《线性代数》教材801汇总678
- 格式:ppt
- 大小:1.69 MB
- 文档页数:25
线性代数教案第(1)次课授课时间()基本内容备注第一节二、三阶行列式的定义一、二阶行列式的定义从二元方程组的解的公式,引出二阶行列式的概念。
设二元线性方程组⎩⎨⎧=+=+22222211212111bxaxabxaxa用消元法,当021122211≠-aaaa时,解得211222111212112211222112121221,aaaababaxaaaababax--=--=令2112221122211211aaaaaaaa-=,称为二阶行列式 ,则如果将D中第一列的元素11a,21a换成常数项1b,2b ,则可得到另一个行列式,用字母1D表示,于是有2221211ababD=按二阶行列式的定义,它等于两项的代数和:212221abab-,这就是公式(2)中1x的表达式的分子。
同理将D中第二列的元素a 12,a 22换成常数项b1,b2 ,可得到另一个行列式,用字母2D表示,于是有2121112babaD=按二阶行列式的定义,它等于两项的代数和:121211baba-,这就是公式(2)中2x的表达式的分子。
于是二元方程组的解的公式又可写为⎪⎪⎩⎪⎪⎨⎧==DDxDDx2211其中0≠D例1.解线性方程组.1212232121⎪⎩⎪⎨⎧=+=-xxxx同样,在解三元一次方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bxaxaxabxaxaxabxaxaxa时,要用到“三阶行列式”,这里可采用如下的定义.二、三阶行列式的定义设三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bxaxaxabxaxaxabxaxaxa用消元法解得定义设有9个数排成3行3列的数表333231232221131211aaaaaaaaa记333231232221131211aaaaaaaaaD=322113312312332211aaaaaaaaa++=332112322311312213aaaaaaaaa---,称为三阶行列式,则三阶行列式所表示的6项的代数和,也用对角线法则来记忆:从左上角到右下角三个元素相乘取正号,从右上角到左下角三个元素取负号,即例2. 计算三阶行列式243122421----=D.(-14)例3. 求解方程094321112=xx(32==xx或)例4. 解线性方程组.5573422⎪⎩⎪⎨⎧=+-=++-=++-zyxzyxzyx解先计算系数行列式573411112--=D069556371210≠-=----+-=再计算321,,DDD第( 2 )次课授课时间()第( 3 )次课授课时间()基本内容备注第5节行列式按行(列)展开定义在n阶行列式中,把元素ija所处的第i行、第j列划去,剩下的元素按原排列构成的1-n阶行列式,称为ij a的余子式,记为ijM;而ijjiijMA+-=)1(称为ij a的代数余子式.引理如果n阶行列式中的第i行除ija外其余元素均为零,即:nnnjnijnjaaaaaaaD11111=.则:ijijAaD=.证先证简单情形:nnnnnaaaaaaaD212222111=再证一般情形:定理行列式等于它的任意一行(列)的各元素与对应的代数余子式乘积之和,即按行:()jiAaAaAajninjiji≠=+++02211按列:()jiAaAaAanjnijiji≠=+++02211证:(此定理称为行列式按行(列)展开定理)nnnniniinaaaaaaaaaD2121112110+++++++++=nnnninnnnnninnnnninaaaaaaaaaaaaaaaaaaaaa211121121211211211112110+++=).,2,1(2211niAaAaAaininiiii=+++=例1:335111243152113------=D.解:例2:21122112----=nD解: 21122112----=n D 211221100121---=+++nr r1+=n D n .从而解得 1+=n D n .例3.证明范德蒙行列式112112222121111---=n nn n nnn x x x x x x x x x D()1i j n i j x x ≥>≥=-∏.其中,记号“∏”表示全体同类因子的乘积.证 用归纳法因为 =-==1221211x x x x D ()21i j i j x x ≥>≥-∏ 所以,当2=n n=2时,(4)式成立.现设(4)式对1-n 时成立,要证对n 时也成立.为此,设法把nD 降阶;从第n 行开始,后行减去前行的1x 倍,有()()()()()()213112213311222221331111110000n n n n n n n n n x x x x x x x x x x x x x x x D x x x x x x x x x ---------=---(按第一列展开,并提出因子1x x i -)行列式一行(列)的各元素与另一行(列)对应第( 4 )次课授课时间()第(5)次课授课时间()基本内容备注第一节矩阵一、矩阵的定义称m行、n列的数表mnmmnnaaaaaaaaa212222111211为nm⨯矩阵,或简称为矩阵;表示为⎪⎪⎪⎪⎪⎭⎫⎝⎛=mnmmnnaaaaaaaaaA212222111211或简记为nmijaA⨯=)(,或)(ijaA=或n m A⨯;其中ij a表示A中第i行,第j列的元素。
线性代数(同济教材,第六版)知识点的细分目录第一章行列式0101 排列与逆序数0102 行列式定义0103 几个特殊行列式0104 行列式性质0105 行列式按行(列)展开0106 单元小结0107 单元测试第二章矩阵及其运算0201 矩阵的引入0202 矩阵的运算0203 矩阵的转置与对称矩阵0204 逆矩阵0205 伴随矩阵与克拉默法则0206 分块矩阵0207 单元小结0208 单元测试第三章矩阵的初等变换与线性方程组0301 矩阵的初等变换030101 用消元法求解线性方程组030102 矩阵的初等变换及其相关定理030103 矩阵之间的等价关系0302 初等矩阵030201 初等矩阵的定义030202 有关初等矩阵的定理030203 用初等变换求逆矩阵030204 用初等变换解矩阵方程0303 矩阵的秩030301 k阶子式的概念030302 矩阵秩的概念和基本性质030303 矩阵秩的计算030304 矩阵秩的性质续(放在辅导难点部分)0304 线性方程组的解030401 线性方程组解的判定030402 线性方程组的解法030403 两个推广(放在辅导难点部分)0305 单元小结0306 单元测试第四章向量组的线性相关性0401 向量组及其线性组合040101 n维向量空间的概念040102 向量组的线性组合040103 向量组之间的线性表示0402 向量组的线性相关性040201 线性相关、线性无关的概念040202 线性相关性的判定040203 线性相关、线性无关的性质0403 向量组的秩040301 最大线性无关组与向量组的秩040302 矩阵的秩与向量组的秩的关系040303 向量组之间的线性表示和秩的关系0404 线性方程组的解的结构040401 齐次线性方程组040402 非齐次线性方程组0405 向量空间040501 向量空间的概念040502 子空间040503 基、维数与坐标040504 过渡矩阵和坐标变换0406 单元小结0407 单元测试第五章相似矩阵及二次型0501向量的内积、长度及正交性050101向量的内积及长度050102向量的正交性050103施密特正交化方法050104正交矩阵及正交变换0502方阵的特征值与特征向量050201特征值与特征向量的概念050202特征值与特征向量的性质0503相似矩阵050301相似矩阵的概念及性质050302矩阵的相似对角化0504对称矩阵的对角化050401实对称矩阵050402实对称矩阵的正交对角化0505二次型及其标准型050501二次型及其标准形050502用正交变换化二次型为标准形0506用配方法化二次型为标准形0507正定二次型050701正定二次型的概念及惯性定理050702正定二次型的判定0508 单元小结0509 单元测试。
线性代数教材简介线性代数是现代数学的一个重要分支,它主要研究向量空间及其上的线性变换。
线性代数在计算机科学、物理学、工程学等领域都有着广泛的应用。
本教材旨在为初学者提供全面且易于理解的线性代数知识,以帮助他们建立对线性代数基本概念和技术的扎实理解。
目录1.引言–什么是线性代数–线性代数的历史和应用–线性代数的基本概念2.向量–向量的定义和表示–向量的加法和减法–向量的数量乘法–向量的线性组合–向量的内积和外积3.矩阵–矩阵的定义和表示–矩阵的加法和减法–矩阵的数量乘法–矩阵的乘法–矩阵的转置和逆4.线性方程组–线性方程组的定义和表示–线性方程组的解集–线性方程组的求解方法5.线性变换–线性变换的定义和表示–线性变换的性质–线性变换的矩阵表示–线性变换的复合和逆变换6.特征值与特征向量–特征值和特征向量的定义–特征值与特征向量的计算–特征值与特征向量的应用7.矩阵的相似性–矩阵的相似性定义–矩阵的相似对角化–矩阵的特征分解详细内容1. 引言什么是线性代数线性代数是研究向量空间及其上的线性变换的数学学科。
它研究向量的线性结构、线性方程组的解集、线性变换以及与线性变换有关的矩阵、特征值和特征向量等内容。
线性代数的历史和应用线性代数作为一门学科可以追溯到19世纪,当时数学家对线性方程组和矩阵理论进行了研究。
随着时间的推移,线性代数渐渐成为现代数学的一个重要分支,并在自然科学、社会科学、工程学等领域得到广泛应用。
线性代数的基本概念在学习线性代数之前,我们首先需要理解一些基本概念,包括向量、矩阵、线性方程组和线性变换等。
本教材将逐一介绍这些基本概念,并提供一些实际应用的例子,以帮助读者理解这些概念的含义和用途。
2. 向量向量的定义和表示向量是具有大小和方向的量,可以用有序数对或有序三元组表示。
向量可以表示空间中的位置、速度、力量等物理量。
向量的加法和减法向量的加法和减法是指将两个向量的对应分量相加或相减,得到一个新的向量。
《线性代数》知识点归纳整理-⼤学线代基础知识.docx 《线性代数》知识点归纳整理诚毅学⽣编01、余⼦式与代数余⼦式................................................................... - 2 -02、主对⾓线............................................................................. - 2 -03、转置⾏列式........................................................................... - 2 -04、⾏列式的性质......................................................................... - 3 -05、计算⾏列式........................................................................... - 3 -06、矩阵中未写出的元素................................................................... - 4 -07、⼏类特殊的⽅阵....................................................................... - 4 -08、矩阵的运算规则....................................................................... - 4 -09、矩阵多项式........................................................................... - 6 -10、对称矩阵............................................................................. - 6 -11、矩阵的分块........................................................................... - 6 -12、矩阵的初等变换....................................................................... - 6 -13、矩阵等价............................................................................. - 6 -14、初等矩阵............................................................................. - 7 -15、⾏阶梯形矩阵与⾏最简形矩阵......................................................... - 7 -16、逆矩阵............................................................................... - 7 -17、充分性与必要性的证明题............................................................... - 8 -18、伴随矩阵............................................................................. - 8 -19、矩阵的标准形:....................................................................... - 9 -20、矩阵的秩:........................................................................... - 9 -21、矩阵的秩的⼀些定理、推论............................................................. - 9 -22、线性⽅程组概念....................................................................... - 10 -23、齐次线性⽅程组与⾮齐次线性⽅程组(不含向量)......................................... - 10 -24、⾏向量、列向量、零向量、负向量的概念................................................. - 11 -25、线性⽅程组的向量形式................................................................. - 11 -26、线性相关与线性⽆关的概念.......................................................... - 12 -27、向量个数⼤于向量维数的向量组必然线性相关............................................ - 12 -28、线性相关、线性⽆关;齐次线性⽅程组的解;矩阵的秩这三者的关系及其例题................. - 12 -29、线性表⽰与线性组合的概念.......................................................... - 12 -30、线性表⽰;⾮齐次线性⽅程组的解;矩阵的秩这三者的关系其例题.......................... - 12 -31、线性相关(⽆关)与线性表⽰的3个定理................................................. - 12 -32、最⼤线性⽆关组与向量组的秩........................................................... - 12 -33、线性⽅程组解的结构................................................................... - 12 -01、余⼦式与代数余⼦式a 22 a 23对M ii 的解释:划掉第1⾏、第1列,剩下的就是⼀个⼆阶⾏列式a a ,这个 a 32 a 33⾏列式即元素an 的余⼦式M ii 。
一、行列式知识结构网络图概念性质展开式计算证明0A =应用经转置行列式的值不变;某行有公因数k ,可把k 提到行列式外;某行所有元素都是两个数的和,则可写成两个行列式之和; 两行互换行列式变号;某行的k 倍加至另一行.行列式的值不变;不同行、不同列的n 个元素之积的代数和1nn ik ik k D a A ==∑(按i 行展开)1nn kj kj k D a A ==∑(按j 行展开)余子式、代数余子式给定(i ,j )元的值未给定(i ,j )元的值化三角形-加边法、爪型行列式;公式法-特殊行列式、范德蒙德行列式; 递推、数学归纳法;等用行列式性质计算; 用矩阵性质计算; 用方阵的特征值;等克拉默法则;判断方阵的可逆,利用伴随几种求逆矩阵; 线性相关性的判定;求矩阵的秩,并判断线性方程组的解存在情况; 求方阵的特征值。
()n n R n ⨯<A ;0是方阵A 的特征值;=-A A行列式行列式是线性代数中的重要工具,在求解线性方程组、求逆矩阵、判断向量组的线性相关性、求矩阵的特征值、判断二次型的正定性等方面都要用到.本章的重点是应用行列式的性质和展开定理计算行列式.行列式的计算除了利用性质及展开定理外,还有三角化法、升阶法、递推法和数学归纳法等,计算方法多,技巧性强,这是难点所在.要掌握好这些方法,首先必须具体分析所求行列式元素分布的规律,针对其特点采取适当的方法;其次是要注意总结、积累经验,不断提高运算能力.行列式的性质【例】:已知531,252,234都是9的倍数,利用行列式的性质(而不是展开),证明522353124也是9的倍数。
解答:522353124231321010r r ,r r ++522353531252234139r 5229353582726【例】:如果除最后一行外,从每一行减去后面的一行,而从最后一行减去原先的第一行,问行列式值如何变化?解答:设原行列式为⎪⎪⎪⎭⎫ ⎝⎛=n A αα 1det ,则新的行列式为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=-113221det ααααααααn n n B , ()00,,3,2det 11321113221=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=--ααααααααααααααn n n i n n n n i r r B特殊行列式1、(主)对角行列式、上(下)三角行列式1111111111221122221111111niii nnnnnna a a a a a a a a a a a a a a a ====∏2、(次)对角行列式、上(下)三角行列式()()12111111212212121111111n n n n n nn,n,n ,n ,n iii n n,n nnn n a a a a a a a a a a aa a a a a ----=-===-∏3、分块三角行列式 形式简记为:*==⨯*A O A AB BO B,()1k n⨯*==-⨯*O A AA B BB O4、范德蒙德行列式()211112112122222221212121111111121121111111,,,11n n n n n n n n n n n n n n n n n n nn n x x x x x x x x x x f x x x x x x x x x x x x x x x x x --------------==()()121,,,n ijn i j f x x x x x ≥>≥=-∏ ()()()()()1213211212111,,,n nj n j j j n j n j j j f x x x xx xx xx x x --≥≥-≥≥≥≥≥≥=-⋅---∏∏∏∏()()()()1221n n n n n n x x x x x x x x --=----()()()()()()()12131211323121n n n n n n x x x x x x x x x x x x x x -------------认识范德蒙德行列式可以将n 阶范德蒙德行列式看成式关于n 个变量12,,,n x x x 的函数,即()12,,,n n D f x x x =。
概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确(),nT A r A n A A Ax x Ax A Ax A A A E οοοββ==⇔∀≠≠≠⇔∀∈=≅可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 ,0总有唯一解 是正定矩阵 R 12,s iA p p p p nB AB E AB E⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪=⋅⋅⋅⎪==⎪⎩ 是初等阵存在阶矩阵使得 或 ○注:全体n 维实向量构成的集合nR 叫做n 维向量空间. ()A r A n A A A Ax A ολ<=⇔==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的⎧⎪⎪⎪⎨⎪⎪⎪⎩特征向量○注 ()()a b r aE bA n aE bA aE bA x οολ+<⎧⎪+=⇔+=⎨⎪⎩有非零解=-⎫⎪≅⎪−−−→⎬⎪⎪⎭具有向量组等价矩阵等价()反身性、对称性、传递性矩阵相似()矩阵合同() √ 关于12,,,n e e e ⋅⋅⋅:①称为n的标准基,n中的自然基,单位坐标向量87p 教材; ②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; ④tr =E n ;⑤任意一个n 维向量都可以用12,,,n e e e ⋅⋅⋅线性表示.1212121112121222()1212()n n nn n j j j n j j nj j j j n n nna a a a a a D a a a a a a τ==-∑1√ 行列式的计算:①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.②若A B 与都是方阵(不必同阶),则==()mn A OA A O A BO B O B BOAAA BB OB O*==**=-1(拉普拉斯展开式)③上三角、下三角、主对角行列式等于主对角线上元素的乘积.④关于副对角线:(1)211212112111()n n nnn n n n n n n a Oa a a a a a a Oa O---*==-1 (即:所有取自不同行不同列的n 个元素的乘积的代数和)⑤范德蒙德行列式:()1222212111112ni j nj i nn n n nx x x x x x x x x x x ≤<≤---=-∏111由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪⎪= ⎪ ⎪⎝⎭称为m n ⨯矩阵.记作:()ij m n A a ⨯=或m nA ⨯()1121112222*12n Tn ijnnnn A A A A A A A A A A A ⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭,ij A 为A 中各个元素的代数余子式. √ 逆矩阵的求法:① 1A A A *-= ○注: 1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 主换位副变号②1()()A E E A -−−−−→ 初等行变换③1231111213a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3211111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭√ 方阵的幂的性质:mnm nA A A+= ()()m n mn A A =√ 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b b b c c c b b b ααα⎛⎫ ⎪ ⎪⋅⋅⋅= ⎪ ⎪⎝⎭ ⇔i i A c β= ,(,,)i s = 1,2⇔i β为i Ax c =的解⇔()()()121212,,,,,,,,,s s s A A A A c c c ββββββ⋅⋅⋅=⋅⋅⋅= ⇔12,,,s c c c 可由12,,,n ααα⋅⋅⋅线性表示.即:C 的列向量能由A 的列向量线性表示,B 为系数矩阵. 同理:C 的行向量能由B 的行向量线性表示,TA 为系数矩阵.即: 1112111212222212n n n n mn n m a a a c a a a c a a a c βββ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ⇔11112212121122222211222n n m m mn ma a a c a a a c a a a c βββββββββ+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ √ 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量; 用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘.√ 分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 111A B BA---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A C A A CB O B OB ----⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ 1111A O A OC B B CA B ----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫=⎪⎝⎭,1122nn n A A A ⎛⎫= ⎪⎝⎭分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ *(1)(1)mn mn A A B B B A**⎛⎫-⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭√ 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II) A B E X −−−−→ 初等行变换(I)的解法:构造()()T T T TA XB X X=(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关114p 教材. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余n -1个向量线性表示.向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余n -1个向量线性表示.⑧ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<;m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=.⑨ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一. ⑩ 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0⑪ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系;矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系. 即:矩阵的初等变换不改变矩阵的秩. √ 矩阵的初等变换和初等矩阵的关系:对A 施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A ; 对A 施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A .如果矩阵A 存在不为零的r 阶子式,且任意r +1阶子式均为零,则称矩阵A 的秩为r .记作()r A r =向量组12,,,n ααα 的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r αααA 经过有限次初等变换化为B . 记作:A B =12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅⑫ 矩阵A 与B 等价⇔PAQ B =,,P Q 可逆⇔()(),,,r A r B A B A B =≠>为同型矩阵作为向量组等价,即:秩相等的向量组不一定等价.矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.⑬ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔AX B =有解⇔12(,,,)=n r ααα⋅⋅⋅1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)n r ααα⋅⋅⋅.⑭ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑮ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价;p 教材94,例10⑯ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑰ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑱ 若两个线性无关的向量组等价,则它们包含的向量个数相等. ⑲ 设A 是m n ⨯矩阵,若()r A m =,A 的行向量线性无关;若()r A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关. √ 矩阵的秩的性质:①()A O r A ≠⇔若≥1 ()0A O r A =⇔=若 0≤()m n r A ⨯≤min(,)m n②()()()T T r A r A r A A == p 教材101,例15③()()r kA r A k =≠ 若0④()(),,()0m n n s r A r B n A B r AB B Ax ⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤()r AB ≤{}min (),()r A r B⑥()()()()A r AB r B B r AB r A ⇒=⇒=若可逆若可逆 即:可逆矩阵不影响矩阵的秩.⑦若()()()m n Ax r AB r B r A n AB O B OA AB AC B C ο⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩ 只有零解在矩阵乘法中有左消去律;若()()()n s r AB r B r B n B ⨯=⎧=⇒⎨⎩在矩阵乘法中有右消去律.⑧()rrE O E O r A r A A O O O O ⎛⎫⎛⎫=⇒⎪ ⎪⎝⎭⎝⎭若与唯一的等价,称为矩阵的等价标准型. ⑨()r A B ±≤()()r A r B + {}max (),()r A r B ≤(,)r A B ≤()()r A r B + p 教材70 ⑩()()A O O A r r A r B O B B O ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭ ()()A C r r A r B O B ⎛⎫≠+ ⎪⎝⎭121212,,,0,,,()(),,,A n n A n Ax A n Ax Ax r A r A Ax A n βαααβαααβββααα⇔=−−−−−→=<⇔⇒⇔=⇔=⇔=⇔=−−−−−→≠⇒=⇔⇒ 当为方阵时当为方阵时有无穷多解0表示法不唯一线性相关有非零解可由线性表示有解有唯一组解0克莱姆法则表示法唯一 线127()(),,,()()()1()n Ax r A r A Ax r A r A r A r A οββαααβββ⎧⎪⎪⎪⎪⎨⎪⎪⎪⇔=⎪⎩⎧⇔≠⎪⇔=⇔<⎨⎪⇔+=⎩教材72讲义8性无关只有零解不可由线性表示无解 ○注:AxAx ββ⇒=<≠⇒=<≠有无穷多解其导出组有非零解有唯一解其导出组只有零解Ax β=1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 12,,2,,j j j mj j n αααα⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭11212(,,,)n n x x x αααβ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭线性方程组解的性质:1212121211221212(1),,(2),,(3),,,,,,,,(4),,(5),,(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηοηηηοηηηηολλλληληληγβηογηβηηβηηο=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212),(7),,,,100k k k kk k k Ax Ax Ax Ax Ax ηβηηηοηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解√ 设A 为m n ⨯矩阵,若()r A m =⇒()()r A r A β= ⇒Ax β=一定有解,当m n <时,一定不是唯一解⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A β 和的上限.√ 判断12,,,s ηηη 是Ax ο=的基础解系的条件: ① 12,,,s ηηη 线性无关; ② 12,,,s ηηη 都是Ax ο=的解;③ ()s n r A =-=每个解向量中自由未知量的个数.本帖为考研加油站 和考研论坛 网友songhonger 原创,原创帖子地址 /viewthread.php?tid=2097349&page=1&extra=page%3D1√ 一个齐次线性方程组的基础解系不唯一.√ 若η*是Ax β=的一个解,1,,,s ξξξ 是Ax ο=的一个解⇒1,,,,s ξξξη* 线性无关 √ Ax ο=与Bx ο=同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 两个齐次线性线性方程组Ax ο=与Bx ο=同解⇔()()A r r A r B B ⎛⎫==⎪⎝⎭. √ 两个非齐次线性方程组Ax β=与Bx γ=都有解,并且同解⇔()()A r r A r B B βγ⎛⎫==⎪⎝⎭. √ 矩阵m n A ⨯与l n B ⨯的行向量组等价⇔齐次方程组Ax ο=与Bx ο=同解⇔PA B =(左乘可逆矩阵P );101p 教材 矩阵m n A ⨯与l n B ⨯的列向量组等价⇔AQ B =(右乘可逆矩阵Q ). √ 关于公共解的三中处理办法:① 把(I)与(II)联立起来求解;② 通过(I)与(II)各自的通解,找出公共解;当(I)与(II)都是齐次线性方程组时,设123,,ηηη是(I)的基础解系, 45,ηη是(II)的基础解系,则 (I)与(II)有公共解⇔基础解系个数少的通解可由另一个方程组的基础解系线性表示.即:1231231425(,,)(,,)r r c c ηηηηηηηη=+当(I)与(II)都是非齐次线性方程组时,设11122c c ξηη++是(I)的通解,233c ξη+是(II)的通解,两方程组有公共解⇔2331c ξηξ+-可由12,ηη线性表示. 即:12122331(,)(,)r r c ηηηηξηξ=+-③ 设(I)的通解已知,把该通解代入(II)中,找出(I)的通解中的任意常数所应满足(II)的关系式而求出公共解。