(教学章节或主题):第一章 行列式§1 二阶与三阶行列式 §2 全排列及其逆序数 §3 n 阶行列式的定义 §4 对换本授课单元教学目标或要求:1. 会用对角线法则计算2阶和3阶行列式。
2. 知道n 阶行列式的定义。
本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等): 基本内容:行列式的定义 1. 计算排列的逆序数的方法设12n p p p L 是1,2,,n L 这n 个自然数的任一排列,并规定由小到大为标准次序。
先看有多少个比1p 大的数排在1p 前面,记为1t ; 再看有多少个比2p 大的数排在2p 前面,记为2t ; ……最后看有多少个比n p 大的数排在n p 前面,记为n t ; 则此排列的逆序数为12n t t t t =+++L 。
2. n 阶行列式1212111212122212()12(1)n n nnt p p np p p p n n nna a a a a a D a a a a a a ==-∑L L L L M M M L其中12n p p p L 为自然数1,2,,n L 的一个排列,t 为这个排列的逆序数,求和符号∑是对所有排列12()n p p p L 求和。
n 阶行列式D 中所含2n 个数叫做D 的元素,位于第i 行第j 列的元素ij a ,叫做D 的(,)i j 元。
3. 对角线法则:只对2阶和3阶行列式适用1112112212212122a a D a a a a a a ==-111213212223112233122331132132313233132231122133112332a a a D a a a a a a a a a a a a a a a a a a a a a a a a ==++---重点和难点:理解行列式的定义行列式的定义中应注意两点:(1) 和式中的任一项是取自D 中不同行、不同列的n 个元素的乘积。
第一章n 阶行列式在初等数学中讨论过二阶、三阶行列式,并且利用它们来解二元、三元线性方程组 . 为了研究n元线性方程组,需要把行列式推广到 n 阶,即讨论 n 阶行列式的问题 . 为此,下面先介绍全排列等知识,然后引出 n 阶行列式的概念.§ 1全排列及其逆序数先看一个例子.引例用 1、2、3 三个数字,可以组成多少个没有重复数字的三位数?解这个问题相当于说,把三个数字分别放在百位、十位与个位上,有几种不同的放法?显然,百位上可以从1、 2、 3 三个数字中任选一个,所以有 3 种放法;十位上只能从剩下的两个数字中选一个,所以有两种放法;个位上只能放最后剩下的一个数字,所以只有 1 种放法 . 因此,共有3 2 1 6 种放法.这六个不同的三位数是:123, 132, 213, 231, 312, 321.在数学中,把考察的对象,如上例中的数字 1、2、3 叫做元素 . 上述问题就是:把 3 个不同的元素排成一列,共有几种不同的排法?对于 n 个不同的元素,也可以提出类似的问题:把 n 个不同的元素排成一列,共有几种不同的排法?把 n 个不同的元素排成一列,叫做这n个元素的全排列,简称排列.n 个不同元素的所有排列的种数,通常用 P n表示 . 有引例的结果可知 P3 = 3 . 2 . 1 = 6 .为了得出计算 P n的公式,可以仿照引例进行讨论:从 n 个元素中任取一个放在第一个位置上,有 n 种取法;又从剩下的 n- 1 个元素中任取一个放在第二个位置上,有n- 1 种取法;这样继续下去,直到最后只剩下一个元素放在第n 个位置上,只有 1 种取法 . 于是P n=n .( n-1).⋯. 3 . 2 . 1 = n! .对于 n 个不同的元素,我们规定各元素之间有一个标准次序(例如 n 个不同的自然数,可规定由小到大为标准次序),于是在这n 个元素的任一排列中,当某两个元素的先后次序与标准次序不同时,就说有 1 个逆序 . 一个排列中所有逆序的总数叫做这个排列的逆序数.逆序数为奇数的排列叫做奇排列,逆序数为偶数的排列叫做偶排列.下面我们来讨论计算排列的逆序数的方法.不失一般性,不妨设 n 个元素为 1 至 n 这 n 个自然数,并规定由小到大为标准次序 . 设p1 p2p n为这 n 个自然数的一个排列,考虑元素p i (i 1,2,, n) ,如果比 p i 大的且排在p i前面的元素有t i个,就说p i这个元素的逆序数是t i. 全体元素的逆序数之总和nt t1t 2t n t i,i 1即是这个排列的逆序数.例1 求排列 32514 的逆序数 .解在排列 32514 中,3 排在首位逆序数为 0;2 的前面比 2 大的数只有一个“ 3”,故逆序数为1;5 是最大数,逆序数为 0;1 的前面比 1 大的数有三个“3、 2、5”,故逆序数为3;4 的前面比 4 大的数只有一个“ 5”,故逆序数为 1;于是排列的逆序数为t 0 1 0 3 1 5 .§ 2n 阶行列式的定义为了给出 n 阶行列式的定义,我们先研究三阶行列式的结构.三阶行列式定义为:a11 a12a13a21 a22a23a11a22a33a12a23a31a13a21a32a31 a32a33a11a23a32a12a21a33a13a22a31.(1)容易看出:①( 1)式右边的每一项都恰是三个元素的乘积,这三个元素位于不同的行、不同的列 . 因此,(1)式右端的任意项除正负号外可以写成a1 p1 a2 p2 a3 p3.这里第一下标(称行标)排成标准排列123,而第二个下标(称列标)排成p1 p2 p3,它是1、2、3三个数的某个排列. 这样的排列共有 6 种,对应( 1)式右端共含 6 项。
2023REPORTING (完整版)线性代数教案(正式打印版)•课程介绍与教学目标•行列式与矩阵•向量与向量空间•线性方程组与高斯消元法•特征值与特征向量•二次型与正定矩阵•线性变换与矩阵对角化•课程总结与复习指导目录CATALOGUE20232023REPORTINGPART01课程介绍与教学目标线性代数课程简介线性代数是数学的一个重要分支,主要研究向量空间、线性变换及其性质。
它是现代数学、物理、工程等领域的基础课程,对于培养学生的抽象思维、逻辑推理和问题解决能力具有重要作用。
本课程将系统介绍线性代数的基本概念、理论和方法,包括向量空间、矩阵、线性方程组、特征值与特征向量、线性变换等内容。
掌握线性代数的基本概念、理论和方法,理解其本质和思想。
能够运用所学知识解决实际问题,具备分析和解决问题的能力。
培养学生的抽象思维、逻辑推理和创新能力,提高学生的数学素养。
教学目标与要求教材及参考书目教材《线性代数》(第五版),同济大学数学系编,高等教育出版社。
参考书目《线性代数及其应用》,David C.Lay著,机械工业出版社;《线性代数讲义》,Gilbert Strang著,清华大学出版社。
2023REPORTINGPART02行列式与矩阵•行列式的定义:由n阶方阵的元素所构成的代数和,其值等于所有取自不同行不同列的n个元素的乘积的代数和。
行列式的性质行列式与它的转置行列式相等。
互换行列式的两行(列),行列式变号。
若行列式的某一列(行)的元素都是两数之和,例如第j 列的元素都是两数之和:a1j=b1+c1,a2j=b2+c2,....,anj=bn+cn ,则此行列式等于两个行列式之和。
行列式的某一行(列)的所有的元素都乘以同一数k ,等于用数k 乘此行列式。
行列式中如果有两行(列)元素成比例,则此行列式等于零。
矩阵概念及运算矩阵的定义由m×n个数排成的m行n列的数表称为m行n列的矩阵,简称m×n矩阵。
《线性代数》课程教学大纲课程名称:线性代数课程代码:课程性质: 必修总学分:2 总学时: 32* 其中理论教学学时:32*适用专业和对象:理(非数学类专业)、工、经、管各专业**使用教材:注:(1)大部分高校开设本课程的教学学时数约为32—48学时,为兼顾少学时高校开展教学工作,本大纲以最低学时数32学时(约2学分)进行教学安排,有多余学时的学校或专业可对需要加强的内容适当拓展教学学时。
(2)对线性代数课程而言,理工类与经管类专业的教学基本要求几乎一致,所以这里所列教学内容及要求对这两类专业均适合。
一、课程简介《线性代数》是高等学校理(非数学类专业)、工、经、管各专业的一门公共基础课,其研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
该课程具有理论上的抽象性、逻辑推理的严密性和工程应用的广泛性。
主要内容是学习科学技术中常用的矩阵方法、线性方程组及其有关的基本计算方法,使学生具有熟练的矩阵运算能力并能用矩阵方法解决一些实际问题。
通过本课程的学习,使学生理解和掌握行列式、矩阵的基本概念、主要性质和基本运算,理解向量空间的概念、向量的线性关系、线性变换、了解欧氏空间的线性结构,掌握线性方程组的求解方法和理论,掌握二次型的标准化和正定性判定。
线性代数的数学思想和数学方法深刻地体现辩证唯物主义的世界观和方法论,线性代数的发展历史也充分展示数学家们开拓创新、追求真理的科学精神,展现古今中外数学家们忠诚爱国、献身事业的高尚情怀。
思想政治教育元素融入线性代数的教学实践之中,可以培养学生用哲学思辨立场、观点和方法分析解决问题,能够提高学生的创新能力和应用意识,培养学生的爱国主义情怀、爱岗敬业精神和开拓创新精神,帮助学生在人生道路上形成良好的人格,树立正确的世界观、人生观、价值观。
线性代数理论不仅渗透到了数学的许多分支中,而且在物理、化学、生物、航天、经济、工程等领域中都有着广泛的应用。
同时,线性代数课程注重培养学生逻辑思维和抽象思维能力、空间直观和想象能力,提高学生分析问题解决问题的能力。
2013届钻石卡学员学习计划---数学三第十五单元(课前或课后学习内容)
计划对应教材:工程数学线性代数同济大学数学系编高等教育出版社第五版
线性代数第一章行列式
第1章第1节二阶与三阶行列式(P1——P4)
第1章第2节全排列及其逆序数(P4——P5)
第1章第3节n阶行列式的定义(P5——P8)
第1章第4节对换(P8——P9)
第1章第5节行列式的性质(P9——P15)
第1章第6节行列式按行(列)展开(P16——P21)
第1章第7节克拉默法则(P21——P25)
本单元中我们应当学习——
1.行列式的概念和性质,行列式按行(列)展开定理.
2.用行列式的性质和行列式按行(列)展开定理计算行列式.
3.用克莱姆法则解齐次线性方程组.
2013届钻石卡学员学习计划---数学三
第十六单元(课前或课后学习内容)
计划对应教材:工程数学线性代数同济大学数学系编高等教育出版社第五版
线性代数第二章矩阵及其运算
第2章第1节矩阵(P29——P32)
第2章第2节矩阵的运算(P33——P42)
第2章第3节逆矩阵(P42——P47)
第2章第4节矩阵分块法(P47——P54)
2013届钻石卡学员学习计划---数学三线性代数第三章矩阵的初等变换与线性方程组
第3章第1节矩阵的初等变换(P57——P65)
本单元中我们应当学习——
1.矩阵的概念,单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵的概念和性质.
2.矩阵的线性运算、乘法运算、转置以及它们的运算规律.
3. 方阵的幂与方阵乘积的行列式的性质.
4.逆矩阵的概念和性质,矩阵可逆的充分必要条件.
5. 伴随矩阵的概念,用伴随矩阵求逆矩阵.
6.分块矩阵及其运算.
2013届钻石卡学员学习计划---数学三
第十七单元(课前或课后学习内容)
计划对应教材:工程数学线性代数同济大学数学系编高等教育出版社第五版
线性代数第三章矩阵的初等变换与线性方程组
2013届钻石卡学员学习计划---数学三第3章第2节矩阵的秩(P65——P71)
第3章第3节线性方程组的解(P71——P78)
线性代数第四章向量组的线性相关性
第4章第1节向量组及其线性组合(P81——P86)
第4章第2节向量组的线性相关性(P87——P90)
第4章第3节向量组的秩(P90——P94)
本单元中我们应当学习——
1.矩阵的秩的概念,用初等变换求矩阵的秩和逆矩阵.
2.n维向量、向量的线性组合与线性表示的概念.
3.向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法.
4.向量组的极大线性无关组和向量组的秩的概念和求解.
5.向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系.
2013届钻石卡学员学习计划---数学三
第十八单元(课前或课后学习内容)
计划对应教材:工程数学线性代数同济大学数学系编高等教育出版社第五版
线性代数第四章向量组的线性相关性
第4章第4节线性方程组的解的结构(P94——P102)
第4章第5节向量空间(P102——P106)——本节内容数学三不要求
本单元中我们应当学习——
1.齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件.
2.齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法.
3.非齐次线性方程组解的结构及通解.
4.用初等行变换求解线性方程组的方法.
2013届钻石卡学员学习计划---数学三
第十九单元(课前或课后学习内容)
计划对应教材:工程数学线性代数 同济大学数学系编 高等教育出版社 第五版 线性代数 第五章 相似矩阵及二次型
第5章 第1节 向量的内积、长度及正交性(P111——P116) 第5章 第2节 方阵的特征值与特征向量(P117——P121) 第5章 第3节 相似矩阵(P121——P124) 本单元中我们应当学习——
1.内积的概念,线性无关向量组正交规范化的施密特(Schmidt )方法. 2.规范正交基、正交矩阵的概念以及它们的性质.
3.矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量.
4.相似矩阵的概念、性质,矩阵可相似对角化的充分必要条件,将矩阵化为相似对角矩阵的方法.
2013届钻石卡学员学习计划---数学三
第二十单元(课前或课后学习内容)
计划对应教材:工程数学线性代数同济大学数学系编高等教育出版社第五版
线性代数第五章相似矩阵及二次型
第5章第4节对称矩阵的对角化(P124——P127)
第5章第5节二次型及其标准形(P127——P131)
第5章第6节用配方法化二次型成标准形(P131——P132)
第5章第7节正定二次型(P132——P134)
2013届钻石卡学员学习计划---数学三本单元中我们应当学习——
1.实对称矩阵的特征值和特征向量的性质.
2.二次型及其矩阵表示,二次型秩的概念,合同变换与合同矩阵的概念,二次型的标准形、规范形的概念以及惯性定理.
3.正交变换化二次型为标准形,配方法化二次型为标准形.
4.正定二次型、正定矩阵的概念和判别法.
2013届钻石卡学员学习计划---数学三。