起保停电路及点动控制电路
- 格式:doc
- 大小:46.50 KB
- 文档页数:2
机床的几种控制线路一、点动控制线路如图5—8所示是接触器点动控制线路。
这种控制线路的特点是按下按钮,电动机就转动,松开按钮,电动机就停转,所以叫做点动控制线路。
电动葫芦的起重电动机控制,车床拖板箱快速移动的电动机控制等,都采用点动控制线路。
部分,一是由三相电源L1,L2和L3经熔断器FU1和接触器的三对主触头KM到三相异步电动机电路,是动力电路又称主电路。
二是由熔断器FU2、按钮SB和接触器线圈KM组成的控制电路,又称辅助电路。
该线路的工作原理如下:1.准备使用时先合上开关S。
2.启动与运行按下SB→线圈KM得电→三对主触头KM闭合(电源与负载接通)→电动机M启动、运行。
3.停止松开SB→线圈KM失电→三对主触头KM断开(电源与负载断开)→电动机M停转。
二、看懂机床控制线路的基本要领为了便于掌握机床控制线路,下面介绍一些识图的基本要求。
1.电气原理图用以表达机床控制线路工作原理的是电气原理图。
电气原理图是根据电气作用原理用展开法绘制的,不考虑电气设备和电气元件的实际结构及安装情况,只作研究电气原理与分析故障用。
它能清楚地指出电流的路径、控制电器与用电器的相互关系和线路的工作原理。
所谓展开法,就是把某个电气设备的一条或数条电路按水平或垂直位置画出,按照电路的先后工作顺序一一排列起来,然后接到电源上。
一般将主电路画在图样左边或上部,把控制电路画在图样的右边或下部。
这种画法可把同一电气的部件分开,分别画在主电路和控制电路的相应部位,但要用同一符号表示。
如图5—8所示,接触器的主触头在主电路中,而接触器的线圈在控制电路中,但是都用KM符号表示,说明它们是同一电气的部件。
这样使得主电路与控制电路容易区别,便于单独对主电路与控制电路的各自工作过程,及它们的相互联系进行分析。
各电气触头的位置是电路没有通电或电气未受外力的常态位置,分析控制线路工作时应从触头的常态位置进行。
2.看图的基本原则看图时,先分析主电路,然后研究控制电路,以及控制电路对主电路的控制作用。
点动控制电路工作原理
点动控制电路是一种常用的电路,用于实现设备或机器的点动运行。
它通过一个控制按钮或开关来控制电机的运行,使设备能够在按下按钮后持续运行,直到再次按下按钮或开关停止。
点动控制电路的工作原理如下:
1. 点动按钮:点动按钮是一个常闭按钮,在正常情况下按钮处于关闭状态,不提供电源给电机。
当按下按钮时,按钮瞬间打开并发送一个短暂的电流信号。
2. 控制电路:控制电路由电容器、继电器和其他电子元件组成。
在按钮打开时,电容器开始充电,继电器吸合并维持吸合状态,将电源电流传递给电机。
电容器的充电过程通常需要一段时间。
3. 电机运行:一旦继电器吸合,电机开始运行,并且将保持运行直到电容器完全充电。
在这期间,即使松开按钮,电机仍然保持运行状态。
4. 松开按钮:当电容器充电完毕后,相当于电容器断开了供电,电流中断。
这导致继电器失去电源,释放并切断电机电源。
总结起来,点动控制电路的主要原理是通过点动按钮来提供短暂的电流信号,继电器吸合并维持状态,将电源电流传递给电机,从而实现设备或机器的点动运行。
电动机点动控制电路讲解控制线路原理图如下所示:启动:按下起动按钮SB→接触器KM线圈得电→KM主触头闭合→电动机M启动运行。
停止:松开按钮SB→接触器KM线圈失电→KM主触头断开→电动机M失电停转。
这种控制方法常用于电动葫芦的起重电机控制和车床拖板箱快速移动的电机控制。
点动、单向转动控制线路是用按钮接触器来控制电动机运转的最简单的控制线路接线示意图如下图所示。
从图中可以看出点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。
其中以转换开关QS作电源隔离开关,熔断器FU 作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止,线路工作原理如下:当电动机M需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。
按下启动按钮SB,接触器KM的线圈得电,使衔铁吸合,同时带动接触器KM 的三对主触头闭合,电动机M便接通电源启动运转。
当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,衔铁在复位弹簧作用下复位,带动接触器KM的三对主触头恢复断开,电动机M失电停转。
上图中点动正转控制接线示意图是用近似实物接线图的画法表示的,看起来比较直观,初学者易学易懂,但画起来却很麻烦,特别是对一些比较复杂的控制线路,由于所用电器较多,画成接线示意图的形式反而使人觉得繁杂难懂,很不实用。
因此,控制线路通常不画接线示意图,而是采用国家统一规定的电器图形符号和文字符号,画成控制线路原理图。
点动正转控制线路原理图,如下。
它是根据实物接线电路绘制的,图中以符号代表电器元件,以线条代表联接导线。
用它来表达控制线路的工作原理,故称为原理图。
原理图在设计部门和生产现场都得到了广泛的应用。
除了点动控制电路,在工作中,还会用到各种电路,比如:起保停电路、自锁控制电路、正反转控制电路、降压启动控制电路、启停控制电路等等...。
点动控制电路的工作原理点动控制电路是一种常见的电路控制方式,它通过按下按钮来控制电气设备的启停或切换。
该电路通常由按钮、继电器和电源组成。
我们来了解按钮在点动控制电路中的作用。
按钮是电路的输入端,通过按下按钮可以使电路闭合或断开。
在点动控制电路中,通常有两个按钮,一个用于启动设备,另一个用于停止设备。
按下启动按钮,电路闭合,电流从电源流向继电器的控制回路,继电器吸合,使电气设备开始工作。
而按下停止按钮,电路断开,电流无法流向继电器的控制回路,继电器释放,电气设备停止工作。
继电器是点动控制电路中的核心元件,它起到了控制电路的作用。
继电器由线圈和触点组成。
当电流流经线圈时,产生的磁场会使线圈中的铁芯受力,触点发生动作。
继电器的触点分为常开触点和常闭触点。
当继电器吸合时,常开触点闭合,常闭触点断开;当继电器释放时,常开触点断开,常闭触点闭合。
通过控制继电器的线圈电流,可以实现点动控制电路的启动和停止。
电源是点动控制电路的能量来源,通常是直流电源或交流电源。
电源提供所需的电流和电压,以使继电器能够正常工作。
在点动控制电路中,电源的正极连接到继电器的线圈,电源的负极连接到按钮的一侧,另一侧连接到继电器的常闭触点。
当按钮未按下时,电路断开,继电器的线圈无法获得电流,继电器释放,触点保持常闭状态;当按钮按下时,电路闭合,继电器的线圈获得电流,继电器吸合,触点发生动作。
通过上述的工作原理,点动控制电路可以实现对电气设备的启停或切换。
当需要启动设备时,按下启动按钮,电气设备开始工作;当需要停止设备时,按下停止按钮,电气设备停止工作。
点动控制电路的优点是操作简单,控制灵活,适用于各种电气设备的控制。
总结一下,点动控制电路通过按钮、继电器和电源实现对电气设备的启停或切换。
按钮作为电路的输入端,通过闭合或断开电路来控制继电器的线圈电流;继电器作为电路的控制元件,通过吸合或释放触点来控制电气设备的工作状态;电源提供所需的电流和电压,使继电器能够正常工作。
点动控制电路原理
点动控制电路是一种常用的电气控制电路,可以用于控制机械设备的启动和停止,实现对设备的短暂运动。
这种控制电路的原理是利用按钮开关和继电器来实现。
点动控制电路通常由一个按钮开关和一个继电器组成。
按钮开关分为两个状态,通常为“按下”和“弹起”状态。
继电器则是一
个电磁开关,其可以根据按钮开关的状态来控制机械设备的启动和停止。
当按钮开关处于弹起状态时,电流不能通过按钮开关进行传导,继电器的线圈没有电流流过,继电器的触点处于断开状态,因此机械设备无法启动。
当按钮开关被按下时,电流可以通过按钮开关进行传导,流向继电器的线圈,使线圈处于通电状态。
通电后,继电器的线圈会产生磁场,吸引触点闭合,使机械设备启动。
当按钮开关被松开时,电流不再通过按钮开关进行传导,继电器的线圈没有电流流过,线圈的磁场消失,触点断开,机械设备停止运动。
通过简单的按钮开关和继电器的组合,点动控制电路可以实现对机械设备的短暂运动控制。
这种控制电路的原理简单、可靠,并且能够灵活控制设备的启动和停止,因此在实际应用中非常常见。
在自动控制电路中,起动按钮SB2,停止按钮SB1和交流接触器KM组成了起动、保持、停止(简称起保停电路)典型控制电路。
图1-24是一个常用的最简单的控制电路。
起动时,合上隔离开关QS。
引入三相电源,按下起动按钮SB2,接触器KM的线圈通电,接触器的主触头闭合,电动机接通电源直接起动运转。
同时与SB2并联的常开辅助触头KM也闭合,使接触器线圈经两条路通电,这样,当SB2复位时,KM的线圈仍可通过KM触头继续通电,从而保持电动机的连续运行。
这种依靠按接触器自身常开辅助触头而使其线圈保持通电的功能称为自保或自锁,这一对起自锁作用的触头称作自锁触头。
要使电动机停止运转,只要按下停止按钮SB1,将控制电路断开,接触器KM断电释放,KM的常开主触头将三相电源切断,电动机停止运转。
当按钮SB1松开而恢复闭合时,接触器线圈已不能再依靠自锁触头通电了,因为原来闭合的触头早已随着接触器的断电而断开了。
起保停电路实现了电动机的连续运行控制。
但有些生产机械要求按钮按下时,电动机运转,松开按钮时,电动机就停止,这就是点动控制。
如图1-25图a所示。
图b、c是实现点动与连续运行的电路。